This is a high-level consensus algorithm in which a set of processes called acceptors cooperatively choose a value. The algorithm uses numbered ballots, where a ballot is a round of voting. Acceptors cast votes in ballots, casting at most one vote per ballot. A value is chosen when a large enough set of acceptors, called a quorum, have all voted for the same value in the same ballot.

Ballots are not executed in order. Different acceptors may be concurrently performing actions for different ballots.
extends Integers, NaturalsInduction, FiniteSets, FiniteSetTheorems, WellFoundedInduction, TLC, TLAPS

CONSTANT	Value,	As in module Consensus, the set of choosable values.
	Acceptor,	The set of all acceptors.
Quorum	The set of all quorums.	

The following assumption asserts that a quorum is a set of acceptors, and the fundamental assumption we make about quorums: any two quorums have a non-empty intersection.
ASSUME $Q A \triangleq \wedge \forall Q \in$ Quorum: $Q \subseteq$ Acceptor

$$
\wedge \forall Q 1, Q 2 \in \text { Quorum }: Q 1 \cap Q 2 \neq\{ \}
$$

THEOREM QuorumNonEmpty $\triangleq \forall Q \in$ Quorum $: Q \neq\{ \}$
PROOF BY $Q A$

Ballot is the set of all ballot numbers. For simplicity, we let it be the set of natural numbers. However, we write Ballot for that set to make it clear what the function of those natural numbers are.

The algorithm and its refinements work with Ballot any set with minimal element $0,-1$ not an element of Ballot, and a well-founded total order $<$ on Ballot $\cup\{-1\}$ with minimal element -1 , and $0<b$ for all non-zero b in Ballot. In the proof, any set of the form $i \ldots j$ must be replaced by the set of all elements b in Ballot $\cup\{-1\}$ with $i \leq b \leq j$, and $i \ldots(j-1)$ by the set of such b with $i \leq b<j$.
Ballot \triangleq Nat

In the algorithm, each acceptor can cast one or more votes, where each vote cast by an acceptor has the form $\langle b, v\rangle$ indicating that the acceptor has voted for value v in ballot b. A value is chosen if a quorum of acceptors have voted for it in the same ballot.

The algorithm uses two variables, votes and maxBal, both arrays indexed by acceptor. Their meanings are:
votes $[a]$ - The set of votes cast by acceptor a.
$\max B a l[a]$ - The number of the highest-numbered ballot in which a has cast a vote, or -1 if it has not yet voted.

The algorithm does not let acceptor a vote in any ballot less than maxBal $[a]$.

We specify our algorithm by the following PlusCal algorithm. The specification Spec defined by this algorithm describes only the safety properties of the algorithm. In other words, it specifies what steps the algorithm may take. It does not require that any (non-stuttering) steps be taken. We prove that this specification Spec implements the specification Spec of module Consensus under a refinement mapping defined below. This shows that the safety properties of the voting algorithm (and hence the algorithm with additional liveness requirements) imply the safety properties of the Consensus specification. Liveness is discussed later.

--algorithm Voting\{

variables votes $=[a \in$ Acceptor $\mapsto\{ \}]$,
maxBal $=[a \in$ Acceptor $\mapsto-1] ;$

define \{

We now define the operator $\operatorname{Safe} A t$ so $\operatorname{Safe} A t(b, v)$ is function of the state that equals true if no value other than v has been chosen or can ever be chosen in the future (because the values of the variables votes and maxBal are such that the algorithm does not allow enough acceptors to vote for it). We say that value v is safe at ballot number b iff $\operatorname{Safe}(b, v)$ is true. We define Safe in terms of the following two operators.

Note: This definition is weaker than would be necessary to allow a refinement of ordinary Paxos consensus, since it allows different quorums to "cooperate" in determining safety at b. This is used in algorithms like Vertical Paxos that are designed to allow reconfiguration within a single consensus instance, but not in ordinary Paxos. See

$$
\begin{aligned}
& \text { AUTHOR }=\text { "Leslie Lamport and Dahlia Malkhi and Lidonq Zhou", } \\
& \text { TITLE }=\text { "Vertical Paxos and Primary-Backup Replication", } \\
& \text { Journal }=\text { "ACM SIGACT News (Distributed Computing Column)", } \\
& \text { editor }=\{\text { Srikanta Tirthapura and Lorenzo Alvisi }\} \\
& \text { booktitle }=\{P O D C\}, \\
& \text { publisher }=\{A C M\}, Y E A R=2009, P A G E S=" 312-313 "
\end{aligned}
$$

$\operatorname{VotedFor}(a, b, v) \triangleq\langle b, v\rangle \in \operatorname{votes}[a]$
True iff acceptor a has voted for v in ballot b.

$$
\operatorname{DidNotVoteIn}(a, b) \triangleq \forall v \in \operatorname{Value}: \neg \operatorname{VotedFor}(a, b, v)
$$

We now define SafeAt. We define it recursively. The nicest definition is

```
Recursive SafeAt(_,_)
SafeAt(b,v)\triangleq
    \veeb=0
    \vee\existsQ\inQuorum :
        \wedge\foralla\inQ:maxBal[a|>b
        \wedge }c\in-1..(b-1)
            \wedge(c\not=-1) => ^SafeAt(c,v)
                \wedge \foralla\inQ:\forallw\in Value :
                            VotedFor (a, c, w)=> (w=v)
        \wedge | \in (c+1)..(b-1),a\inQ: DidNotVoteIn(a,d)
```

However, TLAPS does not currently support recursive operator definitions. We therefore define it as follows using a recursive function definition.
$\operatorname{SafeAt}(b, v) \triangleq$
\quad LET $S A[b b \in$ Ballot $] \triangleq$

```
            This recursively defines SA[bb] to equal SafeAt(bb,v).
            \veeb}=
            \vee \exists Q \in Q u o r u m ~ : ~
                    \wedge \foralla\inQ : maxBal[a]\geqbb
                    \wedge\existsc\in-1..(bb-1):
                        \wedge(c\not=-1)=>^\SA[c]
                        \wedge \foralla\inQ:
                            \forallw\inValue :
                                    VotedFor (a,c,w) =>(w=v)
                                    \wedge d \in (c+1) .. (bb-1), a\inQ:DidNotVoteIn(a,d)
IN SA[b]
}
```

There are two possible actions that an acceptor can perform, each defined by a macro. In these macros, self is the acceptor that is to perform the action. The first action, IncreaseMaxBal(b) allows acceptor self to set maxBal[self] to b if b is greater than the current value of maxBal[self].
macro IncreaseMaxBal(b) \{
when $b>\operatorname{maxBal}[s e l f]$;
$\operatorname{maxBal}[$ self $]:=b$
\}

Action VoteFor (b, v) allows acceptor self to vote for value v in ballot b if its when condition is satisfied.

```
macro VoteFor ( \(b, v\) ) \{
    when \(\wedge \operatorname{maxBal}[\) self \(] \leq b\)
        \(\wedge\) DidNotVoteIn \((\) self,\(b)\)
        \(\wedge \forall p \in\) Acceptor \(\backslash\{\) self \(\}\) :
            \(\forall w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \Rightarrow(w=v)\)
        \(\wedge \operatorname{SafeAt}(b, v)\);
    votes \([\) self \(]:=\operatorname{votes}[\) self \(] \cup\{\langle b, v\rangle\}\);
    \(\operatorname{maxBal}[\) self \(]:=b\)
    \}
```

The following process declaration asserts that every process self in the set Acceptor executes its body, which loops forever nondeterministically choosing a Ballot b and executing either an IncreaseMaxBal (b) action or nondeterministically choosing a value v and executing a $\operatorname{VoteFor}(b, v)$ action. The single label indicates that an entire execution of the body of the while loop is performed as a single atomic action.

From this intuitive description of the process declaration, one might think that a process could be deadlocked by choosing a ballot b in which neither an IncreaseMaxBal(b) action nor any $\operatorname{VoteFor}(b, v)$ action is enabled. An examination of the TLA+ translation (and an elementary knowledge of the meaning of existential quantification) shows that this is not the case. You can think of all possible choices of b and of v being examined simultaneously, and one of the choices for which a step is possible being made.

```
process ( acceptor \(\in\) Acceptor ) \{
    acc: while ( TRUE ) \{
    with ( \(b \in\) Ballot ) \{
```

```
                either IncreaseMaxBal(b)
                    or with \((v \in \operatorname{Value})\{\operatorname{VoteFor}(b, v)\}\)
        \}
        \(\}^{\}}\)
\}
The following is the TLA+ specification produced by the translation. Blank lines, produced by the translation because of the comments, have been deleted.
```

```
BEGIN TRANSLATION
VARIABLES votes, maxBal
```

```
define statement
```

