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This document contains the PlusCal code of the four specifications described
in the paper Byzantizing Paxos by Refinement, which is available on the
Web [1]. Comments are indicated by a gray background. The code comes
from the TLA™ modules, which are available on the Web site. The algo-
rithms use some constants that are declared in the TLAT modules, but the
meanings of those constants should be clear. The code was formatted by
hand, so errors could have been introduced.



1 Algorithm Consensus

We specify the safety property of consensus as a trivial algorithm that describes the allowed
behaviors of a consensus algorithm. It uses the variable chosen to represent the set of
all chosen values. The algorithm allows only behaviors that contain a single state-change
in which the variable chosen is changed from its initial value {} to the value {v} for an
arbitrary value v in Value. The algorithm itself does not specify any fairness properties,
so it also allows a behavior in which chosen is not changed. We could use a translator
option to have the translation include a fairness requirement, but we don’t bother because
it is easy enough to add it by hand to the safety specification that the translator produces.

A real specification of consensus would also include additional variables and actions. In
particular, it would have Propose actions in which clients propose values and Learn actions
in which clients learn what value has been chosen. It would allow only a proposed value
to be chosen. However, the interesting part of a consensus algorithm is the choosing of a
single value. We therefore restrict our attention to that aspect of consensus algorithms.
In practice, given the algorithm for choosing a value, it is obvious how to implement the
Propose and Learn actions.

For convenience, we define the macro Choose() that describes the action of changing the
value of chosen from {} to {v}, for a nondeterministically chosen v in the set Value.
(There is little reason to encapsulate such a simple action in a macro; however our other
algorithms are easier to read when written with such macros, so we start using them
now.) The when statement can be executed only when its condition, chosen = {}, is
true. Hence, at most one Choose() action can be performed in any execution. The with
statement executes its body for a nondeterministically chosen v in Value. Execution of
this statement is enabled only if Value is non-empty—something we do not assume at this
point because it is not required for the safety part of consensus, which is satisfied if no
value is chosen.

We put the Choose() action inside a while statement that loops forever. Of course, only
a single Choose() action can be executed. The algorithm stops after executing a Choose()
action. Technically, the algorithm deadlocks after executing a Choose() action because
control is at a statement whose execution is never enabled. Formally, termination is simply
deadlock that we want to happen. We could just as well have omitted the while and let
the algorithm terminate. However, adding the while loop makes the TLA™ representation
of the algorithm a tiny bit simpler.

--algorithm Consensus {
variable chosen = {};
macro Choose() { when chosen = {};
with (v € Value) { chosen := {v} }

}
{ Ibl: while (TRUE){ Choose() }
}
}



2 Algorithm Voting

In the algorithm, each acceptor can cast one or more votes, where each vote cast by an
acceptor has the form (b, v) indicating that the acceptor has voted for value v in ballot b.
A value is chosen if a quorum of acceptors have voted for it in the same ballot.

The algorithm uses two variables, votes and maxBal, both arrays indexed by acceptor.
Their meanings are:

votes[a] ~ The set of votes cast by acceptor a.
mazBal[a] The number of the highest-numbered ballot in which a has cast a vote,
or —1 if it has not yet voted.

The algorithm does not let acceptor a vote in any ballot less than mazBal[a].

We specify our algorithm by the following PlusCal code. The specification Spec defined
by this algorithm describes only the safety properties of the algorithm. In other words, it
specifies what steps the algorithm may take. It does not require that any (non-stuttering)
steps be taken. Liveness is discussed in the TLA specification.

--algorithm Voting {
variables votes = [a € Acceptor — {}],
mazBal = [a € Acceptor — —1];
define {

The define section adds TLA™ definitions of operators that can use the algorithm’s vari-
ables and can be used within the algorithm.

We now define the operator SafeAt so SafeAt(b,v) is a function of the state that equals
TRUE if no value other than v has been chosen or can ever be chosen in the future (because
the values of the variables votes and maxBal are such that the algorithm does not allow
enough acceptors to vote for it). We say that value v is safe at ballot number b iff Safe(b, v)
is true. We define Safe in terms of the following two operators.

