
module PConProof

This is a specification of a variant of the classic Paxos consensus algorithm described in

AUTHOR = “Leslie Lamport”, TITLE = “The Part-Time Parliament”, journal = ACM
Transactions on Computing Systems,

volume = 16,

Number = 2, Month = may, Year = 1998, pages = “133–169”

This algorithm was also described without proof in Brian Oki ’s Ph.D . thesis.

It describes the actions that can be performed by leaders, but does not introduce explicit leader
processes. More precisely, the specification is written as if there were a separate leader for each
ballot.

This variant of the classic Paxos algorithm is an abstraction of an algorithm that is used in

AUTHOR = “Leslie Lamport and Dahlia Malkhi and Lidong Zhou ”, TITLE = “Vertical
Paxos and Primary-Backup Replication”, Conference = “Proceedings of PODC 2009”,

editor = {Srikanta Tirthapura and Lorenzo Alvisi},
publisher = {ACM}, YEAR = 2009, PAGES = “312–313”

and in

Cheap paxos United States Patent 7249280 Inventors: Lamport , Leslie B .

Massa, Michael T .

Filing Date:06/18/2004

In the classic Paxos algorithm, the leader sends a phase 2a message for a ballot b and value v
that instructs acceptors to vote for v in ballot b. In terms of implementing the voting algorithm
of module VoteProof , that 2a message serves two functions:

- It asserts that value v is safe at ballot b, so the acceptor can vote for it without violating
invariant VInv2

- It tells the acceptors which single safe value they can vote for in ballot b, so they can vote for
that value without violating VInv3.

The variant of the algorithm we specify here introduces phase 1c messages that perform the first
function. The phase 2a message serves only the first function, being sent only if a 1c message had
been sent for the value.

This variant of the algorithm is useful when reconfiguration is performed by using different sets
of acceptors for different ballots. The leader propagates knowledge of what values are safe at
ballot b so that the acceptors in the current configuration are no longer needed to determine that
information. If the ballot b leader determines that all values are safe at b, then it sends a 1c
message for every value and sends a phase 2a message only when it has a value to propose. The
presence of the 1c messages removes dependency on the acceptors of ballots numbered b or lower
for progress. (If the leader determines that only a single value is safe at b, then it sends the 1c

and 2a messages together.)

In the algorithm described here, we do not include reconfiguration. Therefore, the sending of a
1c message serves only as a precondition for the sending of a 2a message with that value.

Classic Paxos and its variants maintain consensus in the presence of omission faults–faults in
which a process fails to perform some enabled action or a message that is sent fails to be received.
The safety specification, which is given by the PlusCal code, does not require that any action
need ever be performed. A process need not execute an enabled action. Receipt of a message is
modeled by a process performing the action enabled by that message having been sent, so message
loss is also represented by a process not performing an enabled action. Thus, failures are never
mentioned in the description of the algorithm.

1

extends Integers, TLAPS

The constant parameters and the set Ballots are the same as in the voting algorithm.

constant Value, Acceptor , Quorum

assume QA
∆
= ∧ ∀Q ∈ Quorum : Q ⊆ Acceptor
∧ ∀Q1, Q2 ∈ Quorum : Q1 ∩Q2 6= {}

Ballot
∆
= Nat

We are going to have a leader process for each ballot and an acceptor process for each acceptor. So
we can use the ballot numbers and the acceptors themselves as the identifiers for these processes,
we assume that the set of ballots and the set of acceptors are disjoint. For good measure, we also
assume that − 1 is not an acceptor, although that is probably not necessary.

assume BallotAssump
∆
= (Ballot ∪ { − 1}) ∩Acceptor = {}

We define None to be an unspecified value that is not in the set Value.

None
∆
= choose v : v /∈ Value

This is a message-passing algorithm, so we begin by defining the set Message of all possible
messages. The messages are explained below with the actions that send them. A message m with
m.type = “1a” is called a 1a message, and similarly for the other message types.