define statement
VotedFor (a,b,v)\triangleq\langleb,v\rangle\in\operatorname{votes}[a]
VotedFor (a,b,v)\triangleq\langleb,v\rangle\in\operatorname{votes}[a]
$\operatorname{DidNotVoteIn}(a, b) \triangleq \forall v \in \operatorname{Value}: \neg \operatorname{VotedFor}(a, b, v)$
$\operatorname{SafeAt}(b, v) \triangleq$
LET $S A[b b \in$ Ballot $] \triangleq$
$\vee b b=0$
$\vee \exists Q \in$ Quorum :
$\wedge \forall a \in Q \quad: \operatorname{maxBal}[a] \geq b b$
$\wedge \exists c \in-1 \ldots(b b-1):$
$\wedge(c \neq-1) \Rightarrow \wedge S A[c]$
$\wedge \forall a \in Q:$
$\forall w \in$ Value :
$\operatorname{VotedFor}(a, c, w) \Rightarrow(w=v)$
$\wedge \forall d \in(c+1) \ldots(b b-1), a \in Q: \operatorname{DidNotVoteIn}(a, d)$
IN $\quad S A[b]$
vars $\triangleq\langle$ votes, $\operatorname{maxBal}\rangle$
ProcSet \triangleq (Acceptor $)$
Init \triangleq Global variables
\wedge votes $=[a \in$ Acceptor $\mapsto\{ \}]$
\wedge maxBal $=[a \in$ Acceptor $\mapsto-1]$
$\operatorname{acceptor}($ self $) \triangleq \exists b \quad \in$ Ballot $:$
$\vee \wedge b>\operatorname{maxBal}[s e l f]$
$\wedge \operatorname{maxBal} l^{\prime}=[$ maxBal EXCEPT $![$ self $]=b]$
\wedge UNCHANGED votes
$\vee \wedge \exists v \in$ Value :
$\wedge \wedge \operatorname{maxBal}[$ self $] \leq b$
\wedge DidNotVoteIn (self, b)
$\wedge \forall p \in$ Acceptor $\backslash\{$ self $\}$:
$\forall w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \Rightarrow(w=v)$

```
\(\wedge \operatorname{SafeAt}(b, v)\)
\(\wedge\) votes \(^{\prime}=[\) votes EXCEPT \(![\) self \(]=\) votes \([\) self \(] \cup\{\langle b, v\rangle\}]\) \(\wedge \operatorname{maxBal}^{\prime}=[\) maxBal EXCEPT \(![s e l f]=b]\)
\(N e x t \triangleq(\exists\) self \(\in\) Acceptor \(:\) acceptor \((\) self \())\)
Spec \(\triangleq\) Init \(\wedge \square[N e x t]_{\text {vars }}\)

\section*{END TRANSLATION}

To reason about a recursively-defined operator, one must prove a theorem about it. In particular, to reason about \(\operatorname{Safe} A t\), we need to prove that \(\operatorname{Safe} A t(b, v)\) equals the right-hand side of its definition, for \(b \in\) Ballot and \(v \in\) Value. This is not automatically true for a recursive definition. For example, from the recursive definition
\(\operatorname{Silly}[n \in N a t] \triangleq \operatorname{CHOOSE} v: v \neq \operatorname{Silly}[n]\)
we cannot deduce that
\[
\text { Silly }[42]=\text { CHOOSE } v: v \neq \operatorname{Silly}[42]
\]
(From that, we could easily deduce Silly \([42] \neq\) Silly \([42]\). )

Here is the theorem that essentially asserts that \(\operatorname{Safe} A t(b, v)\) equals the right-hand side of its definition.
THEOREM SafeAtProp \(\triangleq\)
\(\forall b \in\) Ballot, \(v \in\) Value :
SafeAt \((b, v) \equiv\)
\(\vee b=0\)
\(\vee \exists Q \in\) Quorum :
\(\wedge \forall a \in Q \quad: \operatorname{maxBal}[a] \geq b\)
\(\wedge \exists c \in-1 \ldots(b-1):\)
\(\wedge(c \neq-1) \Rightarrow \wedge \operatorname{SafeAt}(c, v)\) \(\wedge \forall a \in Q\) :
\(\forall w \in\) Value :
\(\operatorname{VotedFor}(a, c, w) \Rightarrow(w=v)\)
\(\wedge \forall d \in(c+1) \ldots(b-1), a \in Q: \operatorname{DidNotVoteIn}(a, d)\)
\(\langle 1\rangle 1\). SUFFICES ASSUME NEW \(v \in\) Value
PROVE \(\forall b \in\) Ballot: SafeAtProp! \((b, v)\)
By Zenon
\(\langle 1\rangle\) USE DEF Ballot
\(\langle 1\rangle\) DEFINE \(\operatorname{Def}(S A, b b) \triangleq\)
\[
\vee \quad b b=0
\]
\(\vee \exists Q \in\) Quorum :
\(\wedge \forall a \in Q \quad: \operatorname{maxBal}[a] \geq b b\)
\(\wedge \exists c \in-1 \ldots(b b-1):\)
\(\wedge(c \neq-1) \Rightarrow \wedge S A[c]\)
\(\wedge \forall a \in Q:\)
\(\forall w \in\) Value :
\[
\operatorname{VotedFor}(a, c, w) \Rightarrow(w=v)
\]
\(\wedge \forall d \in(c+1) \ldots(b b-1), a \in Q: \operatorname{DidNotVoteIn}(a, d)\) \(S A[b b \in\) Ballot \(] \triangleq \operatorname{Def}(S A, b b)\)
\(\langle 1\rangle 2 . \forall b: \operatorname{SafeAt}(b, v)=\operatorname{SA}[b]\)
BY DEF SafeAt
\(\langle 1\rangle 3\) ．ASSUME NEW \(n \in\) Nat，NEW \(g\) ，NEW \(h\) ， \(\forall i \in 0 \ldots(n-1): g[i]=h[i]\)
Prove \(\operatorname{Def}(g, n)=\operatorname{Def}(h, n)\)
BY \(\langle 1\rangle 3\)
\(\langle 1\rangle\) 4．\(S A=[b \in\) Ballot \(\mapsto \operatorname{Def}(S A, b)]\)
〈2〉 HIDE DEF Def
\(\langle 2\rangle\) QED
BY \(\langle 1\rangle 3\) ，RecursiveFcnOfNat，Isa
\(\langle 1\rangle 5 . \forall b \in\) Ballot \(: S A[b]=\operatorname{Def}(S A, b)\)
\(\langle 2\rangle\) HIDE DEF Def
\(\langle 2\rangle\) QED
BY \(\langle 1\rangle 4\), Zenon
\(\langle 1\rangle 6\) ．QED
BY \(\langle 1\rangle 2,\langle 1\rangle 5\), Zenon DEF SafeAt

We now define TypeOK to be the type－correctness invariant．
\(\begin{aligned} \text { Type } O K \triangleq & \wedge \text { votes } \in[\text { Acceptor } \rightarrow \text { SUBSET }(\text { Ballot } \times \text { Value })] \\ & \wedge \text { maxBal } \in[\text { Acceptor } \rightarrow \text { Ballot } \cup\{-1\}]\end{aligned}\)
We now define chosen to be the state function so that the algorithm specified by formula Spec conjoined with the liveness requirements described below implements the algorithm of module Consensus（satisfies the specification LiveSpec of that module）under a refinement mapping that substitutes this state function chosen for the variable chosen of module Consensus．The definition uses the following one，which defines ChosenIn \((b, v)\) to be true iff a quorum of acceptors have all voted for \(v\) in ballot \(b\) ．
ChosenIn \((b, v) \triangleq \exists Q \in Q u o r u m: \forall a \in Q: \operatorname{VotedFor}(a, b, v)\)
chosen \(\triangleq\{v \in\) Value \(: \exists b \in\) Ballot \(: \operatorname{ChosenIn}(b, v)\}\)

The following lemma is used for reasoning about the operator SafeAt．It is proved from SafeAtProp by induction．
LEmma SafeLemma 气
\[
\begin{aligned}
& \text { Type } O K \Rightarrow \\
& \forall b \in \text { Ballot }:
\end{aligned}
\]
\(\forall v \in\) Value ：
\(\operatorname{SafeAt}(b, v) \Rightarrow\)
\(\forall c \in 0 \ldots(b-1):\)
\(\exists Q \in\) Quorum ：
\(\forall a \in Q: \wedge \operatorname{maxBal}[a] \geq c\)
\(\wedge \vee \operatorname{DidNotVoteIn}(a, c)\)
\(\langle 1\rangle\) Suffices assume TypeOK
PROVE SafeLemma!2
obvious
\(\langle 1\rangle\) DEFIne \(P(b) \triangleq \forall c \in 0 \ldots b:\) SafeLemma! 2 ! \((c)\)
\(\langle 1\rangle\) USE DEF Ballot
\(\langle 1\rangle 1 . P(0)\)
OBVIOUS
\(\langle 1\rangle\) 2. ASSUME NEW \(b \in\) Ballot, \(P(b)\)
PROVE \(P(b+1)\)
\(\langle 2\rangle 1 . \wedge b+1 \in\) Ballot \(\backslash\{0\}\)
\(\wedge(b+1)-1=b\)
obVIous
\(\langle 2\rangle 2.0 \ldots(b+1)=(0 \ldots b) \cup\{b+1\}\) obvious
\(\langle 2\rangle\). SUFFICES ASSUME NEW \(v \in\) Value, SafeAt \((b+1, v)\),
NEW \(c \in 0 \ldots b\)
PROVE \(\exists Q \in\) Quorum:
\(\forall a \in Q: \wedge \operatorname{maxBal}[a] \geq c\)
\(\wedge \vee \operatorname{DidNotVoteIn}(a, c)\)
\(\vee \operatorname{VotedFor}(a, c, v)\)
BY \(\langle 1\rangle 2\)
\(\langle 2\rangle\). PICK \(Q \in Q u o r u m:\)
\[
\begin{aligned}
& \wedge \forall a \in Q: \operatorname{maxBal}[a] \geq(b+1) \\
& \begin{aligned}
& \wedge \exists c c \in-1 \ldots b: \\
& \wedge(c c \neq-1) \Rightarrow \wedge \\
& \operatorname{SafeAt}(c c, v) \\
& \wedge \forall a \in Q: \\
& \forall w \in \operatorname{Value}: \\
& \operatorname{VotedFor}(a, c c, w) \Rightarrow(w=v)
\end{aligned} \\
& \wedge \forall d \in(c c+1) \ldots b, a \in Q: \operatorname{DidNotVoteIn}(a, d)
\end{aligned}
\]

BY SafeAtProp, \(\langle 2\rangle 3,\langle 2\rangle 1\), Zenon
\(\langle 2\rangle 5\). PICK \(c c \in-1 \ldots b\) :
\[
\begin{aligned}
& \wedge(c c \neq-1) \Rightarrow \wedge \\
& \text { SafeAt }(c c, v) \\
& \wedge \forall a \in Q: \\
& \forall w \in \operatorname{Value}: \\
& \operatorname{VotedFor}(a, c c, w) \Rightarrow(w=v) \\
& \wedge \forall d \in(c c+1) \ldots b, a \in Q: \operatorname{DidNotVoteIn}(a, d)
\end{aligned}
\]

BY \(\langle 2\rangle 4\)
\(\langle 2\rangle 6\).CASE \(c>c c\)
BY \(\langle 2\rangle 4,\langle 2\rangle 5,\langle 2\rangle 6, Q A\) DEF TypeOK
\(\langle 2\rangle 7 . \mathrm{CASE} c=c c\)
\(\langle 3\rangle 2 . \forall a \in Q: \operatorname{maxBal}[a] \in\) Ballot \(\cup\{-1\}\)
BY \(Q A\) DEF TypeOK
\(\langle 3\rangle 3 . \forall a \in Q: \operatorname{maxBal}[a] \geq c\)

BY \(\langle 2\rangle 4,\langle 2\rangle 7,\langle 3\rangle 2\)
\(\langle 3\rangle 4 . \forall a \in Q: \vee \operatorname{DidNotVoteIn}(a, c)\)
\(\vee \operatorname{VotedFor}(a, c, v)\)
BY \(\langle 2\rangle 7,\langle 2\rangle 5\) DEF DidNotVoteIn
\(\langle 3\rangle 5\). QED
BY \(\langle 3\rangle 3,\langle 3\rangle 4\)
\(\langle 2\rangle 8\).CASE \(c<c c\)
BY \(\langle 2\rangle 8,\langle 1\rangle 2,\langle 2\rangle 5\)
\(\langle 2\rangle 9\). QED
BY \(\langle 2\rangle 6,\langle 2\rangle 7,\langle 2\rangle 8\)
\(\langle 1\rangle 3 . \forall b \in\) Ballot \(: P(b)\)
BY \(\langle 1\rangle 1,\langle 1\rangle 2\), NatInduction, Isa
\(\langle 1\rangle 4\). QED
BY \(\langle 1\rangle 3\)
Ю
We now define the invariant that is used to prove the correctness of our algorithm-meaning that specification Spec implements specification Spec of module Consensus under our refinement mapping. Correctness of the voting algorithm follows from the the following three invariants:
VInv1: In any ballot, an acceptor can vote for at most one value.
VInv2: An acceptor can vote for a value \(v\) in ballot \(b\) iff \(v\) is safe at \(b\).
VInv3: Two different acceptors cannot vote for different values in the same ballot.
Their precise definitions are as follows.
\[
\begin{aligned}
& \text { VInv } 1 \triangleq \forall a \in \text { Acceptor, } b \in \text { Ballot, } v, w \in \text { Value }: \\
& \\
& \quad \text { VotedFor }(a, b, v) \wedge \text { VotedFor }(a, b, w) \Rightarrow(v=w) \\
& \text { VInv } 2 \triangleq \forall a \in \operatorname{Acceptor,~} b \in \text { Ballot, } v \in \operatorname{Value}: \\
& \\
& \text { VotedFor }(a, b, v) \Rightarrow \operatorname{SafeAt}(b, v) \\
& \text { VInv } 3 \triangleq \forall a 1, a 2 \in \text { Acceptor, } b \in \text { Ballot, } v 1, v 2 \in \text { Value }: \\
& \\
& \quad \operatorname{VotedFor}(a 1, b, v 1) \wedge \text { VotedFor }(a 2, b, v 2) \Rightarrow(v 1=v 2)
\end{aligned}
\]

It is obvious, that VInv3 implies VInv1-a fact that we now let TLAPS prove as a little check that we haven't made a mistake in our definitions. (Actually, we used \(T L C\) to check everything before attempting any proofs.) We define VInv1 separately because VInv3 is not needed for proving safety, only for liveness.
THEOREM VInv3 \(\Rightarrow\) VInv 1
BY DEF VInv1, VInv3
The following lemma proves that \(\operatorname{Safe} A t(b, v)\) implies that no value other than \(v\) can have been chosen in any ballot numbered less than \(b\). The fact that it also implies that no value other than \(v\) can ever be chosen in the future follows from this and the fact that \(\operatorname{Safe} A t(b, v)\) is stable-meaning that once it becomes true, it remains true forever. The stability of \(\operatorname{Safe} A t(b, v)\) is proved as step \(\langle 1\rangle 6\) of theorem InductiveInvariance below.

This lemma is used only in the proof of theorem \(V T 1\) below.
LEMMA \(V T 0 \triangleq \wedge\) TypeOK
```

^VInv1
^VInv2

\forallv,w\in Value, b, c\in Ballot:

 (b>c)\wedge SafeAt(b,v)\wedge ChosenIn (c,w) => (v=w)
    ```
\(\langle 1\rangle\) suffices assume TypeOK, VInv1, VInv2, NEW \(v \in\) Value, NEW \(w \in\) Value
PROVE \(\forall b, c \in\) Ballot:
                        \((b>c) \wedge \operatorname{SafeAt}(b, v) \wedge \operatorname{ChosenIn}(c, w) \Rightarrow(v=w)\)

OBVIOUS
\(\langle 1\rangle P(b) \triangleq \forall c \in\) Ballot:
\((b>c) \wedge \operatorname{SafeAt}(b, v) \wedge \operatorname{ChosenIn}(c, w) \Rightarrow(v=w)\)
\(\langle 1\rangle\) USE DEF Ballot
\(\langle 1\rangle 1 . P(0)\)
obVious
\(\langle 1\rangle 2\). ASSUME NEW \(b \in\) Ballot, \(\forall i \in 0 \ldots(b-1): P(i)\)
PROVE \(P(b)\)
\(\langle 2\rangle 1\). CASE \(b=0\)
BY \(\langle 2\rangle 1\)
\(\langle 2\rangle\) 2.CASE \(b \neq 0\)
\(\langle 3\rangle 1\). SUFFICES ASSUME NEW \(c \in \operatorname{Ballot}, b>c\), \(\operatorname{SafeAt}(b, v)\), ChosenIn \((c, w)\) PROVE \(\quad v=w\)
obvious
\(\langle 3\rangle 2\). PICK \(Q \in Q u o r u m: \forall a \in Q: \operatorname{VotedFor}(a, c, w)\)
BY \(\langle 3\rangle 1\) DEF ChosenIn
\(\langle 3\rangle 3\). PICK \(Q Q \in\) Quorum,
```

$d \in-1 \ldots(b-1):$
$\wedge(d \neq-1) \Rightarrow \wedge \operatorname{SafeAt}(d, v)$
$\wedge \forall a \in Q Q:$
$\forall x \in$ Value :
$\operatorname{VotedFor}(a, d, x) \Rightarrow(x=v)$