Note: This definition is weaker than would be necessary to allow a refinement of ordinary
Paxos consensus, since it allows different quorums to “cooperate” in determining safety at
b. This is used in algorithms like Vertical Paxos that are designed to allow reconfiguration
within a single consensus instance, but not in ordinary Paxos. See [2].

We define SafeAt in terms of the following two operators.

A

VotedFor(a, b, v) = (b, v) € votes|al

True iff acceptor a has voted for v in ballot b.

DidNotVoteIn(a, b) = Yv € Value : ~VotedFor(a, b, v)
We now define SafeAt. We define it recursively. The nicest definition is:



RECURSIVE SafeAt(-, _)
SafeAt(b, v) =
Vb=0
V3Q € Quorum :
AYa € Q: mazBalla] > b
ANdce —1..(b—1):
A(c# —1)= A Safedt(c, v)
AVaé€e Q:
Vw € Value :
VotedFor(a, ¢, w) = (w = v)
AVYd e (¢c+1)..(b—1),a € Q: DidNotVoteIn(a, d)

However, TLAPS does not currently support recursive operator definitions. We there-
fore define it as follows using a recursive function definition.

SafeAt(b, v) =
LET SA[bb € Ballot] =
This recursively defines SA[bb] to equal SafeAt(bb, v).
Vbbb =0
V3Q € Quorum :
AYa € Q : mazBal[a] > bb
Adece —1..(bb—1):
A(c# —1)= NSA[c]
AVae€ Q:
Yw € Value :
VotedFor(a, ¢, w) = (w = v)
AVd e (¢c+1)..(bb—1), a € Q: DidNotVoteln(a, d)
IN  SA[b]
}

There are two possible actions that an acceptor can perform, each defined by a macro.
In these macros, self is the acceptor that is to perform the action. The first action,
IncreaseMazBal(b) allows acceptor self to set mazBal[self] to b if b is greater than the
current value of mazBal[self].

macro IncreaseMaxBal(b) {
when b > mazBal[self] ;

mazBal[self] :=b



Action VoteFor(b,v) allows acceptor self to vote for value v in ballot b if its when
condition is satisfied.

macro VoteFor(b,v) {
when A mazBal[self] < b
A DidNotVoteln(self, b)
AVp € Acceptor\{self} :
Yw € Value : VotedFor(p, b, w) = (w = v)
A SafeAt(b,v) ;
votes[self] : = votes[self] U {(b,v)} ;
mazxBal[self] :=b
}

The following process declaration asserts that every process self in the set Acceptor exe-
cutes its body, which loops forever nondeterministically choosing a Ballot b and executing
either an IncreaseMazBal(b) action or nondeterministically choosing a value v and exe-
cuting a VoteFor(b,v) action. The single label indicates that an entire execution of the
body of the while loop is performed as a single atomic action.

From this intuitive description of the process declaration, one might think that a process
could be deadlocked by choosing a ballot b in which neither an IncreaseMazBal(b) action
nor any VoteFor (b, v) action is enabled. An examination of the TLA™ translation (and an
elementary knowledge of the meaning of existential quantification) shows that this is not
the case. You can think of all possible choices of b and of v being examined simultaneously,
and one of the choices for which a step is possible being made.

process (acceptor € Acceptor) {
acc : while (TRUE) {
with (b € Ballot) {
either IncreaseMaxBal(b)
or with (v € Value) { VoteFor(b,v) }

}
}



3 Algorithm PCon

The algorithm is easiest to understand in terms of the set msgs of all messages that have
ever been sent. A more accurate model would use one or more variables to represent the
messages actually in transit, and it would include actions representing message loss and
duplication as well as message receipt.

For our purposes, there is no need to model message loss explicitly. The safety part of
the spec says only what messages may be received and does not assert that any message
actually is received. Thus, there is no difference between a lost message and one that is
never received. The liveness property of the spec will make it clear what messages must
be received (and hence either not lost or successfully retransmitted if lost) to guarantee
progress.

Another advantage of maintaining the set of all messages that have ever been sent is that
it allows us to define the state function votes that implements the variable of the same
name in the voting algorithm without having to introduce a history variable.