Message
∆
= [type : {“1a”}, bal : Ballot]
∪ [type : {“1b”}, acc : Acceptor , bal : Ballot ,

mbal : Ballot ∪ { − 1}, mval : Value ∪ {None}]
∪ [type : {“1c”}, bal : Ballot , val : Value]
∪ [type : {“2a”}, bal : Ballot , val : Value]
∪ [type : {“2b”}, acc : Acceptor , bal : Ballot , val : Value]

The algorithm is easiest to understand in terms of the set msgs of all messages that have ever
been sent. A more accurate model would use one or more variables to represent the messages
actually in transit, and it would include actions representing message loss and duplication as well
as message receipt.

In the current spec, there is no need to model message loss explicitly. The safety part of the
spec says only what messages may be received and does not assert that any message actually is
received. Thus, there is no difference between a lost message and one that is never received. The
liveness property of the spec will make it clear what messages must be received (and hence either

not lost or successfully retransmitted if lost) to guarantee progress.

Another advantage of maintaining the set of all messages that have ever been sent is that it allows
us to define the state function votes that implements the variable of the same name in the voting
algorithm without having to introduce a history variable.

In addition to the variable msgs, the algorithm uses four variables whose values are arrays indexed
by acceptor, where for any acceptor a :

maxBal [a] The largest ballot number in which a has participated

maxVBal [a] The largest ballot number in which a has voted, or − 1 if it has never voted.

2

maxVVal [a] If a has voted, then this is the value it voted for in ballot maxVBal ; otherwise it

equals None.

As in the voting algorithm, an execution of the algorithm consists of an execution of zero or more
ballots. Different ballots may be in progress concurrently, and ballots may not complete (and
need not even start). A ballot b consists of the following actions (which need not all occur in the

indicated order).

Phase1a : The leader sends a 1a message for ballot b

Phase1b : If maxBal [a] < b, an acceptor a responds to the 1a message by setting maxBal [a] to
b and sending a 1b message to the leader containing the values of maxVBal [a] and

maxVVal [a].

Phase1c : When the leader has received ballot-b 1b messages from a quorum, it determines some
set of values that are safe at b and sends 1c messages for them.

Phase2a : The leader sends a 2a message for some value for which it has already sent a ballot-b
1c message.

Phase2b : Upon receipt of the 2a message, if maxBal [a] ≤ b, an acceptor a sets maxBal [a] and
maxVBal [a] to b, sets maxVVal [a] to the value in the 2a message, and votes for that

value in ballot b by sending the appropriate 2b message.

Here is the PlusCal code for the algorithm, which we call PCon.

--algorithm PCon{
variables maxBal = [a ∈ Acceptor 7→ − 1],

maxVBal = [a ∈ Acceptor 7→ − 1],
maxVVal = [a ∈ Acceptor 7→ None],
msgs = {}

define {
sentMsgs(t , b)

∆
= {m ∈ msgs : (m.type = t) ∧ (m.bal = b)}

We define ShowsSafeAt so that ShowsSafeAt(Q , b, v) is true for a quorum Q iff msgs contain

ballot-b 1b messages from the acceptors in Q showing that v is safe at b.

ShowsSafeAt(Q , b, v)
∆
=

let Q1b
∆
= {m ∈ sentMsgs(“1b”, b) : m.acc ∈ Q}

in ∧ ∀ a ∈ Q : ∃m ∈ Q1b : m.acc = a
∧ ∨ ∀m ∈ Q1b : m.mbal = − 1
∨ ∃m1c ∈ msgs :
∧m1c = [type 7→ “1c”, bal 7→ m1c.bal , val 7→ v]
∧ ∀m ∈ Q1b : ∧m1c.bal ≥ m.mbal

∧ (m1c.bal = m.mbal)⇒ (m.mval = v)

}
The following two macros send a message and a set of messages, respectively. These macros are
so simple that they’re hardly worth introducing, but they do make the processes a little easier
to read.

macro SendMessage(m){msgs := msgs ∪ {m}}
macro SendSetOfMessages(S){msgs := msgs ∪ S}

The Actions

3

As before, we describe each action as a macro.