```
                                    \(\wedge \forall e \in(d+1) \ldots(b-1), a \in Q Q: \operatorname{DidNot} \operatorname{VoteIn}(a, e)\)

By \(\langle 2\rangle 2,\langle 3\rangle 1\), SafeAtProp, Zenon
\(\langle 3\rangle\) PICK \(a a \in Q Q \cap Q:\) TRUE
BY \(Q A\)
\(\langle 3\rangle 4 . c \leq d\)
BY \(\langle 3\rangle 1,\langle 3\rangle 2,\langle 3\rangle 3\) DEF DidNotVoteIn
\(\langle 3\rangle 5\). CASE \(c=d\)
BY \(\langle 3\rangle 2,\langle 3\rangle 3,\langle 3\rangle 4,\langle 3\rangle 5\)
\(\langle 3\rangle 6\).CASE \(d>c\)
BY \(\langle 1\rangle 2,\langle 3\rangle 1,\langle 3\rangle 3,\langle 3\rangle 4,\langle 3\rangle 6\)
\(\langle 3\rangle 7\). QED
BY \(\langle 3\rangle 4,\langle 3\rangle 5,\langle 3\rangle 6\)
\(\langle 2\rangle\).QED BY \(\langle 2\rangle 1,\langle 2\rangle 2\)
\(\langle 1\rangle 3 . \forall b \in\) Ballot : \(P(b)\)
\(\langle 2\rangle\).HIDE DEF \(P\)
\(\langle 2\rangle\).QED BY \(\langle 1\rangle 2\), GeneralNatInduction, Isa
\(\langle 1\rangle 4\). QED
BY \(\langle 1\rangle 3\)

The following theorem asserts that the invariance of TypeOK, VInv1, and VInv2 implies that the algorithm satisfies the basic consensus property that at most one value is chosen (at any time). If you can prove it, then you understand why the Paxos consensus algorithm allows only a single value to be chosen. Note that VInv3 is not needed to prove this property.
THEOREM \(V T 1 \triangleq \wedge\) Type \(O K\)
\[
\wedge V I n v 1
\]
\(\wedge\) VInv2
\[
\Rightarrow \forall v, w:
\]
\((v \in\) chosen \() \wedge(w \in\) chosen \() \Rightarrow(v=w)\)
\(\langle 1\rangle 1\). Suffices assume TypeOK, VInv1, VInv2,
NEW \(v\), NEW \(w\),
\(v \in\) chosen, \(w \in\) chosen
PROVE \(\quad v=w\)
OBVIOUS
\(\langle 1\rangle 2 . v \in\) Value \(\wedge w \in\) Value
BY \(\langle 1\rangle 1\) DEF chosen
\(\langle 1\rangle\). PICK \(b \in\) Ballot, \(c \in\) Ballot : ChosenIn \((b, v) \wedge \operatorname{ChosenIn}(c, w)\)
BY \(\langle 1\rangle 1\) DEF chosen
\(\langle 1\rangle 4\). PICK \(Q \in Q u o r u m, R \in Q u o r u m:\)
\(\wedge \forall a \in Q: \operatorname{VotedFor}(a, b, v)\)
\(\wedge \forall a \in R: \operatorname{VotedFor}(a, c, w)\)
BY \(\langle 1\rangle 3\) DEF ChosenIn
\(\langle 1\rangle 5\). PICK \(a v \in Q, a w \in R: \wedge \operatorname{VotedFor}(a v, b, v)\)
\(\wedge \operatorname{VotedFor}(a w, c, w)\)
BY \(\langle 1\rangle 4\), QuorumNonEmpty
\(\langle 1\rangle\) 6. \(\operatorname{SafeAt}(b, v) \wedge \operatorname{SafeAt}(c, w)\)
BY \(\langle 1\rangle 1,\langle 1\rangle 2,\langle 1\rangle 5, Q A\) DEF VInv 2
\(\langle 1\rangle 7 . \mathrm{CASE} b=c\)
\(\langle 2\rangle\) PICK \(a \in Q \cap R:\) TRUE
BY \(Q A\)
\(\langle 2\rangle 1 . \wedge \operatorname{VotedFor}(a, b, v)\)
\(\wedge \operatorname{VotedFor}(a, c, w)\)
BY \(\langle 1\rangle 4\)
\(\langle 2\rangle 2\) QED
BY \(\langle 1\rangle 1,\langle 1\rangle 2,\langle 1\rangle 7,\langle 2\rangle 1, Q A\) DEF VInv 1
\(\langle 1\rangle 8\). CASE \(b>c\)
BY \(\langle 1\rangle 1,\langle 1\rangle 6,\langle 1\rangle 3,\langle 1\rangle 8, V T 0,\langle 1\rangle 2\)
\(\langle 1\rangle 9\). CASE \(c>b\)
BY \(\langle 1\rangle 1,\langle 1\rangle 6,\langle 1\rangle 3,\langle 1\rangle 9, V T 0,\langle 1\rangle 2\)
\(\langle 1\rangle 10\). QED
BY \(\langle 1\rangle 7,\langle 1\rangle 8,\langle 1\rangle 9\) DEF Ballot

The rest of the proof uses only the primed version of \(V T 1\)-that is, the theorem whose statement is \(V T 1^{\prime}\). (Remember that \(V T 1\) names the formula being asserted by the theorem we call \(V T 1\).) The formula \(V T 1^{\prime}\) asserts that \(V T 1\) is true in the second state of any transition (pair of states). We derive that theorem from \(V T 1\) by simple temporal logic, and similarly for \(V T 0\) and SafeAtProp. THEOREM SafeAtPropPrime \(\triangleq\)
\(\forall b \in\) Ballot, \(v \in\) Value :
SafeAt \((b, v)^{\prime} \equiv\)
\(\vee b=0\)
\(\vee \exists Q \in\) Quorum :
\(\wedge \forall a \in Q \quad: \operatorname{maxBal} l^{\prime}[a] \geq b\)
\(\wedge \exists c \in-1 \ldots(b-1):\) \(\wedge(c \neq-1) \Rightarrow \wedge \operatorname{SafeAt}(c, v)^{\prime}\) \(\wedge \forall a \in Q\) : \(\forall w \in\) Value : \(\operatorname{VotedFor}(a, c, w)^{\prime} \Rightarrow(w=v)\) \(\wedge \forall d \in(c+1) \ldots(b-1), a \in Q: \operatorname{DidNotVoteIn}(a, d)^{\prime}\)
〈1〉1. SafeAtProp' By SafeAtProp, PTL
\(\langle 1\rangle\).QED BY \(\langle 1\rangle 1\)
LEMMA VTOPrime \(\triangleq\)
\(\wedge\) TypeOK \({ }^{\prime}\)
\(\wedge V \operatorname{VInv} 1^{\prime}\)
\(\wedge V I n v 2^{\prime}\)
\(\Rightarrow \forall v, w \in\) Value, \(b, c \in\) Ballot :
\[
(b>c) \wedge \operatorname{SafeAt}(b, v)^{\prime} \wedge \operatorname{ChosenIn}(c, w)^{\prime} \Rightarrow(v=w)
\]
\(\langle 1\rangle 1 . V T 0^{\prime}\) BY VT0, PTL
\(\langle 1\rangle\).QED \(\quad\) BY \(\langle 1\rangle 1\)
THEOREM VT1Prime \(\triangleq\)
\[
\begin{aligned}
& \wedge \text { TypeOK } \\
& \wedge \text { VInv1' } \\
& \wedge \text { VInv2 }^{\prime} \\
& \Rightarrow \forall v, w: \\
& \quad\left(v \in \text { chosen }^{\prime}\right) \wedge\left(w \in \text { chosen }^{\prime}\right) \Rightarrow(v=w)
\end{aligned}
\]
\(\langle 1\rangle 1 . V T 1^{\prime}\) BY VT1, PTL
\(\langle 1\rangle\).QED \(\quad\) BY \(\langle 1\rangle 1\)

The invariance of VInv2 depends on \(\operatorname{Safe} A t(b, v)\) being stable, meaning that once it becomes true it remains true forever. Stability of \(\operatorname{Safe} A t(b, v)\) depends on the following invariant.
VInv \(4 \triangleq \forall a \in\) Acceptor, \(b \in\) Ballot :
\[
\operatorname{maxBal}[a]<b \Rightarrow \operatorname{DidNotVoteIn}(a, b)
\]

The inductive invariant that we use to prove correctness of this algorithm is VInv, defined as follows.
\(V I n v \triangleq T y p e O K \wedge V I n v 2 \wedge V I n v 3 \wedge V I n v 4\)

To simplify reasoning about the next-state action Next, we want to express it in a more convenient form. This is done by lemma NextDef below, which shows that Next equals an action defined in terms of the following subactions.
```

IncreaseMaxBal(self, b) \triangleq
$\wedge b>\operatorname{maxBal}[$ self $]$
$\wedge \operatorname{maxBal} l^{\prime}=[$ maxBal EXCEPT $![$ self $]=b]$
\wedge UNCHANGED votes

```
```

$\operatorname{VoteFor}($ self $, b, v) \triangleq$
$\wedge \operatorname{maxBal}[$ self $] \leq b$
$\wedge \operatorname{DidNotVoteIn}($ self,$b)$
$\wedge \forall p \in$ Acceptor $\backslash\{$ self $\}$:
$\forall w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \Rightarrow(w=v)$
$\wedge \operatorname{SafeAt}(b, v)$
\wedge votes $^{\prime}=[$ votes EXCEPT $![$ self $]=$ votes $[$ self $] \cup\{\langle b, v\rangle\}]$
$\wedge \operatorname{maxBal}^{\prime}=[$ maxBal EXCEPT $![$ self $]=b]$
BallotAction $($ self, $b) \triangleq$
\checkmark IncreaseMaxBal(self, b)
$\vee \exists v \in \operatorname{Value}: \operatorname{VoteFor}($ self $, b, v)$

```

When proving lemma NextDef, we were surprised to discover that it required the assumption that the set of acceptors is non-empty. This assumption isn't necessary for safety, since if there are no acceptors there can be no quorums (see theorem QuorumNonEmpty above) so no value is ever chosen and the Consensus specification is trivially implemented under our refinement mapping. However, the assumption is necessary for liveness and it allows us to lemma NextDef for the safety proof as well, so we assert it now.
ASSUME AcceptorNonempty \(\triangleq\) Acceptor \(\neq\{ \}\)
The proof of the lemma itself is quite simple.
Lemma NextDef \(\triangleq\)
TypeOK \(\Rightarrow\)
(Next \(=\exists\) self \(\in\) Acceptor \(:\)
\(\exists b \in\) Ballot \(: \operatorname{BallotAction(self}, b))\)
\(\langle 1\rangle\) Have TypeOK
\(\langle 1\rangle 2\). Next \(=\exists\) self \(\in\) Acceptor \(:\) acceptor (self)
BY AcceptorNonempty DEF Next, ProcSet
\(\langle 1\rangle 3\). \(@=\) NextDef \(!2!2\)
BY Def Next, BallotAction, IncreaseMaxBal, VoteFor, ProcSet, acceptor
\(\langle 1\rangle 4\). QED
\[
\text { BY }\langle 1\rangle 2,\langle 1\rangle 3
\]

We now come to the proof that VInv is an invariant of the specification. This follows from the following result, which asserts that it is an inductive invariant of the next-state action. This fact is used in the liveness proof as well.
THEOREM InductiveInvariance \(\triangleq V I n v \wedge[\text { Next }]_{\text {vars }} \Rightarrow V I n v{ }^{\prime}\)
\(\langle 1\rangle 1 . V I n v \wedge\left(\right.\) vars \(^{\prime}=\) vars \() \Rightarrow V I n v^{\prime}\)