In addition to the variable msgs, the algorithm uses four variables whose values are arrays
indexed by acceptor, where for any acceptor a:

mazBal[a] The largest ballot number in which a has participated

mazVBal[a] The largest ballot number in which a has voted, or —1 if it has never
voted.

mazVVal[a] If a has voted, then this is the value it voted for in ballot mazVBal;
otherwise it equals None.

As in the voting algorithm, an execution of the algorithm consists of an execution of zero
or more ballots. Different ballots may be in progress concurrently, and ballots may not
complete (and need not even start). A ballot b consists of the following actions (which
need not all occur in the indicated order).

Phasela The leader sends a 1a message for ballot b.

Phaselb If mazBal[a] < b, an acceptor a responds to the la message by setting
mazBalla] to b and sending a 1b message to the leader containing the
values of mazVBalla] and mazVValla].

Phaselc When the leader has received ballot-b 1b messages from a quorum, it
determines some set of values that are safe at b and sends 1c¢ messages
for them.

Phase2a The leader sends a 2a message for some value for which it has already
sent a ballot-b 1¢ message.

Phase2b Upon receipt of the 2a message, if mazBal[a] < b, an acceptor a sets
mazBal[a] and mazVBal[a] to b, sets mazVVal[a] to the value in the 2a
message, and votes for that value in ballot b by sending the appropriate
2b message.



--algorithm PCon {
variables mazBal = [a € Acceptor — —1] ,
mazVBal = [a € Acceptor — —1] ,
mazVVal = [a € Acceptor — None] ,
msgs = {}
define {

sentMsgs(t, b) = {m € msgs : (m.type = t) A (m.bal = b)}
We define ShowsSafeAt so that ShowsSafeAt(Q, b, v) is true for a quorum @ iff msgs
contain ballot-b 15 messages from the acceptors in ) showing that v is safe at b.

ShowsSafeAt(Q, b, v) 2
LET Q1b = {m € sentMsgs(“1b", b) : m.acc € Q}
IN AVaee€e Q:dme Qlb: m.acc =a
AVYm e QLlb: m.mbal = — 1
Vdmlc € msgs :
A mlc = [type — “1c", bal — mlc.bal, val — v]
AVYm € Q1b: Amlc.bal > m.mbal
A (mlec.bal = m.mbal) = (m.mval = v)

The Actions
As before, we describe each action as a macro. The leader for process self can execute a

Phasela() action, which sends the ballot self 1a message.

macro Phasela() { msgs : = msgs U { [type — “1a", bal — self]} }

Acceptor self can perform a Phaselb(b) action, which is enabled iff b > mazBal[self].
The action sets mazBal[self] to b and sends a phase 1b message to the leader containing
the values of mazVBal[self] and mazV Val[self].
macro Phaselb(b) {
when (b > mazBal[self]) N (sentMsgs(“1a",b) #{}) ;
mazBal[self] := b ;
msgs 1= msgs U { [type — “1b", acc — self, bal — b,
mbal — mazVBal[self|, mval — maxVVal[self]]} ;



The ballot self leader can perform a Phaselc(S) action, which sends a set .S of 1¢ messages
indicating that the value in the wal field of each of them is safe at ballot b. In practice,
S will either contain a single message, or else will have a message for each possible value,
indicating that all values are safe. In the first case, the leader will immediately send a
2a message with the value contained in that single message. (Both logical messages will
be sent in the same physical message.) In the latter case, the leader is informing the
acceptors that all values are safe. (All those logical messages will, of course, be encoded
in a single physical message.)

macro Phaselc(S) {
when Vv € S : 3Q € Quorum : ShowsSafeAt(Q, self,v) ;
msgs : = msgs U { [type — "“1c", bal — self, val — v] : v € S}

}

The ballot self leader can perform a Phase2a(v) action, sending a 2a message for value
v, if it has not already sent a 2a message (for this ballot) and it has sent a ballot self 1c
message with val field v.

macro Phase2a(v) {

when A sentMsgs(2a", self) = {}
A [type — “1c", bal — self, val — v] € msgs ;
msgs := msgs U { [type — 23", bal — self, val — v]}