The leader for process self can execute a Phase1a() action, which sends the ballot self 1a

message.

macro Phase1a(){SendMessage([type 7→ “1a”, bal 7→ self])}

Acceptor self can perform a Phase1b(b) action, which is enabled iff b > maxBal [self]. The
action sets maxBal [self] to b and sends a phase 1b message to the leader containing the values

of maxVBal [self] and maxVVal [self].

macro Phase1b(b){
when (b > maxBal [self]) ∧ (sentMsgs(“1a”, b) 6= {}) ;
maxBal [self] := b ;
SendMessage([type 7→ “1b”, acc 7→ self , bal 7→ b,

mbal 7→ maxVBal [self], mval 7→ maxVVal [self]]) ;
}

The ballot self leader can perform a Phase1c(S) action, which sends a set S of 1c messages
indicating that the value in the val field of each of them is safe at ballot b. In practice, S will
either contain a single message, or else will have a message for each possible value, indicating
that all values are safe. In the first case, the leader will immediately send a 2a message with the
value contained in that single message. (Both logical messages will be sent in the same physical
message.) In the latter case, the leader is informing the acceptors that all values are safe. (All

those logical messages will, of course, be encoded in a single physical message.)

macro Phase1c(S){
when ∀ v ∈ S : ∃Q ∈ Quorum : ShowsSafeAt(Q , self , v) ;
SendSetOfMessages({[type 7→ “1c”, bal 7→ self , val 7→ v] : v ∈ S})
}

The ballot self leader can perform a Phase2a(v) action, sending a 2a message for value v , if it
has not already sent a 2a message (for this ballot) and it has sent a ballot self 1c message with

val field v .

macro Phase2a(v){
when ∧ sentMsgs(“2a”, self) = {}

∧ [type 7→ “1c”, bal 7→ self , val 7→ v] ∈ msgs ;
SendMessage([type 7→ “2a”, bal 7→ self , val 7→ v])
}

The Phase2b(b) action is executed by acceptor self in response to a ballot-b 2a message. Note
this action can be executed multiple times by the acceptor, but after the first one, all subsequent
executions are stuttering steps that do not change the value of any variable.

macro Phase2b(b){
when b ≥ maxBal [self] ;
with (m ∈ sentMsgs(“2a”, b)){
maxBal [self] := b ;
maxVBal [self] := b ;
maxVVal [self] := m.val ;
SendMessage([type 7→ “2b”, acc 7→ self , bal 7→ b, val 7→ m.val])
}

4

}

An acceptor performs the body of its while loop as a single atomic action by nondeterministically
choosing a ballot in which its Phase1b or Phase2b action is enabled and executing that enabled
action. If no such action is enabled, the acceptor does nothing.

process (acceptor ∈ Acceptor){
acc : while (true){

with (b ∈ Ballot){either Phase1b(b)or Phase2b(b)
}

}
}

The leader of a ballot nondeterministically chooses one of its actions that is enabled (and the
argument for which it is enabled) and performs it atomically. It does nothing if none of its

actions is enabled.

process (leader ∈ Ballot){
ldr : while (true){

either Phase1a()
or with (S ∈ subset Value){Phase1c(S)}
or with (v ∈ Value){Phase2a(v)}
}

}

}
The translator produces the following TLA+ specification of the algorithm. Some blank lines have

been deleted.

BEGIN TRANSLATION

variables maxBal , maxVBal , maxVVal , msgs

define statement

sentMsgs(t , b)
∆
= {m ∈ msgs : (m.type = t) ∧ (m.bal = b)}

ShowsSafeAt(Q , b, v)
∆
=

let Q1b
∆
= {m ∈ sentMsgs(“1b”, b) : m.acc ∈ Q}

in ∧ ∀ a ∈ Q : ∃m ∈ Q1b : m.acc = a
∧ ∨ ∀m ∈ Q1b : m.mbal = − 1
∨ ∃m1c ∈ msgs :
∧m1c = [type 7→ “1c”, bal 7→ m1c.bal , val 7→ v]
∧ ∀m ∈ Q1b : ∧m1c.bal ≥ m.mbal

∧ (m1c.bal = m.mbal)⇒ (m.mval = v)

vars
∆
= 〈maxBal , maxVBal , maxVVal , msgs〉

ProcSet
∆
= (Acceptor) ∪ (Ballot)