BY Isa
DEF VInv, vars, TypeOK, VInv2, VotedFor, SafeAt, DidNotVoteIn, VInv3, VInv4
\(\langle 1\rangle\) Suffices assume VInv,
NEW self \(\in\) Acceptor, NEW \(b \in\) Ballot, BallotAction(self, b)
Prove VInv'
BY \(\langle 1\rangle 1\), NextDef DEF VInv
\(\langle 1\rangle 2\). TypeOK \({ }^{\prime}\)
\(\langle 2\rangle\) 1.CASE IncreaseMaxBal(self, b)
BY \(\langle 2\rangle 1\) DEF IncreaseMaxBal, VInv, TypeOK
\(\langle 2\rangle\) 2.CASE \(\exists v \in \operatorname{Value}: \operatorname{VoteFor}(\) self \(, b, v)\)
BY \(\langle 2\rangle 2\) DEF VInv, TypeOK, VoteFor
\(\langle 2\rangle 3\). QED
BY \(\langle 2\rangle 1,\langle 2\rangle 2\) DEF BallotAction
\(\langle 1\rangle 3\). ASSUME NEW \(a \in\) Acceptor, NEW \(c \in\) Ballot, NEW \(w \in\) Value,
\(\operatorname{VotedFor}(a, c, w)\)
PROVE VotedFor \((a, c, w)^{\prime}\)
\(\langle 2\rangle\) 1.CASE IncreaseMaxBal(self, b)
BY \(\langle 2\rangle 1,\langle 1\rangle 3\) DEF IncreaseMaxBal, VotedFor
\(\langle 2\rangle\) 2.CASE \(\exists v \in\) Value : VoteFor \((\) self \(, b, v)\)
\(\langle 3\rangle 1\). PICK \(v \in \operatorname{Value}: \operatorname{VoteFor}(\) self \(, b, v)\)
BY \(\langle 2\rangle 2\)
\(\langle 3\rangle 2\).CASE \(a=\) self
\(\langle 4\rangle 1\). votes \({ }^{\prime}[a]=\operatorname{votes}[a] \cup\{\langle b, v\rangle\}\)
BY \(\langle 3\rangle 1,\langle 3\rangle 2\) DEF VoteFor, VInv, TypeOK
\(\langle 4\rangle 2\) QED
BY \(\langle 1\rangle 3,\langle 4\rangle 1\) DEF VotedFor
\(\langle 3\rangle 3\).CASE \(a \neq\) self
\(\langle 4\rangle 1\). votes \([a]=\) votes \(^{\prime}[a]\)
BY \(\langle 3\rangle 1,\langle 3\rangle 3\) DEF VoteFor, VInv, TypeOK
\(\langle 4\rangle 2\) QED
BY \(\langle 1\rangle 3,\langle 4\rangle 1\) DEF VotedFor
\(\langle 3\rangle 4\). QED
BY \(\langle 3\rangle 2,\langle 3\rangle 3\) DEF VoteFor
\(\langle 2\rangle 3\). QED
BY \(\langle 2\rangle 1,\langle 2\rangle 2\) DEF BallotAction
\(\langle 1\rangle 4\). ASSUME NEW \(a \in\) Acceptor, NEW \(c \in\) Ballot, NEW \(w \in\) Value,
\(\neg \operatorname{VotedFor}(a, c, w), \operatorname{VotedFor}(a, c, w)^{\prime}\)
PROVE \(\quad(a=\) self \() \wedge(c=b) \wedge \operatorname{VoteFor}(\) self \(, b, w)\)
\(\langle 2\rangle\) 1.CASE IncreaseMaxBal(self, \(b\) )
BY \(\langle 2\rangle 1,\langle 1\rangle 4\) DEF IncreaseMaxBal, VInv, TypeOK, VotedFor
\(\langle 2\rangle\) 2.CASE \(\exists v \in \operatorname{Value}: \operatorname{VoteFor}(\) self \(, b, v)\)
\(\langle 3\rangle 1\). PICK \(v \in \operatorname{Value}: \operatorname{VoteFor}(\) self, \(b, v)\)
BY \(\langle 2\rangle 2\)
\(\langle 3\rangle 2 . a=\) self
BY \(\langle 3\rangle 1,\langle 1\rangle 4\) DEF VoteFor, VInv, TypeOK, VotedFor
\(\langle 3\rangle 3\). votes \('[a]=\operatorname{votes}[a] \cup\{\langle b, v\rangle\}\)
BY \(\langle 3\rangle 1,\langle 3\rangle 2\) DEF VoteFor, VInv, TypeOK
\(\langle 3\rangle 4 . c=b \wedge v=w\)
BY \(\langle 1\rangle 4,\langle 3\rangle 3\) DEF VotedFor
\(\langle 3\rangle 5\). QED
BY \(\langle 3\rangle 1,\langle 3\rangle 2,\langle 3\rangle 4\)
\(\langle 2\rangle 3\). QED
BY \(\langle 2\rangle 1,\langle 2\rangle 2\) DEF BallotAction
\(\langle 1\rangle 5\). ASSUME NEW \(a \in\) Acceptor
\[
\begin{aligned}
\text { PROVE } & \wedge \operatorname{maxBal}[a] \in \text { Ballot } \cup\{-1\} \\
& \wedge \operatorname{maxBal^{\prime }[a]\in \operatorname {Ballot}\cup \{ -1\} } \\
& \wedge \operatorname{maxBal^{\prime }[a]\geq \operatorname {maxBal}[a]}
\end{aligned}
\]

By def VInv, TypeOK, IncreaseMaxBal, VInv, VoteFor, BallotAction, DidNotVoteIn, VotedFor, Ballot
\(\langle 1\rangle\) 6. ASSUME NEW \(c \in\) Ballot, NEW \(w \in\) Value, SafeAt (c, w)
Prove SafeAt \((c, w)^{\prime}\)
〈2〉 USE DEF Ballot
\(\langle 2\rangle\) DEfine \(P(i) \triangleq \forall j \in 0 \ldots i: \operatorname{SafeAt}(j, w) \Rightarrow \operatorname{SafeAt}(j, w)^{\prime}\)
\(\langle 2\rangle 1 . P(0)\)
BY SafeAtPropPrime, \(0 \ldots 0=\{0\}\), Zenon
\(\langle 2\rangle 2\). ASSUME NEW \(d \in\) Ballot, \(P(d)\)
PROVE \(P(d+1)\)
\(\langle 3\rangle 1\). SUFFICES ASSUME NEW \(e \in 0 \ldots(d+1)\), \(\operatorname{SafeAt}(e, w)\) PROVE SafeAt \((e, w)^{\prime}\)
OBVIOUS
\(\langle 3\rangle 2\).CASE \(e \in 0 \ldots d\)
BY \(\langle 2\rangle 2,\langle 3\rangle 1,\langle 3\rangle 2\)
\(\langle 3\rangle 3\).CASE \(e=d+1\)
\(\langle 4\rangle . e \in\) Ballot \(\backslash\{0\}\)
BY \(\langle 3\rangle 3\)
\(\langle 4\rangle 1\). PICK \(Q \in\) Quorum:SafeAtProp! \((e, w)!2!2!(Q)\)
BY \(\langle 3\rangle 1\), SafeAtProp, Zenon
\(\langle 4\rangle 2 . \forall a a \in Q: \operatorname{maxBal^{\prime }}[a a] \geq e\)
BY \(\langle 1\rangle 5,\langle 4\rangle 1, Q A\)
\(\langle 4\rangle 3 . \exists c c \in-1 \ldots(e-1):\)
\(\wedge(c c \neq-1) \Rightarrow \wedge \operatorname{SafeAt}(c c, w)^{\prime}\)
\(\wedge \forall a x \in Q:\)
\(\forall z \in\) Value :
\[
\operatorname{VotedFor}(a x, c c, z)^{\prime} \Rightarrow(z=w)
\]
\(\wedge \forall d d \in(c c+1) \ldots(e-1), a x \in Q: \operatorname{DidNotVoteIn}(a x, d d)^{\prime}\)
\(\langle 5\rangle 1\) ASSUME NEW \(c c \in 0 \ldots(e-1)\),
NEW \(a x \in Q\), NEW \(z \in\) Value, \(\operatorname{VotedFor}(a x, c c, z)^{\prime}, \neg \operatorname{VotedFor}(a x, c c, z)\)
PROVE FALSE
\(\langle 6\rangle 1 .(a x=s e l f) \wedge(c c=b) \wedge \operatorname{VoteFor}(\) self \(, b, z)\)
BY \(\langle 5\rangle 1,\langle 1\rangle 4, Q A\)
\(\langle 6\rangle 2 . \wedge \operatorname{maxBal}[a x] \geq e\) \(\wedge \operatorname{maxBal}[\) self \(] \leq b\)
BY \(\langle 4\rangle 1,\langle 6\rangle 1\) DEF VoteFor
\(\langle 6\rangle\).QED BY \(\langle 3\rangle 3,\langle 6\rangle 1,\langle 6\rangle 2\) DEF VInv, TypeOK
\(\langle 5\rangle 2\). PICK \(c c \in-1 \ldots(e-1): \operatorname{SafeAtProp!}(e, w)!2!2!(Q)!2!(c c)\)
BY \(\langle 4\rangle 1\)
\(\langle 5\rangle 3\). ASSUME \(c c \neq-1\)
PROVE \(\wedge \operatorname{SafeAt}(c c, w)^{\prime}\)
\(\wedge \forall a x \in Q: \forall z \in\) Value :
\(\operatorname{VotedFor}(a x, c c, z)^{\prime} \Rightarrow(z=w)\)
\(\langle 6\rangle 1 . \wedge \operatorname{SafeAt}(c c, w)\)
\(\wedge \forall a x \in Q:\)
\(\forall z \in \operatorname{Value}: \operatorname{VotedFor}(a x, c c, z) \Rightarrow(z=w)\)
BY \(\langle 5\rangle 2,\langle 5\rangle 3\)
\(\langle 6\rangle\) 2. SafeAt \((c c, w)^{\prime}\)
BY \(\langle 6\rangle 1,\langle 5\rangle 3,\langle 3\rangle 3,\langle 2\rangle 2\)
\(\langle 6\rangle 3\). ASSUME NEW \(a x \in Q\), NEW \(z \in \operatorname{Value,~VotedFor~}(a x, c c, z)^{\prime}\)
PROVE \(z=w\)
\(\langle 7\rangle\) 1.CASE \(\operatorname{VotedFor(ax,~cc,~z)~}\)
BY \(\langle 6\rangle 1,\langle 7\rangle 1\)
\(\langle 7\rangle 2\).CASE \(\neg \operatorname{VotedFor}(a x, c c, z)\)
BY \(\langle 7\rangle 2,\langle 6\rangle 3,\langle 5\rangle 1,\langle 5\rangle 3\)
\(\langle 7\rangle 3\). QED
BY \(\langle 7\rangle 1,\langle 7\rangle 2\)
\(\langle 6\rangle 4\). QED
BY \(\langle 6\rangle 2,\langle 6\rangle 3\)
\(\langle 5\rangle 4\). ASSUME NEW \(d d \in(c c+1) \ldots(e-1)\), NEW \(a x \in Q\), \(\neg\) DidNotVoteIn \((a x, d d)^{\prime}\)
PROVE FALSE
BY \(\langle 5\rangle 2,\langle 5\rangle 1,\langle 5\rangle 4\) DEF DidNotVoteIn
\(\langle 5\rangle 5\). QED
BY \(\langle 5\rangle 3,\langle 5\rangle 4\)
\(\langle 4\rangle 4 . \vee e=0\)
\(\vee \exists Q \_1 \in\) Quorum :
\(\wedge \forall a a \in Q_{-} 1: \operatorname{maxBal^{\prime }}[a a] \geq e\)
\(\wedge \exists c_{-} 1 \in-1 \ldots e-1:\)
\(\wedge c_{-} 1 \neq-1\)
```


(^SafeAt(c_1,w)'

```

```

 w_1\inValue :
 VotedFor(aa, c_1, w_1)' }=>\mp@subsup{w}{~}{\prime}1=w
 \wedge\foralld_1\inc_1 + 1 . e e 1, aa \in Q_1 :
DidNotVoteIn(aa,d_1)'

