[MODULE BPConProof |
This module specifies a Byzantine Pazos algorithm-a version of Pazos in which failed acceptors

and leaders can be malicious. It is an abstraction and generalization of the Castro-Liskov algorithm
in

author = “Miguel Castro and Barbara Liskov”, title = “Practical byzantine fault tolerance
and proactive
recovery”,
journal = ACM Transactions on Computer Systems,
volume = 20,
number = 4, year = 2002, pages = “398-461”

EXTENDS Integers, FiniteSets, FiniteSetTheorems, TLAPS

The sets Value and Ballot are the same as in the Voting and PConProof specs.
CONSTANT Value

Ballot = Nat

As in module PConProof, we define None to be an unspecified value that is not an element of
Value.

None = CHOOSE v : v ¢ Value

We pretend that which acceptors are good and which are malicious is specified in advance. Of
course, the algorithm executed by the good acceptors makes no use of which acceptors are which.
Hence, we can think of the sets of good and malicious acceptors as “prophecy constants” that are
used only for showing that the algorithm implements the PCon algorithm.

We can assume that a maximal set of acceptors are bad, since a bad acceptor is allowed to do
anything—including acting like a good one.

The basic idea is that the good acceptors try to execute the Pazos consensus algorithm, while the
bad acceptors may try to prevent them.

We do not distinguish between faulty and non-faulty leaders. Safety must be preserved even if
all leaders are malicious, so we allow any leader to send any syntactically correct message at any
time. (In an implementation, syntactically incorrect messages are simply ignored by non-faulty
acceptors and have no effect.) Assumptions about leader behavior are required only for liveness.

CONSTANTS Acceptor, The set of good (non-faulty) acceptors.
FakeAcceptor, The set of possibly malicious (faulty) acceptors.
ByzQuorum,

A Byzantine quorum is set of acceptors that includes a quorum of good ones. In
the case that there are 2f+1 good acceptors and f bad ones, a Byzantine quorum
is any set of 2f+1 acceptors.

WeakQuorum

A weak quorum is a set of acceptors that includes at least one good one. If there
are f bad acceptors, then a weak quorum is any set of f+1 acceptors.

We define ByzAcceptor to be the set of all real or fake acceptors.
ByzAcceptor = Acceptor U FakeAcceptor

As in the Pazos consensus algorithm, we assume that the set of ballot numbers and — 1 is disjoint
from the set of all (real and fake) acceptors.

ASSUME BallotAssump = (Ballot U{ — 1}) N ByzAcceptor = {}

The following are the assumptions about acceptors and quorums that are needed to ensure safety
of our algorithm.
ASSUME BQA =

A Acceptor N FakeAcceptor = {}

AY @ € ByzQuorum : @ C ByzAcceptor

AY Q1, Q2 € ByzQuorum : Q1 N Q2N Acceptor # {}

AY Q € WeakQuorum : N @ C ByzAcceptor

A Q N Acceptor # {}

The following assumption is not needed for safety, but it will be needed to ensure liveness.

ASSUME BQLA =
A3 Q € ByzQuorum : Q C Acceptor
AT Q € WeakQuorum : Q C Acceptor

!

I

We now define the set BMessage of all possible messages.
laMessage = [type : {"1a"}, bal : Ballot]

Type la messages are the same as in module PConProof.

1bMessage =

A 1b message serves the same function as a 1b message in ordinary Paxos, where the mbal
and mwval components correspond to the mbal and mwval components in the 1b messages of
PConProof. The m2av component is set containing all records with val and bal components
equal to the corresponding of components of a 2av message that the acceptor has sent, except
containing for each val only the record corresponding to the 2av message with the highest bal
component.

[type :{"1b"}, bal : Ballot,

mbal : Ballot U{ — 1}, mval : Value U { None},
m2av : SUBSET [val : Value, bal : Ballot],

acc : ByzAcceptor]

1cMessage =

Type 1c messages are the same as in PConProof.

[type : {"1c"}, bal : Ballot, val : Value]

2avMessage =

When an acceptor receives a 1c¢ message, it relays that message’s contents to the other acceptors
in a 2av message. It does this only for the first 1¢ message it receives for that ballot; it can
receive a second 1c message only if the leader is malicious, in which case it ignores that second
1c message.

[type : {“2av"}, bal : Ballot, val : Value, acc : ByzAcceptor]
2bMessage = [type : {“2b"}, acc : ByzAcceptor, bal : Ballot, val : Value)

2b messages are the same as in ordinary Pazos.

BMessage =
laMessage U 1bMessage U 1cMessage U 2avMessage U 2bMessage

We will need the following simple fact about these sets of messages.