Init
∆
= Global variables

5

∧maxBal = [a ∈ Acceptor 7→ − 1]
∧maxVBal = [a ∈ Acceptor 7→ − 1]
∧maxVVal = [a ∈ Acceptor 7→ None]
∧msgs = {}

acceptor(self)
∆
= ∃ b ∈ Ballot :

∨ ∧ (b > maxBal [self]) ∧ (sentMsgs(“1a”, b) 6= {})
∧maxBal ′ = [maxBal except ! [self] = b]
∧msgs ′ = (msgs ∪ {([type 7→ “1b”, acc 7→ self , bal 7→ b,

mbal 7→ maxVBal [self], mval 7→ maxVVal [self]])})
∧ unchanged 〈maxVBal , maxVVal〉

∨ ∧ b ≥ maxBal [self]
∧ ∃m ∈ sentMsgs(“2a”, b) :
∧maxBal ′ = [maxBal except ! [self] = b]
∧maxVBal ′ = [maxVBal except ! [self] = b]
∧maxVVal ′ = [maxVVal except ! [self] = m.val]
∧msgs ′ = (msgs ∪ {([type 7→ “2b”, acc 7→ self , bal 7→ b, val 7→ m.val])})

leader(self)
∆
= ∧ ∨ ∧msgs ′ = (msgs ∪ {([type 7→ “1a”, bal 7→ self])})

∨ ∧ ∃S ∈ subset Value :
∧ ∀ v ∈ S : ∃Q ∈ Quorum : ShowsSafeAt(Q , self , v)
∧msgs ′ = (msgs ∪ ({[type 7→ “1c”, bal 7→ self , val 7→ v] : v ∈ S}))

∨ ∧ ∃ v ∈ Value :
∧ ∧ sentMsgs(“2a”, self) = {}
∧ [type 7→ “1c”, bal 7→ self , val 7→ v] ∈ msgs

∧msgs ′ = (msgs ∪ {([type 7→ “2a”, bal 7→ self , val 7→ v])})
∧ unchanged 〈maxBal , maxVBal , maxVVal〉

Next
∆
= (∃ self ∈ Acceptor : acceptor(self))

∨ (∃ self ∈ Ballot : leader(self))

Spec
∆
= Init ∧2[Next]vars

END TRANSLATION

We now rewrite the next-state relation in a way that makes it easier to use in a proof. We start by
defining the formulas representing the individual actions. We then use them to define the formula
TLANext , which is the next-state relation we would have written had we specified the algorithm
directly in TLA+ rather than in PlusCal .

Phase1a(self)
∆
=

∧msgs ′ = (msgs ∪ {[type 7→ “1a”, bal 7→ self]})
∧ unchanged 〈maxBal , maxVBal , maxVVal〉

Phase1c(self , S)
∆
=

∧ ∀ v ∈ S : ∃Q ∈ Quorum : ShowsSafeAt(Q , self , v)
∧msgs ′ = (msgs ∪ {[type 7→ “1c”, bal 7→ self , val 7→ v] : v ∈ S})

6

∧ unchanged 〈maxBal , maxVBal , maxVVal〉

Phase2a(self , v)
∆
=

∧ sentMsgs(“2a”, self) = {}
∧ [type 7→ “1c”, bal 7→ self , val 7→ v] ∈ msgs
∧msgs ′ = (msgs ∪ {[type 7→ “2a”, bal 7→ self , val 7→ v]})
∧ unchanged 〈maxBal , maxVBal , maxVVal〉

Phase1b(self , b)
∆
=

∧ b > maxBal [self]
∧ sentMsgs(“1a”, b) 6= {}
∧maxBal ′ = [maxBal except ! [self] = b]
∧msgs ′ = msgs ∪ {[type 7→ “1b”, acc 7→ self , bal 7→ b,

mbal 7→ maxVBal [self], mval 7→ maxVVal [self]]}
∧ unchanged 〈maxVBal , maxVVal〉

Phase2b(self , b)
∆
=

∧ b ≥ maxBal [self]
∧ ∃m ∈ sentMsgs(“2a”, b) :
∧maxBal ′ = [maxBal except ! [self] = b]
∧maxVBal ′ = [maxVBal except ! [self] = b]
∧maxVVal ′ = [maxVVal except ! [self] = m.val]
∧msgs ′ = (msgs ∪ {[type 7→ “2b”, acc 7→ self ,

bal 7→ b, val 7→ m.val]})