```

BY \(\langle 4\rangle 2,\langle 4\rangle 3,\langle 3\rangle 3\)
\(\langle 4\rangle 6\). SafeAt \((e, w)^{\prime} \equiv\langle 4\rangle 4\)
By SafeAtPropPrime, \(\langle 3\rangle 3\), Zenon
\(\langle 4\rangle 7\). QED
BY \(\langle 4\rangle 2,\langle 4\rangle 3,\langle 4\rangle 6\)
\(\langle 3\rangle 4\). QED
BY \(\langle 3\rangle 2,\langle 3\rangle 3\)
\(\langle 2\rangle 3 . \forall d \in\) Ballot : \(P(d)\)
BY \(\langle 2\rangle 1,\langle 2\rangle 2\), NatInduction, Isa
\(\langle 2\rangle 4\). QED
BY \(\langle 2\rangle 3,\langle 1\rangle 6\)
\(\langle 1\rangle 7 . V I n v 2^{\prime}\)
\(\langle 2\rangle\). SUFFICES ASSUME NEW \(a \in\) Acceptor, NEW \(c \in B a l l o t\), NEW \(v \in\) Value, \(\operatorname{VotedFor}(a, c, v)^{\prime}\)
PROVE SafeAt \((c, v)^{\prime}\)
BY DEF VInv2
\(\langle 2\rangle\) 2.CASE \(\operatorname{VotedFor}(a, c, v)\)
BY \(\langle 1\rangle 6,\langle 2\rangle 2\) DEF VInv, VInv 2
\(\langle 2\rangle 3\).CASE \(\neg \operatorname{VotedFor(a,c,v)~}\)
BY \(\langle 1\rangle 6,\langle 2\rangle 1,\langle 2\rangle 3,\langle 1\rangle 4\) DEF VoteFor
\(\langle 2\rangle 4\). QED
BY \(\langle 2\rangle 2,\langle 2\rangle 3\)
〈1〉8. VInv3 \({ }^{\prime}\)
\(\langle 2\rangle\) 1. ASSUME NEW \(a 1 \in\) Acceptor, NEW \(a 2 \in\) Acceptor,
NEW \(c \in\) Ballot, NEW \(v 1 \in\) Value, NEW \(v 2 \in\) Value, VotedFor (a1, c, v1)',
\(\operatorname{VotedFor}(a 2, c, v 2)^{\prime}\),
\(\operatorname{VotedFor}(a 1, c, v 1)\),
\(\operatorname{VotedFor}(a 2, c, v 2)\)
PROVE \(v 1=v 2\)
BY \(\langle 2\rangle 1\) DEF VInv, VInv 3
\(\langle 2\rangle 2\). ASSUME NEW \(a 1 \in\) Acceptor, NEW \(a 2 \in\) Acceptor,
NEW \(c \in\) Ballot, NEW \(v 1 \in\) Value, NEW \(v 2 \in\) Value, VotedFor (a1, \(c, v 1)^{\prime}\),
\(\operatorname{VotedFor}(a 2, c, v 2)^{\prime}\),
\(\neg \operatorname{VotedFor}(a 1, c, v 1)\)
PROVE \(v 1=v 2\)
```

 \(\langle 3\rangle 1 .(a 1=\) self \() \wedge(c=b) \wedge \operatorname{VoteFor}(\) self \(, b, v 1)\)
 BY \(\langle 2\rangle 2,\langle 1\rangle 4\)
 \(\langle 3\rangle 2\). CASE \(a 2=\) self
 \(\langle 4\rangle 1\). \(\neg \operatorname{VotedFor}(\) self \(, b, v 2)\)
 By \(\langle 3\rangle 1\) DEF VoteFor, DidNotVoteIn
 \(\langle 4\rangle 2\). VoteFor (self, b, v2)
 BY \(\langle 2\rangle 2,\langle 3\rangle 1,\langle 3\rangle 2,\langle 4\rangle 1, \quad\langle 1\rangle 4\)
 \(\langle 4\rangle\).QED BY \(\langle 3\rangle 1,\langle 4\rangle 2,\langle 2\rangle 2\) DEF VotedFor, VoteFor, VInv, TypeOK
 \(\langle 3\rangle 3\).CASE \(a 2 \neq\) self
 BY \(\langle 3\rangle 1,\langle 3\rangle 3,\langle 2\rangle 2\) DEF VotedFor, VoteFor, VInv, TypeOK
 $\langle 3\rangle 4$. QED
BY $\langle 3\rangle 2,\langle 3\rangle 3$
$\langle 2\rangle 3$. QED
BY $\langle 2\rangle 1,\langle 2\rangle 2$ DEF VInv 3
〈1〉9. VInv4 ${ }^{\prime}$
$\langle 2\rangle$. SUFFICES ASSUME NEW $a \in$ Acceptor, NEW $c \in$ Ballot, $\operatorname{maxBal} l^{\prime}[a]<c$, \neg DidNotVoteIn $(a, c)^{\prime}$
PROVE FALSE
BY DEF VInv4
$\langle 2\rangle$ 2. $\operatorname{maxBal}[a]<c$
BY $\langle 1\rangle 5,\langle 2\rangle 1$ DEF Ballot
$\langle 2\rangle$ 3. DidNotVoteIn (a, c)
BY $\langle 2\rangle 2$ DEF VInv, VInv4
$\langle 2\rangle$. PICK $v \in$ Value: VotedFor $(a, c, v)^{\prime}$ BY $\langle 2\rangle 1$ DEF DidNotVoteIn
$\langle 2\rangle 5 .(a=$ self $) \wedge(c=b) \wedge \operatorname{VoteFor}($ self $, b, v)$ BY $\langle 1\rangle 4,\langle 2\rangle 1,\langle 2\rangle 3,\langle 2\rangle 4$ DEF DidNotVoteIn
$\langle 2\rangle$ 6. $\operatorname{maxBal}^{\prime}[a]=c$
BY $\langle 2\rangle 5$ DEF VoteFor, VInv, TypeOK
$\langle 2\rangle 7$. QED
BY $\langle 2\rangle 1,\langle 2\rangle 6$ DEF Ballot
$\langle 1\rangle 10$. QED
BY $\langle 1\rangle 2,\langle 1\rangle 7,\langle 1\rangle 8,\langle 1\rangle 9$ DEF VInv
The invariance of VInv follows easily from theorem InductiveInvariance and the following result, which is easy to prove with $T L A P S$.
THEOREM InitImpliesInv \triangleq Init \Rightarrow VInv
BY DEF Init, VInv, TypeOK, ProcSet, VInv2, VInv3, VInv4, VotedFor, DidNotVoteIn
The following theorem asserts that VInv is an invariant of Spec.
THEOREM $V T 2 \triangleq S p e c \Rightarrow \square V I n v$
BY InitImpliesInv, InductiveInvariance, PTL DEF Spec

```

The following instance statement instantiates module Consensus with the following expressions substituted for the parameters (the Constants and variables ) of that module:
Parameter of Consensus Expression (of this module)
Value \(\quad\) Value chosen chosen
(Note that if no substitution is specified for a parameter, the default is to substitute the parameter or defined operator of the same name.) More precisely, for each defined identifier id of module Consensus, this statement defines \(C!i d\) to equal the value of \(i d\) under these substitutions.
\(C \triangleq\) InsTANCE Consensus

The following theorem asserts that the safety properties of the voting algorithm (specified by formula Spec) of this module implement the consensus safety specification Spec of module Consensus under the substitution (refinement mapping) of the instance statement.
THEOREM \(V T 3 \triangleq\) Spec \(\Rightarrow C\) ! Spec
\(\langle 1\rangle\). Init \(\Rightarrow C\) ! Init
\(\langle 2\rangle\) SUFFICES ASSUME Init
PROVE \(C\) ! Init
OBVIOUS
\(\langle 2\rangle\) 1. SUFFICES ASSUME NEW \(v \in\) chosen
PROVE FALSE
BY DEF \(C\) ! Init
\(\langle 2\rangle 2\). PICK \(b \in\) Ballot, \(Q \in Q u o r u m: \forall a \in Q: V o t e d F o r(a, b, v)\)
BY \(\langle 2\rangle 1\) DEF chosen, ChosenIn
\(\langle 2\rangle 3\). PICK \(a \in Q:\langle b, v\rangle \in \operatorname{votes}[a]\)
BY QuorumNonEmpty, \(\langle 2\rangle 2\) DEF VotedFor
\(\langle 2\rangle 4\) QED
BY \(\langle 2\rangle 3, Q A\) DEF Init
\(\langle 1\rangle 2 . V I n v \wedge V_{n v}{ }^{\prime} \wedge[\text { Next }]_{\text {vars }} \Rightarrow[C!N e x t]_{C}!\) vars
\(\langle 2\rangle\).SUFFICES ASSUME \(V I n v, V I n v ',[N e x t]_{v a r s}\)
PROVE \([C!N e x t]_{C}!\) vars
obvious
\(\langle 2\rangle\) 1. CASE vars \(^{\prime}=\) vars
BY \(\langle 2\rangle 1\) DEF vars, \(C\) !vars, chosen, ChosenIn, VotedFor
\(\langle 2\rangle 2\). SUFFICES ASSUME NEW self \(\in\) Acceptor, NEW \(b \in\) Ballot, BallotAction(self, b)
PROVE \([C!N e x t]_{C}\) !vars
By \(\langle 2\rangle 1\), NextDef DEF VInv
\(\langle 2\rangle\) 3. ASSUME IncreaseMaxBal \((\) self,\(b)\)
PROVE \(C!\) vars \(^{\prime}=C!\) vars
BY \(\langle 2\rangle 3\) DEF IncreaseMaxBal, C!vars, chosen, ChosenIn, VotedFor
\(\langle 2\rangle 4\). ASSUME NEW \(v \in\) Value,
\(\operatorname{VoteFor}(\) self, \(b, v)\)
PROVE \([C!N e x t]_{C}!\) vars
\(\langle 3\rangle 3\). ASSUME NEW \(w \in\) chosen
PROVE \(w \in\) chosen \(^{\prime}\)
\(\langle 4\rangle\) 1. PICK \(c \in\) Ballot, \(Q \in\) Quorum \(: \forall a \in Q:\langle c, w\rangle \in \operatorname{votes}[a]\)
BY \(\langle 3\rangle 3\) DEF chosen, ChosenIn, VotedFor
\(\langle 4\rangle 2\). SUFFICES ASSUME NEW \(a \in Q\)
PROVE \(\langle c, w\rangle \in\) votes \(^{\prime}[a]\)
BY DEF chosen, ChosenIn, VotedFor
\(\langle 4\rangle 3 . \mathrm{CASE} a=\) self
BY \(\langle 2\rangle 4,\langle 4\rangle 1,\langle 4\rangle 3\) DEF VoteFor, VInv, TypeOK
\(\langle 4\rangle\) 4.CASE \(a \neq\) self BY \(\langle 2\rangle 4,\langle 4\rangle 1,\langle 4\rangle 4, Q A\) DEF VoteFor, VInv, TypeOK
\(\langle 4\rangle 5\). QED
BY \(\langle 4\rangle 3,\langle 4\rangle 4\)
\(\langle 3\rangle 1\). ASSUME NEW \(w \in\) chosen,
\(v \in\) chosen \(^{\prime}\)
PROVE \(w=v\)
BY \(\langle 3\rangle 3,\langle 3\rangle 1\), VT1Prime DEF VInv, VInv1, VInv3
\(\langle 3\rangle 2\). ASSUME NEW \(w, w \notin\) chosen, \(w \in\) chosen \(^{\prime}\)
PROVE \(w=v\)
\(\langle 4\rangle 2\). PICK \(c \quad \in\) Ballot, \(Q \in Q u o r u m: \forall a \in Q:\langle c, w\rangle \in\) votes \(^{\prime}[a]\)
BY \(\langle 3\rangle 2\) DEF chosen, ChosenIn, VotedFor
\(\langle 4\rangle 3\). PICK \(a \in Q:\langle c, w\rangle \notin \operatorname{votes}[a]\)
BY \(\langle 3\rangle 2\) DEF chosen, ChosenIn, VotedFor
\(\langle 4\rangle 4\). CASE \(a=\) self
BY \(\langle 2\rangle 4,\langle 4\rangle 4,\langle 4\rangle 2,\langle 4\rangle 3\) DEF VoteFor, VInv, TypeOK
\(\langle 4\rangle 5\).CASE \(a \neq\) self
BY \(\langle 2\rangle 4,\langle 4\rangle 2,\langle 4\rangle 3,\langle 4\rangle 5, Q A\) DEF VoteFor, VInv, TypeOK
\(\langle 4\rangle\) 6. QED
BY \(\langle 4\rangle 4,\langle 4\rangle 5\)
\(\langle 3\rangle\).QED
BY \(\langle 3\rangle 3,\langle 3\rangle 1,\langle 3\rangle 2\) DEF \(C\) ! Next, \(C\) ! vars
\(\langle 2\rangle 5\). QED
BY \(\langle 2\rangle 2,\langle 2\rangle 3,\langle 2\rangle 4\) DEF BallotAction
\(\langle 1\rangle 3\). QED
BY \(\langle 1\rangle 1,\langle 1\rangle 2, V T 2, P T L\) DEF \(S p e c, C!S p e c\)

\section*{Liveness}

We now state the liveness property required of our voting algorithm and prove that it and the safety property imply specification LiveSpec of module Consensus under our refinement mapping.