LEMMA BMessageLemma =
Vm € BMessage :
A (m € 1aMessage) = (m.type = “1a")
A (m € 1bMessage) = (m.type = “1b")
A (m € 1cMessage) = (m.type = “1c")
A (m € 2avMessage) = (m.type = “2av")
A (m € 2bMessage) = (m.type = “2b")
(1)1. AV m € 1laMessage : m.type = “1a"
AV m € 1bMessage : m.type = “1b"
AV m € 1cMessage : m.type = “1c”
AV m € 2avMessage : m.type = “2av"
AV m € 2bMessage : m.type = “2b"
BY DEF laMessage, 1bMessage, 1cMessage, 2avMessage, 2bMessage
(1)2. QED
BY (1)1 DEF BMessage

3k >k sk >k sk ok ok sk ok ok >k ok >k sk ok sk sk sk sk sk ok >k sk ok sk sk sk sk >k sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk >k sk sk sk ok sk sk >k sk >k sk sk ok sk sk sk >k sk >k sk ok sk sk sk sk kok sk sk ok ok

We now give the algorithm. The basic idea is that the set Acceptor of real acceptors emulate an
execution of the PCon algorithm with Acceptor as its set of acceptors. Of course, they must do
that without knowing which of the other processes in ByzAcceptor are real acceptors and which
are fake acceptors. In addition, they don’t know whether a leader is behaving according to the
PCon algorithm or if it is malicious.

The main idea of the algorithm is that, before performing an action of the PCon algorithm, a
good acceptor determines that this action is actually enabled in that algorithm. Since an action is
enabled by the receipt of one or more messages, the acceptor has to determine that the enabling
messages are legal PCon messages. Because algorithm PCon allows a la message to be sent
at any time, the only acceptor action whose enabling messages must be checked is the Phase2b
action. It is enabled iff the appropriate 1c message and 2a message are legal. The 1c message
is legal iff the leader has received the necessary 1b messages. The acceptor therefore maintains a
set of 1b messages that it knows have been sent, and checks that those 1b messages enable the
sending of the 1¢ message.

A 2a message is legal in the PCon algorithm iff (i) the corresponding 1c message is legal and (ii)
it is the only 2a message that the leader sends. In the BPCon algorithm, there are no explicit 2a
messages. They are implicitly sent by the acceptors when they send enough 2av messages.

We leave unspecified how an acceptor discovers what 1b messages have been sent. In the Castro-
Liskov algorithm, this is done by having acceptors relay messages sent by other acceptors. An
acceptor knows that a 1b message has been sent if it receives it directly or else receives a copy
from a weak Byzantine quorum of acceptors. A (non-malicious) leader must determine what 1b
messages acceptors know about so it chooses a value so that a quorum of acceptors will act on its
Phaselc message and cause that value to be chosen. However, this is necessary only for liveness,
so we ignore this for now.

In other implementations of our algorithm, the leader sends along with the 1c¢ message a proof
that the necessary 1b messages have been sent. The easiest way to do this is to have acceptors
digitally sign their 1b messages, so a copy of the message proves that it has been sent (by the
acceptor indicated in the message’s acc field). The necessary proofs can also be constructed using
only message authenticators (like the ones used in the Castro-Liskov algorithm); how this is done
is described elsewhere.

In the abstract algorithm presented here, which we call BPCon, we do not specify how acceptors
learn what 1b messages have been sent. We simply introduce a variable knowsSent such that
knowsSent[a] represents the set of 1b messages that (good) acceptor a knows have been sent, and
have an action that nondeterministically adds sent 1o messages to this set.

--algorithm BPCon{

S sk sk ok sk ok ok sk sk sk ok ok ok ok sk sk ok sk sk ok sk sk sk sk skl sk kol koo sk sk sk skl sk kol sk skl sk skokosk kil ok skokok sk skok skokok sk skok sk skokok kckokok

The variables:
mazBalla]l = Highest ballot in which acceptor a has participated.

mazVBal[a] = Highest ballot in which acceptor a has cast a vote (sent a 2b message); or — 1
if it hasn’t cast a vote.

mazVVal[a] = Value acceptor a has voted for in ballot mazVBal[a], or None if mazVBalla] =
— 1.

2avSent[a] = A set of records in [val : Value, bal : Ballot] describing the 2av messages that a
has sent. A record is added to this set, and any element with the same val field
(and lower bal field) removed when a sends a 2av message.

knownSent[al = The set of 1b messages that acceptor a knows have been sent.

bmsgs = The set of all messages that have been sent. See the discussion of the msgs variable
in module PConProof to understand our modeling of message passing.