}

The Phase2b(b) action is executed by acceptor self in response to a ballot-b 2a message.
Note this action can be executed multiple times by the acceptor, but after the first one, all
subsequent executions are stuttering steps that do not change the value of any variable.

macro Phase2b(b) {
when b > mazxBal[self] ;
with (m € sentMsgs(“2a",b)) {

mazBal[self] :=1b;

maxVBal[self] :=b ;

maxVVal[self] : = m.val ;

msgs 1= msgs U { [type — “2b", acc — self, bal — b, val — m.val] }



An acceptor performs the body of its while loop as a single atomic action by nonde-
terministically choosing a ballot in which its Phaselb or Phase2b action is enabled and
executing that enabled action. If no such action is enabled, the acceptor does nothing.
process (acceptor € Acceptor) {
acc: while (TRUE) {
with (b € Ballot) { either Phaselb(b) or Phase2b(b) }

}
}

The leader of a ballot nondeterministically chooses one of its actions that is enabled (and
the argument for which it is enabled) and performs it atomically. It does nothing if none
of its actions is enabled.
process (leader € Ballot) {
Idr: while (TRUE) {
either Phasela()
or with (S € SuBseT Value) { Phaselc(S) }
or with (v € Value) { Phase2a(v) }



4 Algorithm BPCon

In the abstract algorithm BPCon, we do not specify how acceptors learn what 1b mes-
sages have been sent. We simply introduce a variable knowsSent such that knowsSent|a]
represents the set of 156 messages that (good) acceptor a knows have been sent, and have
an action that nondeterministically adds sent 16 messages to this set.

--algorithm BPCon {

The variables:

mazBal[a]

mazVBal|a]

mazVVal|a]

2avSent|a)

knownSent|a]

The highest ballot in which acceptor a has participated.

The highest ballot in which acceptor a has cast a vote (sent a 2b
message), or —1 if it hasn’t cast a vote.

The value acceptor a has voted for in ballot mazVBal[a], or None
if mazVBal[a] = —1.

A set of records in [val : Value, bal : Ballot] describing the 2av
messages that a has sent. A record is added to this set, and any
element with the same val field (and lower bal field) removed when
a sends a 2av message.

The set of 1b messages that acceptor a knows have been sent.

bmsgs The set of all messages that have been sent. See the discussion of
the msgs variable in module PConProof to understand our modeling
of message passing.
variables mazBal = [a € Acceptor — —1],
mazV Bal = [a € Acceptor — —1],
maxVVal = [a € Acceptor — None] ,
2avSent = [a € Acceptor — {}],
knowsSent = [a € Acceptor — {}],
bmsgs = {}
define {

sentMsgs(type, bal) = {m € bmsgs : m.type = type A m.bal = bal}

KnowsSafeAt(ac, b, v) =

A

True for an acceptor ac, ballot b, and value v iff the set of 1b messages in
knowsSent[ac] implies that value v is safe at ballot b in the Paxos consensus al-
gorithm being emulated by the good acceptors. To understand the definition, see
the definition of ShowsSafeAt in module PConProof and recall (a) the meaning of
the mCBal and mC'Val fields of a 1b message and (b) that the set of real acceptors
in a ByzQuorum forms a quorum of the PCon algorithm.
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LET S = {m € knowsSent[ac] : m.bal = b}
IN V3 BQ € ByzQuorum :
Va € BQ:dm € S: Am.acc = a
Am.mbal = — 1
VdeceO0..(b—1):
AN 3IBQ € ByzQuorum :
Va€e BQ:dm € S: Am.acc = a
A m.mbal < ¢
A (m.mbal = ¢) = (m.mwval = v)
ANIWQ € WeakQuorum :
Vaec WQ:
dm € S: Am.acc = a
Adr € m.m2av: Ar.bal > ¢
Ar.wal =v

{

We now describe the processes’ actions as macros.