We begin by stating two additional assumptions that are necessary for liveness. Liveness requires that some value eventually be chosen. This cannot hold with an infinite set of acceptors. More precisely, liveness requires the existence of a finite quorum. (Otherwise, it would be impossible for all acceptors of any quorum ever to have voted, so no value could ever be chosen.) Moreover, it is impossible to choose a value if there are no values. Hence, we make the following two assumptions.
```

ASSUME AcceptorFinite \triangleq IsFiniteSet(Acceptor)
ASSUME ValueNonempty \triangleq Value $\neq\{ \}$

```
LEMMA FiniteSetHasMax \(\triangleq\)
    ASSUME NEW \(S \in \operatorname{SubSET}\) Int, IsFiniteSet \((S), S \neq\{ \}\)
    PROVE \(\exists \max \in S: \forall x \in S: \max \geq x\)
\(\langle 1\rangle\). DEFIne \(P(T) \triangleq T \in \operatorname{SUBSET} \operatorname{Int} \wedge T \neq\{ \} \Rightarrow \exists \max \in T: \forall x \in T: \max \geq x\)
\(\langle 1\rangle 1 . P(\{ \})\)
    obvious
\(\langle 1\rangle 2\). ASSUME NEW \(T\), NEW \(x, P(T), x \notin T\)
    PROVE \(P(T \cup\{x\})\)
    BY \(\langle 1\rangle 2\)
\(\langle 1\rangle 3 . \forall T\) : IsFiniteSet \((T) \Rightarrow P(T)\)
\(\langle 2\rangle\).HIDE DEF \(P\)
\(\langle 2\rangle\).QED BY \(\langle 1\rangle 1,\langle 1\rangle 2, F S_{-}\)Induction, IsaM("blast")
\(\langle 1\rangle\).QED BY \(\langle 1\rangle 3\), Zenon

The following theorem implies that it is always possible to find a ballot number \(b\) and a value \(v\) safe at \(b\) by choosing \(b\) large enough and then having a quorum of acceptors perform IncreaseMaxBal( \(b\) ) actions. It will be used in the liveness proof. Observe that it is for liveness, not safety, that invariant VInv3 is required.
THEOREM \(V T 4 \triangleq\) Type \(O K \wedge V \operatorname{Inv} 2 \wedge V I n v 3 \Rightarrow\)
\(\forall Q \in\) Quorum, \(b \in\) Ballot :
\((\forall a \in Q:(\operatorname{maxBal}[a] \geq b)) \Rightarrow \exists v \in \operatorname{Value}: \operatorname{SafeAt}(b, v)\)
Checked as an invariant by TLC with 3 acceptors, 3 ballots, 2 values
〈1〉.USE DEF Ballot
\(\langle 1\rangle 1\). suffices assume TypeOK, VInv2, VInv3,
NEW \(Q \in\) Quorum, NEW \(b \in\) Ballot, \((\forall a \quad \in Q:(\operatorname{maxBal}[a] \geq b))\)
PROVE \(\exists v \in \operatorname{Value}: \operatorname{SafeAt}(b, v)\)
obVious
\(\langle 1\rangle 2\).CASE \(b=0\)
By ValueNonempty, \(\langle 1\rangle 1\), SafeAtProp, \(\langle 1\rangle 2\), Zenon
\(\langle 1\rangle 4\). SUFFICES ASSUME \(b \neq 0\)
\[
\begin{array}{ll}
\text { PROVE } \quad \exists v \in \text { Value : } \\
& \exists c \in-1 \ldots(b-1):
\end{array}
\]
\[
\wedge(c \neq-1) \Rightarrow \wedge \operatorname{SafeAt}(c, v)
\]
\(\wedge \forall a \in Q:\)
\(\forall w \in\) Value :
\(\operatorname{VotedFor}(a, c, w) \Rightarrow(w=v)\)
\(\wedge \forall d \in(c+1) \ldots(b-1), a \in Q: \operatorname{DidNot} \operatorname{VoteIn}(a, d)\)
BY \(\langle 1\rangle 1,\langle 1\rangle 2\), SafeAtProp
\(\langle 1\rangle 5 . \mathrm{CASE} \forall a \in Q, c \in 0 \ldots(b-1): \operatorname{DidNotVoteIn}(a, c)\)

BY \(\langle 1\rangle 5\), ValueNonempty
\(\langle 1\rangle 6 . \mathrm{CASE} \exists a \in Q, c \in 0 \ldots(b-1): \neg \operatorname{DidNot} \operatorname{VoteIn}(a, c)\)
\(\langle 2\rangle\). PICK \(c \in 0 \ldots(b-1):\)
\(\wedge \exists a \in Q: \neg \operatorname{DidNotVoteIn}(a, c)\)
\(\wedge \forall d \in(c+1) \ldots(b-1), a \in Q: \operatorname{DidNotVoteIn}(a, d)\)
\(\langle 3\rangle\) DEFINE \(S \triangleq\{c \in 0 \ldots(b-1): \exists a \quad \in Q: \neg \operatorname{DidNotVoteIn}(a, c)\}\)
\(\langle 3\rangle 1 . S \neq\{ \}\)
BY \(\langle 1\rangle 6\)
\(\langle 3\rangle 2\). PICK \(c \in S: \forall d \in S: c \geq d\)
\(\langle 4\rangle 2\). IsFiniteSet \((S)\)
BY FS_Interval, FS_Subset, \(0 \in\) Int, \(b-1 \in\) Int, Zenon
〈4〉3. QED
BY \(\langle 3\rangle 1,\langle 4\rangle 2\), FiniteSetHasMax
\(\langle 3\rangle\).QED
BY \(\langle 3\rangle 2\) DEF Ballot
\(\langle 2\rangle\). PICK \(a 0 \in Q, v \in \operatorname{Value}: \operatorname{VotedFor}(a 0, c, v)\)
BY \(\langle 2\rangle 1\) DEF DidNotVoteIn
\(\langle 2\rangle 5 . \forall a \in Q: \forall w \in\) Value :
\(\operatorname{VotedFor}(a, c, w) \Rightarrow(w=v)\)
BY \(\langle 2\rangle 4, Q A,\langle 1\rangle 1\) DEF VInv3
\(\langle 2\rangle\) 6. SafeAt \((c, v)\)
BY \(\langle 1\rangle 1,\langle 2\rangle 4, Q A\) DEF VInv 2
\(\langle 2\rangle 7\). QED
BY \(\langle 2\rangle 1,\langle 2\rangle 5,\langle 2\rangle 6\)
\(\langle 1\rangle 7\). QED
BY \(\langle 1\rangle 5,\langle 1\rangle 6\)

\footnotetext{
The progress property we require of the algorithm is that a quorum of acceptors, by themselves, can eventually choose a value \(v\). This means that, for some quorum \(Q\) and ballot \(b\), the acceptors \(a\) of \(Q\) must make \(\operatorname{Safe} \operatorname{At}(b, v)\) true by executing \(\operatorname{Increase} \operatorname{MaxBal}(a, b)\) and then must execute \(\operatorname{VoteFor}(a, b, v)\) to choose \(v\). In order to be able to execute \(\operatorname{VoteFor}(a, b, v)\), acceptor \(a\) must not execute a \(\operatorname{Ballot}(a, c)\) action for any \(c>b\).

These considerations lead to the following liveness requirement LiveAssumption. The WF condition ensures that the acceptors \(a\) in \(Q\) eventually execute the necessary BallotAction \((a, b)\) actions if they are enabled, and the \(\square[\ldots]\) vars condition ensures that they never perform BallotAction actions for higher-numbered ballots, so the necessary
BallotAction \((a, b)\) actions are enabled.
LiveAssumption \(\triangleq\)
\(\exists Q \in\) Quorum, \(b \in\) Ballot :
\(\wedge \forall\) self \(\in Q: \mathrm{WF}_{\text {vars }}(\) BallotAction \((\) self,\(b))\)
\(\wedge \square[\forall\) self \(\in Q: \forall c \in\) Ballot \(:\)
\[
(c>b) \Rightarrow \neg \text { BallotAction }(\text { self }, c)]_{\text {vars }}
\]

LiveSpec \(\triangleq\) Spec \(\wedge\) LiveAssumption
}

LiveAssumption is stronger than necessary. Instead of requiring that an acceptor in \(Q\) never executes an action of a higher-numbered ballot than \(b\), it suffices that it doesn't execute such an action until unless it has voted in ballot \(b\). However, the natural liveness requirement for a Paxos consensus algorithm implies condition LiveAssumption.

Condition LiveAssumption is a liveness property, constraining only what eventually happens. It is straightforward to replace "eventually happens" by "happens within some length of time" and convert LiveAssumption into a real-time condition. We have not done that for three reasons:
1. The real-time requirement and, we believe, the real-time reasoning will be more complicated, since temporal logic was developed to abstract away much of the complexity of reasoning about explicit times.
2. \(T L A P S\) does not yet support reasoning about real numbers.
3. Reasoning about real-time specifications consists entirely of safety reasoning, which is almost entirely action reasoning. We want to see how the TLA+ proof language and TLAPS do on temporal logic reasoning.

Here are two temporal-logic proof rules. Their validity is obvious when you understand what they mean.
THEOREM AlwaysForall \(\triangleq\)
assume new constant \(S\), NEW TEMPORAL \(P(-)\)
PROVE \((\forall s \in S: \square P(s)) \equiv \square(\forall s \in S: P(s))\)
OBVIOUS
LEmma EventuallyAlwaysForall \(\triangleq\)
assume new constant \(S\), IsFiniteSet \((S)\), NEW TEMPORAL \(P(-)\)
PROVE \((\forall s \in S: \diamond \square P(s)) \Rightarrow \diamond \square(\forall s \in S: P(s))\)
\(\langle 1\rangle\).DEFINE \(A(x) \stackrel{\diamond}{\triangleq} \diamond P(x)\)
\(L(T) \triangleq \forall s \in T: A(s)\)
\(R(T) \triangleq \forall s \in T: P(s)\)
\(Q(T) \triangleq L(T) \Rightarrow \diamond \square R(T)\)
\(\langle 1\rangle 1 . Q(\{ \})\)
\(\langle 2\rangle 1 . R(\{ \}) \quad\) obvious
\(\langle 2\rangle 2 . \diamond \square R(\{ \}) \quad\) BY \(\langle 2\rangle 1, P T L\)
\(\langle 2\rangle\).QED BY \(\langle 2\rangle 2\)
\(\langle 1\rangle 2\). ASSUME NEW \(T\), NEW \(x\) PROVE \(Q(T) \Rightarrow Q(T \cup\{x\})\)
\(\langle 2\rangle\) 1. \(L(T \cup\{x\}) \Rightarrow A(x)\)
\(\langle 3\rangle\).HIDE DEF \(A\)
\(\langle 3\rangle\).QED OBVIOUS
\(\langle 2\rangle 2 . L(T \cup\{x\}) \wedge Q(T) \Rightarrow \diamond \square R(T)\)
OBVIOUS
\(\langle 2\rangle\) 3. \(\diamond \square R(T) \wedge A(x) \Rightarrow \diamond \square(R(T) \wedge P(x))\)
BY \(P T L\)
\(\langle 2\rangle\) 4. \(R(T) \wedge P(x) \Rightarrow R(T \cup\{x\})\)
OBVIOUS
\(\langle 2\rangle 5 . \diamond \square(R(T) \wedge P(x)) \Rightarrow \diamond \square R(T \cup\{x\})\)