TLANext
∆
=

∨ ∃ self ∈ Acceptor :
∃ b ∈ Ballot : ∨ Phase1b(self , b)

∨ Phase2b(self , b)
∨ ∃ self ∈ Ballot :
∨ Phase1a(self)
∨ ∃S ∈ subset Value : Phase1c(self , S)
∨ ∃ v ∈ Value : Phase2a(self , v)

The following theorem specifies the relation between the next-state relation Next obtained by

translating the PlusCal code and the next-state relation TLANext .

theorem NextDef
∆
= (Next ≡ TLANext)

〈1〉2. assume new self ∈ Acceptor
prove acceptor(self) ≡ TLANext !1 !(self)

by 〈1〉2, BallotAssump def acceptor , ProcSet , Phase1b, Phase2b
〈1〉3. assume new self ∈ Ballot

prove leader(self) ≡ TLANext !2 !(self)
by 〈1〉3, BallotAssump, Zenon def leader , ProcSet , Phase1a, Phase1c, Phase2a
〈1〉4. qed
by 〈1〉2, 〈1〉3 def Next , TLANext

7

The type invariant.

TypeOK
∆
= ∧maxBal ∈ [Acceptor → Ballot ∪ { − 1}]
∧maxVBal ∈ [Acceptor → Ballot ∪ { − 1}]
∧maxVVal ∈ [Acceptor → Value ∪ {None}]
∧msgs ⊆ Message

Here is the definition of the state-function chosen that implements the state-function of the same

name in the voting algorithm.

chosen
∆
= {v ∈ Value : ∃Q ∈ Quorum, b ∈ Ballot :

∀ a ∈ Q : ∃m ∈ msgs : ∧m.type = “2b”
∧m.acc = a
∧m.bal = b
∧m.val = v}

We now define the refinement mapping under which this algorithm implements the specification

in module Voting.

As we observed, votes are registered by sending phase 2b messages. So the array votes describing

the votes cast by the acceptors is defined as follows.

votes
∆
= [a ∈ Acceptor 7→

{〈m.bal , m.val〉 : m ∈ {mm ∈ msgs : ∧mm.type = “2b”
∧mm.acc = a}}]

We now instantiate module Voting, substituting:

- The constants Value, Acceptor , and Quorum declared in this module for the corresponding
constants of that module Voting.

- The variable maxBal and the defined state function votes for the correspondingly-named vari-
ables of module Voting.

V
∆
= instance VoteProof

We now define PInv to be what I believe to be an inductive invariant and assert the theorems
for proving that this algorithm implements the voting algorithm under the refinement mapping
specified by the instance statement. Whether PInv really is an inductive invariant will be
determined only by a rigorous proof.

PAccInv
∆
= ∀ a ∈ Acceptor :

∧maxBal [a] ≥ maxVBal [a]
∧ ∀ b ∈ (maxVBal [a] + 1) . . (maxBal [a]− 1) : V !DidNotVoteIn(a, b)
∧ (maxVBal [a] 6= − 1)⇒ V !VotedFor(a, maxVBal [a], maxVVal [a])

P1bInv
∆
= ∀m ∈ msgs :

(m.type = “1b”)⇒
∧ (maxBal [m.acc] ≥ m.bal) ∧ (m.bal > m.mbal)
∧ ∀ b ∈ (m.mbal + 1) . . (m.bal − 1) : V !DidNotVoteIn(m.acc, b)

P1cInv
∆
= ∀m ∈ msgs : (m.type = “1c”)⇒ V !SafeAt(m.bal , m.val)

8

P2aInv
∆
= ∀m ∈ msgs :

(m.type = “2a”)⇒ ∃m1c ∈ msgs : ∧m1c.type = “1c”
∧m1c.bal = m.bal
∧m1c.val = m.val