3k >k sk >k ok ok sk sk ok ok >k ok >k sk ok sk sk sk sk >k ok >k sk ok sk sk >k sk >k sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk >k ok sk sk ok sk sk sk ok >k ok sk ok sk sk ok >k ok ok sk ok sk sk sk k sk ok sk ok
variables mazBal [a € Acceptor — —1],

mazVBal = [a € Acceptor — — 1],

mazVVal = [a € Acceptor — None],

2avSent = [a € Acceptor — {}],

knowsSent = [a € Acceptor — {}],

bmsgs = {}

define {
sentMsgs(type, bal) = {m € bmsgs : m.type = type A m.bal = bal}

A

KnowsSafeAt(ac, b, v) =

True for an acceptor ac, ballot b, and value v iff the set of 1b messages in knowsSent[ac]
implies that value v is safe at ballot b in the PazosConsensus algorithm being emulated
by the good acceptors. To understand the definition, see the definition of ShowsSafeAt in
module PConProof and recall (a) the meaning of the mCBal and mCVal fields of a 1b
message and (b) that the set of real acceptors in a ByzQuorum forms a quorum of the
PazxosConsensus algorithm.

LET S = {m € knowsSent[ac] : m.bal = b}
IN VdBQ € ByzQuorum :
Va € BQ:dm € S: ANm.acc=a
A m.mbal = — 1

Vdece0..(b—1):
A3JBQ € ByzQuorum :
Va€ BQ:dm € S: ANm.acc = a
A m.mbal < ¢
A (m.mbal = ¢) = (m.mval = v)
A WQ € WeakQuorum :
Vae WQ:
dm € S: Am.acc=a
Adr € m.m2av: Ar.bal > ¢
Ar.val = v

}

‘We now describe the processes’ actions as macros.

The following two macros send a message and a set of messages, respectively. These macros are
so simple that they’re hardly worth introducing, but they do make the processes a little easier
to read.

macro SendMessage(m){bmsgs := bmsgs U {m}}

macro SendSetOfMessages(S){bmsgs := bmsgs U S}

As in the Pazos consensus algorithm, a ballot self leader (good or malicious) can execute a
Phasela ation at any time.

macro Phasela(){SendMessage([type — “1a”, bal — self])}

The acceptor’s Phaselb ation is similar to that of the PazosConsensus algorithm.

macro Phaselb(b){

when (b > mazBal[self]) A (sentMsgs(“1a", b) # {});

mazBal[self] := b

SendMessage([type — “1b", bal — b, acc — self, m2av — 2avSent[self],
mbal — maxVBal[self], mval — maxVVal[self]])

}

A good ballot self leader can send a phase 1c¢ message for value v if it knows that the messages
in knowsSent|a| for a Quorum of (good) acceptors imply that they know that v is safe at ballot
self , and that they can convince any other acceptor that the appropriate 16 messages have
been sent to that it will also know that v is safe at ballot self .

A malicious ballot self leader can send any phase 1c¢ messages it wants (including one that
a good leader could send). We prove safety with a Phaselc ation that allows a leader to be
malicious. To prove liveness, we will have to assume a good leader that sends only correct 1c
messages.

As in the PazosConsensus algorithm, we allow a Phaselc action to send a set of Phaselc
messages. (This is not done in the Castro-Liskov algorithm, but seems natural in light of the
PazosConsensus algorithm.)
macro Phaselc(){
with (S € SUBSET [type : {"“1c"}, bal : {self }, val : Value]){
SendSetOfMessages(S)}

}

If acceptor self receives a ballot b phase 1¢ message with value v, it relays v in a phase 2av
message if

- it has not already sent a 2av message in this or a later ballot and

- the messages in knowsSent[self] show it that v is safe at b in the non-Byzantine Pazos
consensus algorithm being emulated.
macro Phase2av(b){
when A mazBal[self] < b
AYr € 2avSent[self] : r.bal < b
We could just as well have used r.bal # b in this condition.
with (m € {ms € sentMsgs(“1c", b) : KnowsSafeAt(self, b, ms.val)}){
SendMessage([type — “2av”, bal — b, val — m.val, acc — self]) ;
2avSent[self] := {r € 2avSent|[self] : r.val # m.val}
U {[val — m.val, bal — b]}
}s

mazBal[self] = b3
}

Acceptor self can send a phase 2b message with value v if it has received phase 2av messages
from a Byzantine quorum, which implies that a quorum of good acceptors assert that this is
the first 1¢ message sent by the leader and that the leader was allowed to send that message.
It sets mazBal[self], mazVBal[self], and mazVVal[self] as in the non-Byzantine algorithm.