BY \(\langle 2\rangle 4, P T L\)
\(\langle 2\rangle\).QED
BY \(\langle 2\rangle 1,\langle 2\rangle 2,\langle 2\rangle 3,\langle 2\rangle 5\)
\(\langle 1\rangle\). HIDE DEF \(Q\)
\(\langle 1\rangle 3 . \forall T:\) IsFiniteSet \((T) \Rightarrow Q(T)\)
BY \(\langle 1\rangle 1,\langle 1\rangle 2, F S_{-}\)Induction, IsaM("blast")
\(\langle 1\rangle 4\). \(Q(S)\)
BY \(\langle 1\rangle 3\)
\(\langle 1\rangle\). QED
BY \(\langle 1\rangle 4\) DEF \(Q\)
Here is our proof that LiveSpec implements the specification LiveSpec of module Consensus under our refinement mapping.
THEOREM Liveness \(\triangleq\) LiveSpec \(\Rightarrow C\) LiveSpec
\(\langle 1\rangle\) SUFFICES ASSUME NEW \(Q \in Q u o r u m\), NEW \(b \in\) Ballot
PROVE Spec \(\wedge\) LiveAssumption! \((Q, b) \Rightarrow C!\) LiveSpec
BY Isa DEF LiveSpec, LiveAssumption
\(\langle 1\rangle\) a. IsFiniteSet \((Q)\)
BY \(Q A\), AcceptorFinite, FS_Subset
\(\langle 1\rangle 1 . C!\) LiveSpec \(\equiv C!\) Spec \(\wedge\left(\square \diamond\langle C!\text { Next }\rangle_{C}\right.\) ! vars \(\vee \square \diamond(\) chosen \(\left.\neq\{ \})\right)\)
BY ValueNonempty, C!LiveSpecEquals
\(\langle 1\rangle\) Define LNext \(\triangleq \exists\) self \(\in\) Acceptor, \(c \in\) Ballot \(:\)
\(\wedge\) BallotAction (self, \(c\) )
\(\wedge(\) self \(\in Q) \Rightarrow(c \leq b)\)
\(\langle 1\rangle 2\). Spec \(\wedge\) LiveAssumption \(!(Q, b) \Rightarrow \square[\text { LNext }]_{\text {vars }}\)
\(\langle 2\rangle 1 . \wedge\) TypeOK
\(\wedge[\text { Next }]_{\text {vars }}\)
\(\wedge[\forall \text { self } \in Q: \forall c \in \text { Ballot }:(c>b) \Rightarrow \neg \text { BallotAction }(\text { self }, c)]_{\text {vars }}\)
\(\Rightarrow[\text { LNext }]_{\text {vars }}\)
By NextDef DEF LNext, Ballot
\(\langle 2\rangle 2 . \wedge \square\) TypeOK
\(\wedge \square[\text { Next }]_{\text {vars }}\)
\(\wedge \square[\forall\) self \(\in Q: \forall c \in\) Ballot \(:(c>b) \Rightarrow \neg\) BallotAction(self, \(c)]_{\text {vars }}\)
\(\Rightarrow \square[L N e x t]_{\text {vars }}\)
BY \(\langle 2\rangle 1, P T L\)
\(\langle 2\rangle 3\). QED
BY \(\langle 2\rangle 2\), VT2, Isa DEF Spec, VInv
\(\langle 1\rangle\) DEFINE LNInv \(1 \triangleq \forall a \in Q: \operatorname{maxBal}[a] \leq b\)
\[
L \operatorname{Inv} 1 \triangleq V I n v \wedge L N I n v 1
\]
\(\langle 1\rangle\) 3. LInv \(1 \wedge[L N e x t]_{\text {vars }} \Rightarrow L \operatorname{Inv1} 1^{\prime}\)
\(\langle 2\rangle 1\). SUFFICES ASSUME LInv1, \([L N e x t]_{\text {vars }}\)

PROVE LInv1'
OBVIOUS
\(\langle 2\rangle 2\). VInv \({ }^{\prime}\)
BY \(\langle 2\rangle 1\), NextDef, InductiveInvariance DEF LInv1, VInv
\(\langle 2\rangle 3\). LNInv \(1^{\prime}\)
By \(\langle 2\rangle 1\), QA Def BallotAction, IncreaseMaxBal, VoteFor, VInv, TypeOK, vars \(\langle 2\rangle\).QED
BY \(\langle 2\rangle 2,\langle 2\rangle 3\)
\(\langle 1\rangle 4 . \forall a \in Q:\)
\(\operatorname{VInv} \wedge(\operatorname{maxBal}[a]=b) \wedge[L N e x t]_{v a r s} \Rightarrow \operatorname{VInv}^{\prime} \wedge\left(\operatorname{maxBal} l^{\prime}[a]=b\right)\)
\(\langle 2\rangle 1\). SUFFICES ASSUME NEW \(a \in Q\),
VInv, maxBal \([a]=b,[\text { LNext }]_{\text {vars }}\)
PROVE \(V I n v^{\prime} \wedge\left(\operatorname{maxBal^{\prime }}[a]=b\right)\)
OBVIOUS
\(\langle 2\rangle 2\). VInv \({ }^{\prime}\)
BY \(\langle 2\rangle 1\), NextDef, InductiveInvariance DEF VInv
\(\langle 2\rangle 3\). \(\operatorname{maxBal} l^{\prime}[a]=b\)
By \(\langle 2\rangle 1\), QA DEF BallotAction, IncreaseMaxBal, VoteFor, VInv, TypeOK, Ballot, vars \(\langle 2\rangle\).QED

BY \(\langle 2\rangle 2,\langle 2\rangle 3\)
\(\langle 1\rangle\) 5. Spec \(\wedge\) LiveAssumption! \((Q, b) \Rightarrow\)
\(\diamond \square(\forall\) self \(\in Q: \operatorname{maxBal}[\) self \(]=b)\)
\(\langle 2\rangle 1\). SUFFICES ASSUME NEW self \(\in Q\)
PROVE \(\quad\) Spec \(\wedge\) LiveAssumption \(!(Q, b) \Rightarrow \diamond \square(\operatorname{maxBal}[\) self \(]=b)\)
BY \(\langle 1\rangle\) a, EventuallyAlwaysForall \(\backslash\) * doesn't check, even when introducing definitions PROOF OMITTED
\(\langle 2\rangle\) DEFINE \(P \triangleq \operatorname{LInv1} \wedge \neg(\operatorname{maxBal}[s e l f]=b)\)
\(Q Q \triangleq L \operatorname{Lnv} 1 \wedge(\operatorname{maxBal}[s e l f]=b)\)
\(A \triangleq\) BallotAction(self, b)
\(\langle 2\rangle 2 . \square[\text { LNext }]_{\text {vars }} \wedge \mathrm{WF}_{\text {vars }}(A) \Rightarrow(\) LInv \(1 \leadsto Q Q)\)
\(\langle 3\rangle 1 . P \wedge[\text { LNext }]_{\text {vars }} \Rightarrow\left(P^{\prime} \vee Q Q^{\prime}\right)\)
BY \(\langle 1\rangle 3\)
\(\langle 3\rangle 2 . P \wedge\langle L N e x t \wedge A\rangle_{\text {vars }} \Rightarrow Q Q^{\prime}\)
\(\langle 4\rangle 1\). suffices assume LInv1, LNext, \(A\)
PROVE \(Q Q^{\prime}\)
OBVIOUS
\(\langle 4\rangle 2\). LInv \(1^{\prime}\)
BY \(\langle 4\rangle 1,\langle 1\rangle 3\)
\(\langle 4\rangle\) 3.CASE IncreaseMaxBal(self, b)
BY \(\langle 4\rangle 1,\langle 4\rangle 2,\langle 4\rangle 3, Q A\) DEF IncreaseMaxBal, VInv, TypeOK
\(\langle 4\rangle\) 4.CASE \(\exists v \in\) Value : VoteFor (self \(, b, v\) )
BY \(\langle 4\rangle 1,\langle 4\rangle 2,\langle 4\rangle 4, Q A\) DEF VoteFor, VInv, TypeOK
\(\langle 4\rangle 5\). QED

BY \(\langle 4\rangle 1,\langle 4\rangle 3,\langle 4\rangle 4\) DEF BallotAction
\(\langle 3\rangle 3 . P \Rightarrow\) EnABLED \(\langle A\rangle_{\text {vars }}\)
\(\langle 4\rangle\) 1. (ENABLED \(\langle A\rangle_{\text {vars }}\) ) \(\equiv\) \(\exists\) votesp, maxBalp :
\(\wedge \vee \wedge b>\operatorname{maxBal}[\) self \(]\)
\(\wedge \operatorname{maxBalp}=[\operatorname{maxBal}\) EXCEPT \(![\) self \(]=b]\)
\(\wedge\) votesp \(=\) votes \(\vee \exists v \in\) Value :
\(\wedge \operatorname{maxBal}[\) self \(] \leq b\)
\(\wedge\) DidNotVoteIn (self,\(b)\)
\(\wedge \forall p \in\) Acceptor \(\backslash\{\) self \(\}\) :
\(\forall w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \Rightarrow(w=v)\)
\(\wedge \operatorname{SafeAt}(b, v)\)
\(\wedge\) votesp \(=[\) votes EXCEPT \(![\) self \(]=\) votes \([\) self \(]\) \(\cup\{\langle b, v\rangle\}]\)
\(\wedge\) maxBalp \(=[\) maxBal EXCEPT \(![\) self \(]=b]\) \(\wedge\langle\) votesp, maxBalp \(\rangle \neq\langle\) votes, maxBal \(\rangle\)
BY DEF BallotAction, IncreaseMaxBal, VoteFor, vars, SafeAt,
DidNotVoteIn, VotedFor
PROOF OMITTED
\(\langle 4\rangle\).SUFFICES ASSUME \(P\)
\[
\text { PROVE } \exists \text { votesp, maxBalp : }
\]
\(\wedge b>\operatorname{maxBal}[s e l f]\)
\(\wedge\) maxBalp \(=[\) maxBal EXCEPT \(![\) self \(]=b]\)
\(\wedge\) votesp \(=\) votes
\(\wedge\langle\) votesp, maxBalp \(\rangle \neq\langle\) votes, maxBal \(\rangle\)
BY \(\langle 4\rangle 1\)
〈4〉 WITNESS votes, \([\) maxBal EXCEPT ! \([\) self \(]=b]\)
\(\langle 4\rangle\).QED By QA DEF VInv, TypeOK, Ballot
\(\langle 3\rangle\).QED BY \(\langle 3\rangle 1,\langle 3\rangle 2,\langle 3\rangle 3, P T L\)
\(\langle 2\rangle 3 . Q Q \wedge \square[L N e x t]_{\text {vars }} \Rightarrow \square Q Q\)
\(\langle 3\rangle 1 . Q Q \wedge[L N e x t]_{\text {vars }} \Rightarrow Q Q^{\prime}\)
BY \(\langle 1\rangle 3,\langle 1\rangle 4\)
\(\langle 3\rangle\). QED BY \(\langle 3\rangle 1, P T L\)
\(\langle 2\rangle 4 . \square Q Q \Rightarrow \square(\operatorname{maxBal}[\) self \(]=b)\)
BY PTL
\(\langle 2\rangle\) 5. LiveAssumption! \((Q, b) \Rightarrow \mathrm{WF}_{\text {vars }}(A)\)
BY Isa
\(\langle 2\rangle\) 6. Spec \(\Rightarrow\) LInv 1
\(\langle 3\rangle\) 1. Init \(\Rightarrow\) VInv
BY InitImpliesInv
\(\langle 3\rangle 2\). Init \(\Rightarrow\) LNInv 1
By \(Q A\) DeF Init, Ballot
\(\langle 3\rangle\).QED BY \(\langle 3\rangle 1,\langle 3\rangle 2\) DEF Spec
\(\langle 2\rangle\).QED

BY \(\langle 2\rangle 2,\langle 2\rangle 3,\langle 2\rangle 4,\langle 2\rangle 5,\langle 2\rangle 6,\langle 1\rangle 2, P T L\)
\(\begin{aligned} &\langle 1\rangle \text { DEFINE } L N I n v 2 \triangleq \forall a \in Q: \operatorname{maxBal}[a]=b \\ & \text { LInv } 2 \triangleq V \operatorname{VInv} \wedge L N I n v 2\end{aligned}\)
\(\langle 1\rangle 6 . \operatorname{LInv} 2 \wedge[L N e x t]_{\text {vars }} \Rightarrow L I n v 2^{\prime}\)
BY \(\langle 1\rangle 4\), QuorumNonEmpty
\(\langle 1\rangle\). Spec \(\wedge\) LiveAssumption \(!(Q, b) \Rightarrow \diamond \square(\) chosen \(\neq\{ \})\)
\(\langle 2\rangle \operatorname{DEFinE} \operatorname{Voted}(a) \triangleq \exists v \in \operatorname{Value}: \operatorname{VotedFor}(a, b, v)\)
\(\langle 2\rangle\) 1. Spec \(\wedge\) LiveAssumption! \((Q, b) \Rightarrow \diamond \square\) LInv 2
\(\langle 3\rangle\) 1. Spec \(\wedge\) LiveAssumption \(!(Q, b) \Rightarrow \diamond \square\) LNInv 2
BY \(\langle 1\rangle 5 \backslash^{*}\) doesn't check
PROOF OMITTED
\(\langle 3\rangle\).QED BY \(\langle 3\rangle 1, V T 2, P T L\)
\(\langle 2\rangle 2 . \operatorname{LInv} 2 \wedge(\forall a \in Q: \operatorname{Voted}(a)) \Rightarrow(\) chosen \(\neq\{ \})\)
\(\langle 3\rangle 1\). SUFFICES ASSUME LInv2,
\(\forall a \in Q: \operatorname{Voted}(a)\)
PROVE chosen \(\neq\{ \}\)
obvious
\(\langle 3\rangle 2 . \exists v \in \operatorname{Value}: \forall a \in Q: \operatorname{VotedFor}(a, b, v)\)
\(\langle 4\rangle 2\). PICK \(a 0 \in Q, v \in \operatorname{Value}: \operatorname{VotedFor}(a 0, b, v)\)
BY \(\langle 3\rangle 1\), QuorumNonEmpty
\(\langle 4\rangle 3\). ASSUME NEW \(a \in Q\)
PROVE VotedFor \((a, b, v)\)
BY \(\langle 3\rangle 1,\langle 4\rangle 2, Q A\) DEF VInv, VInv3
\(\langle 4\rangle 4\). QED
BY \(\langle 4\rangle 3\)
\(\langle 3\rangle 3\). QED
BY \(\langle 3\rangle 2\) DEF chosen, ChosenIn
\(\langle 2\rangle\) 3. Spec \(\wedge\) LiveAssumption \(!(Q, b) \Rightarrow(\forall a \in Q: \diamond \square \operatorname{Voted}(a))\)
\(\langle 3\rangle 1\). SUFFICES ASSUME NEW self \(\in Q\)
PROVE Spec \(\wedge\) LiveAssumption! \((Q, b) \Rightarrow \diamond \square \operatorname{Voted}(\) self \()\)
obvious \* doesn't check?!
PROOF OMITTED
\(\langle 3\rangle 2\). Spec \(\wedge\) LiveAssumption \(!(Q, b) \Rightarrow \diamond \operatorname{Voted}(\) self \()\)
\(\langle 4\rangle 2 . \square[L N e x t]_{\text {vars }} \wedge \mathrm{WF}_{\text {vars }}(\) BallotAction \((\) self,\(b))\)
\(\Rightarrow((\operatorname{LInv} 2 \wedge \neg \operatorname{Voted}(\) self \()) \sim \operatorname{LInv} 2 \wedge \operatorname{Voted}(\) self \())\)
\(\langle 5\rangle\) DEFINE \(P \triangleq \operatorname{LInv} 2 \wedge \neg \operatorname{Voted}(\) self \()\) \(Q Q \triangleq \operatorname{LInv} 2 \wedge \operatorname{Voted}(\) self \()\)
\(A \triangleq\) BallotAction(self, b)
\(\langle 5\rangle 1 . P \wedge[L N e x t]_{\text {vars }} \Rightarrow\left(P^{\prime} \vee Q Q^{\prime}\right)\)
BY \(\langle 1\rangle 6\)
\(\langle 5\rangle 2 . P \wedge\langle L N e x t \wedge A\rangle_{\text {vars }} \Rightarrow Q Q^{\prime}\)
\(\langle 6\rangle 1\). SUFFICES ASSUME \(P\),
LNext,