The following theorem is interesting in its own right. It essentially asserts the correctness of the

definition of ShowsSafeAt .

theorem PT1
∆
= TypeOK ∧ P1bInv ∧ P1cInv ⇒

∀Q ∈ Quorum, b ∈ Ballot , v ∈ Value :
ShowsSafeAt(Q , b, v)⇒ V !SafeAt(b, v)

PInv
∆
= TypeOK ∧ PAccInv ∧ P1bInv ∧ P1cInv ∧ P2aInv

theorem Invariance
∆
= Spec ⇒ 2PInv

theorem Implementation
∆
= Spec ⇒ V !Spec

The following result shows that our definition of chosen is the correct one, because it implements

the state-function chosen of the voting algorithm.

theorem Spec ⇒ 2(chosen = V !chosen)

The four theorems above have been checked by TLC for a model with 3 acceptors, 2 values, and
3 ballot numbers. Theorem PT1 was checked as an invariant, therefore checking only that it is
true for all reachable states. This model is large enough that it would most likely have revealed
any “coding” errors in the algorithm. We believe that the algorithm is well-enough understood
that it is unlikely to contain any fundamental errors.

\ * Modification History

\ * Last modified Fri May 22 09:20:18 CEST 2020 by merz

\ * Last modified Fri Jul 15 11:31:15 PDT 2011 by lamport

(***)

(* Liveness *)

(* *)

(* The liveness property satisfied by PCon (and classic Paxos) is: *)

(* *)

(* If there is some ballot b and quorum Q such that *)

(* *)

(* 1. No phase 1a messages (a) have been or (b) ever will be sent for any *)

(* ballot number greater than b. *)

(* *)

(* 2. The ballot b leader eventually sends a phase 1a message for ballot *)

(* b. *)

(* *)

(* 3. Each acceptor in Q eventually responds to ballot b messages sent *)

(* by the ballot b leader–which implies that it eventually receives *)

(* those messages. *)

(* *)

(* 4. The ballot b leader eventually executes its Phase2a action for *)

(* ballot b if it can. *)

(* *)

9

(* then some value is eventually chosen. *)

(* *)

(* Note that Phase2a(b) is enabled if msgs contains a ballot b phase 1b *)

(* message from every acceptor in Q . Hence, 4 implies that if the leader *)

(* eventually receives those messages, then it must perform its Phase2a(b) *)

(* action. (It might perform that action before it receives those *)

(* messages if it has received phase 1b messages from all the acceptors in *)

(* a different quorum.) *)

(***)

theorem Liveness
∆
=

Spec ⇒ ∀ b ∈ Ballot , Q ∈ Quorum :

((∧ (***)

(* Assumption 1a. *)

(***) ∀m ∈ msgs :

(m.type = “1a”) ⇒ (m.bal < b)

∧ (***)

(* Assumption 1b. *)

(***) ∀ c ∈ Ballot :

(c > b) ⇒ 2[¬Phase1a(c)] vars

∧ (***)

(* Assumption 2. *)

(***)

WF vars(Phase1a(b))

∧ (***)

(* Assumption 4. *)

(***)

WF vars(∃ v ∈ Value : Phase2a(b, v))

∧ (***)

(* Assumption 3. *)

(***)

∀ a ∈ Q : ∧WF vars(Phase1b(a, b))

∧WF vars(Phase2b(a, b))

) ; (chosen 6= {}))

\ * The following is used to check theorem Liveness

constants bb, QQ

CSpec
∆
= ∧ Init

∧ 2[∧Next

∧ ∀ c ∈ Ballot : (c > bb)⇒ ¬Phase1a(c)] vars

∧WF vars(Phase1a(bb))

∧WF vars(∃ v ∈ Value : Phase2a(bb, v))

∧ ∀ a ∈ QQ : ∧WF vars(Phase1bForBallot(a, bb))

∧WF vars(Phase2bForBallot(a, bb))

CLiveness
∆
= (∀m ∈ msgs : (m.type = “1a”) ⇒ (m.bal < bb)) ; (chosen 6= {})

10