As in the Paxos consensus algorithm, a ballot self leader (good or malicious) can execute
a Phasela action at any time.

macro Phasela() {bmsgs := bmsgs U {[type — "1a", bal — self]} }

The acceptor’s Phaselb ation is similar to that of the PCon algorithm.

macro Phaselb(b) {
when (b > mazBal[self]) N (sentMsgs(“1a",b) # {}) ;
mazBal[self] :=b ;
bmsgs := bmsgs U { [type — “1b", bal — b, acc — self, m2av — 2avSent[sel f],
mbal — maxV Bal[sel f], mval — maxV'Val[sel f]]}

}

A good ballot self leader can send a phase 1c¢ message for value v if it knows that the
messages in knowsSent[a] for a Quorum of (good) acceptors imply that they know that v
is safe at ballot self, and that they can convince any other acceptor that the appropriate
1b messages have been sent to that it will also know that v is safe at ballot self.

A malicious ballot self leader can send any phase 1c messages it wants (including one that
a good leader could send). We prove safety with a Phaselc action that allows a leader
to be malicious. To prove liveness, we will have to assume a good leader that sends only
correct 1c¢ messages.

As in the PCon algorithm, we allow a Phaselc action to send a set of Phaselc messages.
(This is not done in the Castro-Liskov algorithm, but seems natural in light of the PCon
algorithm.)
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macro Phaselc() {
with (S € SUBSET [type : {"1c"}, bal : self, val : Value]) {
bmsgs := bmsgs U S
}
}

If acceptor self receives a ballot b phase 1c¢ message with value v, it relays v in a phase
2av message if

e it has not already sent a 2av message in this or a later ballot and

e the messages in knowsSent[self] show it that v is safe at b in the non-Byzantine
Paxos consensus algo- rithm being emulated.

macro Phase2av(b) {

when A maxBal[sel f] =< b
A Y1 € 2avSent[self] : r.bal < b ;

We could just as well have used r.bal # b in this condition.

with (m € {ms € sentMsgs("1c",b) : KnowsSafeAt(self,b, ms.val)} ) {

bmsgs := bmsgs U { [type — “2av", bal — b, val — m.val, acc — self] };

2avSent[self] := {r € 2avSent[self] : r.val # m.val} U {[val — m.val, bal — b]}

};
mazBal[self] :=b

}

Acceptor self can send a phase 2b message with value v if it has received phase 2av
messages from a Byzantine quorum, which implies that a quorum of good acceptors assert
that this is the first 1¢ message sent by the leader and that the leader was allowed to
send that message. It sets mazBal[self|, mazVBal[self], and mazVVal[self] as in the
non-Byzantine algorithm.

macro Phase2b(b) {

when mazBal[self] =< b ;

with (v € {vv € Value :

3Q € ByzQuorum :
Vaa € Q :
Im € sentMsgs(“2av",b) : A m.val = vv
A m.acc = aa} ) {

bmsgs := bmsgs U { [type — “2b", acc +— self, bal — b, val — v] } ;
mazVVal[self] := v

3
mazBal[self] :=b ;
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mazxVBal[self] :=b
}

At any time, an acceptor can learn that some set of 15 messages were sent (but only if
they atually were sent).
macro LearnsSent(b) {
with (S € SUBSET sentMsgs(“1b", b)) { knowsSent|[self] : = knowsSent[self] U S }

}

A malicious acceptor self can send any acceptor message indicating that it is from itself.
Since a malicious acceptor could allow other malicious processes to forge its messages, this
action could represent the sending of the message by any malicious process.
macro FakingAcceptor() {
with (m € {mm € 1bMessage U 2avMessage U 2bMessage : mm.acc = self }) {
bmsgs := bmsgs U {m}

We combine these individual actions into a complete algorithm in the usual way, with
separate process declarations for the acceptor, leader, and fake acceptor processes.
process (acceptor € Acceptor){
acc: while (TRUE) {
with (b € Ballot) {
either Phaselb(b) or Phase2av(b) or Phase2b(b) or LearnsSent(b)
}

}
}

process (leader € Ballot) {
ldr: while (TRUE) { either Phasela() or Phaselc() }

}

process (facceptor € FakeAcceptor) {
facc: while (TRUE) {FakingAcceptor() }

}
}
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