OBVIOUS
\(\langle 6\rangle 2\).CASE \(\exists v \in\) Value : VoteFor (self, \(b, v\) )
BY \(\langle 6\rangle 1,\langle 6\rangle 2,\langle 5\rangle 1, Q A\), Zenon DEF VoteFor, Voted, VotedFor, LInv2, VInv, TypeOK〈6〉3.CASE IncreaseMaxBal(self, b)
BY \(\langle 6\rangle 1,\langle 6\rangle 3\) DEF IncreaseMaxBal, Ballot
\(\langle 6\rangle 4\). QED
BY \(\langle 6\rangle 1,\langle 6\rangle 2,\langle 6\rangle 3\) DEF BallotAction
\(\langle 5\rangle 3 . P \Rightarrow\) ENABLED \(\langle A\rangle_{\text {vars }}\)
\(\langle 6\rangle 1\). SUFFICES ASSUME \(P\) PROVE ENABLED \(\langle A\rangle_{\text {vars }}\)
OBVIOUS
\(\langle 6\rangle 2\). (ENABLED \(\left.\langle A\rangle_{\text {vars }}\right) \equiv\)
\[
\exists \text { votesp, maxBalp }:
\] \(\wedge \vee \wedge b>\operatorname{maxBal}[\mathrm{self}]\) \(\wedge \operatorname{maxBalp}=[\) maxBal EXCEPT \(![s e l f]=b]\) \(\wedge\) votesp \(=\) votes
\(\vee \exists v \in\) Value :
\(\wedge \operatorname{maxBal}[\) self \(] \leq b\)
\(\wedge\) DidNotVoteIn (self, b)
\(\wedge \forall p \in\) Acceptor \(\backslash\{\) self \(\}\) :
\(\forall w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \Rightarrow(w=v)\)
\(\wedge \operatorname{SafeAt}(b, v)\)
\(\wedge\) votesp \(=[\) votes \(\operatorname{EXCEPT}![\) self \(]=\) votes \([\) self \(]\)
\(\cup\{\langle b, v\rangle\}]\)
\(\wedge \operatorname{maxBalp}=[\) maxBal EXCEPT \(![\) self \(]=b]\)
\(\wedge\langle\) votesp, maxBalp \(\rangle \neq\langle\) votes, maxBal \(\rangle\)
By def BallotAction, IncreaseMaxBal, VoteFor, vars, SafeAt,
DidNotVoteIn, VotedFor
PROOF OMITTED
\(\langle 6\rangle\) SUFFICES
\(\exists\) votesp, maxBalp :
\(\wedge \exists v \in\) Value :
\(\wedge \operatorname{maxBal}[\) self \(] \leq b\)
\(\wedge\) DidNotVoteIn(self, b)
\(\wedge \forall p \in\) Acceptor \(\backslash\{\) self \(\}:\)
\(\forall w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \Rightarrow(w=v)\)
\(\wedge \operatorname{SafeAt}(b, v)\)
\(\wedge\) votesp \(=[\) votes EXCEPT \(![\) self \(]=\) votes \([\) self \(]\)
\(\cup\{\langle b, v\rangle\}]\)
\(\wedge \operatorname{maxBalp}=[\operatorname{maxBal}\) EXCEPT \(![\) self \(]=b]\) \(\wedge\langle\) votesp, maxBalp \(\rangle \neq\langle\) votes, maxBal \(\rangle\)
BY \(\langle 6\rangle 2\)
\(\langle 6\rangle\) DEFINE someVoted \(\triangleq \exists p \in\) Acceptor \(\backslash\{\) self \(\}\) :
\[
\begin{array}{r}
\exists w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \\
v p \triangleq \operatorname{Choose} p \in \text { Acceptor } \backslash\{\operatorname{self}\}: \\
\exists w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \\
\text { vpval } \triangleq \operatorname{CHOOSE} w \in \operatorname{Value}: \operatorname{VotedFor}(v p, b, w)
\end{array}
\]
\(\langle 6\rangle 3\). someVoted \(\Rightarrow \wedge v p \in\) Acceptor
\[
\begin{aligned}
& \wedge \text { vpval } \in \operatorname{Value} \\
& \wedge \operatorname{VotedFor}(v p, b, \text { vpval })
\end{aligned}
\]

BY Zenon
\(\langle 6\rangle\) DEFINE \(v \triangleq\) IF some Voted THEN vpval
ELSE Choose \(v \in\) Value : \(\operatorname{SafeAt}(b, v)\)
\(\langle 6\rangle 4 .(v \in\) Value \() \wedge \operatorname{SafeAt}(b, v)\)
BY \(\langle 6\rangle 1,\langle 6\rangle 3, V T 4\) DEF VInv, VInv2, Ballot
\(\langle 6\rangle\) DEFINE votesp \(\triangleq[\) votes \(\operatorname{EXCEPT}![\) self \(]=\operatorname{votes}[\) self \(] \cup\{\langle b, v\rangle\}]\) maxBalp \(\triangleq[\) maxBal EXCEPT \(![\) self \(]=b]\)
\(\langle 6\rangle\) WITNESS votesp, maxBalp
\(\langle 6\rangle\) SUFFICES \(\wedge \operatorname{maxBal}[\) self \(] \leq b\)
\[
\wedge \operatorname{DidNotVoteIn}(\text { self }, b)
\]
\(\wedge \forall p \in\) Acceptor \(\backslash\{\) self \(\}:\)
\(\forall w \in \operatorname{Value}: \operatorname{VotedFor}(p, b, w) \Rightarrow(w=v)\)
\(\wedge\) votesp \(\neq\) votes
BY \(\langle 6\rangle 4\), Zenon
\(\langle 6\rangle\) 5. maxBal \([\) self \(] \leq b\)
BY \(\langle 6\rangle 1\) DEF Ballot
\(\langle 6\rangle\) 6. DidNotVoteIn(self, b)
BY \(\langle 6\rangle 1\) DEF Voted, DidNotVoteIn
\(\langle 6\rangle 7\). ASSUME NEW \(p \in\) Acceptor \(\backslash\{\) self \(\}\),
NEW \(w \in\) Value,
\(\operatorname{VotedFor}(p, b, w)\)
PROVE \(w=v\)
BY \(\langle 6\rangle 7,\langle 6\rangle 3,\langle 6\rangle 1\) DEF VInv, VInv 3
\(\langle 6\rangle 8\). votesp \(\neq\) votes
\(\langle 7\rangle 1\). votesp \([\) self \(]=\) votes \([\) self \(] \cup\{\langle b, v\rangle\}\)
BY \(\langle 6\rangle 1, Q A\) DEF LInv2, VInv, TypeOK
\(\langle 7\rangle 2 . \forall w \in\) Value \(:\langle b, w\rangle \notin \operatorname{votes}[\) self \(]\)
BY \(\langle 6\rangle 6\) DEF DidNotVoteIn, VotedFor
\(\langle 7\rangle 3\). QED
BY \(\langle 7\rangle 1,\langle 7\rangle 2,\langle 6\rangle 4\), Zenon
\(\langle 6\rangle 9\). QED
BY \(\langle 6\rangle 5,\langle 6\rangle 6,\langle 6\rangle 7,\langle 6\rangle 8\), Zenon
\(\langle 5\rangle 4\). QED
BY \(\langle 5\rangle 1,\langle 5\rangle 2,\langle 5\rangle 3, P T L\)
\(\langle 4\rangle 3 . \square \operatorname{LInv} 2 \wedge((\operatorname{LInv} 2 \wedge \neg \operatorname{Voted}(\) self \()) \sim \operatorname{LInv} 2 \wedge \operatorname{Voted}(\) self \())\)
\(\Rightarrow \diamond \operatorname{Voted}(\) self \()\)
BY PTL
\(\langle 4\rangle\). LiveAssumption! \((Q, b) \Rightarrow \mathrm{WF}_{\text {vars }}(\) BallotAction \((\) self,\(b))\)
```

 BY Isa
 <4\rangle.QED
 BY }\langle1\rangle2,\langle2\rangle1,\langle4\rangle2,\langle4\rangle3,\langle4\rangle4, PTL
 <3\rangle3. Spec }=>\square(\operatorname{Voted}(\mathrm{ self })=>\square\operatorname{Voted}(\mathrm{ self))
 <4\rangle1. (VInv ^ Voted(self)) ^[Next] vars }=>(VInv \wedge Voted(self))'
 <5\rangle SUFFICES ASSUME VInv, Voted(self), [Next] vars
 Prove VInv'^ Voted(self)'
 OBVIOUS
 <5>1.VInv
 BY InductiveInvariance
 <5\rangle2. Voted(self)'
 <6\rangleCASE vars' }=\mathrm{ vars
 BY DEF vars, Voted, VotedFor
 <6\rangleCASE Next
 <7\rangle2. PICK }a\in\mathrm{ Acceptor, }c\in\mathrm{ Ballot: BallotAction(}a,c
 BY NextDef DEF VInv
 <7\rangle3.CASE IncreaseMaxBal(a,c)
 BY }\langle7\rangle3\mathrm{ DEF IncreaseMaxBal, Voted, VotedFor
 <7\rangle4.CASE \existsv\in Value:VoteFor(a,c,v)
 BY }\langle7\rangle4,QA DEF VInv, TypeOK,VoteFor, Voted, VotedFor
 <7\rangle5. QED
 BY }\langle7\rangle2,\langle7\rangle3,\langle7\rangle4 DEF BallotAction
 <6\rangle QED
 ObVIOUS
 <5\rangle3. QED
 BY }\langle5\rangle1,\langle5\rangle
 <4\rangle3. QED
 BY \langle4\rangle1,VT2, PTL DEF Spec
 <3\rangle4. QED
 BY }\langle3\rangle2,\langle3\rangle3, PTL
 <2\rangle4. (\foralla\inQ:\diamond\square\operatorname{Voted (a)) =>}\diamond\square(\foralla\inQ:Voted (a))
 BY \langle1\ranglea, EventuallyAlwaysForall * doesn't check
 PROOF OMITTED
 <2\rangle.QED
 BY <2\rangle1,VT2, <2\rangle2, <2\rangle3, <2\rangle4, PTL
 <1\rangle.QED
<2\rangle1. Spec }\wedge\mathrm{ LiveAssumption! (Q,b) \# C!Spec }\wedge\diamond\square(\mathrm{ chosen }\not={}
BY VT3, <1\rangle7, Isa
<2\rangle2. Spec }\wedge\mathrm{ LiveAssumption! (Q,b) 左 C!Spec }\wedge\square\diamond(\mathrm{ chosen }\not={}
BY }\langle2\rangle1,PT
<2\rangle.QED
BY }\langle2\rangle2,\langle1\rangle1,Is

```
\* Modification History
\* Last modified Fri Jul 24 18:20:31 CEST 2020 by merz
\* Last modified Wed Apr 29 12:24:23 CEST 2020 by merz ।* Last modified Mon May 28 08:53:38 PDT 2012 by lamport```