macro Phase2b(b){
when mazBal[self] < by
with (v € {vv € Value :
3@ € ByzQuorum :
Vaa € Q:
Im € sentMsgs(“2av”, b) : A m.val = vv
A m.acc = aa}){

SendMessage([type — “2b", acc — self, bal — b, val — v]);

mazVVal[self] :== v ;

9
mazBal[self] := b
mazVBal[self] := b

At any time, an acceptor can learn that some set of 1b messages were sent (but only if they
atually were sent).
macro LearnsSent(b){
with (S € SUBSET sentMsgs(“1b", b)){
knowsSent|[self] := knowsSent[self] U S

}

A malicious acceptor self can send any acceptor message indicating that it is from itself. Since
a malicious acceptor could allow other malicious processes to forge its messages, this action
could represent the sending of the message by any malicious process.

macro FakingAcceptor(){
with (m € {mm € 1bMessage U 2avMessage U 2bMessage :
mm.acc = self }){
SendMessage(m)

}
}

We combine these individual actions into a complete algorithm in the usual way, with separate
process declarations for the acceptor, leader, and fake acceptor processes.
process (acceptor € Acceptor){
acc: while (TRUE){
with (b € Ballot){either Phaselb(b)or Phase2av(b)
or Phase2b(b)or LearnsSent(b)}

}
}

process (leader € Ballot){
Idr: while (TRUE){
either Phasela()or Phaselc()

}
}

process (facceptor € FakeAcceptor){
facc : while (TRUE){ FakingAcceptor()}

}
}

Below is the TLA+ translation, as produced by the translator. (Some blank lines have been
removed.)
Sk sk sk sk sk sk sk Sk sk sk sk sk sk sk sk sk sk sk sk sk sk Sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk stk sk sk sk sk sk sk sk sk sk sk sk sk skesk sk sk sk sk skosk sk sk sk sk sk sk skok sk sk sk skoskok sk
BEGIN TRANSLATION
VARIABLES mazBal, mazVBal, mazxVVal, 2avSent, knowsSent, bmsgs

define statement
sentMsgs(type, bal) = {m € bmsgs : m.type = type A m.bal = bal}

A

KnowsSafeAt(ac, b, v) =
LET S = {m € knowsSent|ac] : m.bal = b}
IN V3dBQ € ByzQuorum :
Va € BQ:dm e S: ANm.acc=a
Am.mbal = — 1
V3ceO..(b—1):
A3 BQ € ByzQuorum :
Va € BQ:dm € S: ANm.acc=a
A m.mbal < ¢
A (m.mbal = ¢) = (m.mval = v)
AT WQ € WeakQuorum :

Vae WQ:
dm € S: Am.acc = a
Adr € m.m2av: Ar.bal > ¢
Ar.val = v

vars = (mazBal, mazxVBal, maxVVal, 2avSent, knowsSent, bmsgs)
ProcSet = (Acceptor) U (Ballot) U (FakeAcceptor)

Init = Global variables
A mazBal = [a € Acceptor — — 1]
A mazVBal = [a € Acceptor — — 1]
A mazVVal = [a € Acceptor — None]
A2avSent = [a € Acceptor — {}]
A knowsSent = [a € Acceptor — {}]
A bmsgs = {}

acceptor(self) = 3b € Ballot
V' A (b > mazBal[self]) A (sentMsgs(“1a", b) # {})
A mazBal' = [mazBal EXCEPT ![self] = b]
A bmsgs’ = (bmsgs U {([type — “1b", bal — b, acc — self, m2av — 2avSent|self],
mbal — maxVBal[self], mval — maxVVal[self]])})
A UNCHANGED (mazVBal, mazVVal, 2avSent, knowsSent)
V' A A mazBal[self] < b
AV r € 2avSent[self] : r.bal < b
Adm € {ms € sentMsgs("1c", b) : KnowsSafeAt(self, b, ms.val)} :
A bmsgs’ = (bmsgs U {([type — “2av", bal — b, val — m.val, acc — self])})
A 2avSent’ = [2avSent EXCEPT ![self] = {r € 2avSent][self] : r.val # m.val}
U {[val — m.val, bal — b]}]
A maxBal" = [mazBal EXCEPT ![self] = b]
A UNCHANGED (mazVBal, mazxVVal, knowsSent)
V' A mazBal[self] < b
Adv e {w € Value:
3Q € ByzQuorum :
Vaa € Q :
Im € sentMsgs(“2av", b) : A m.val = v
A m.acc = aa} :
A bmsgs’ = (bmsgs U {([type — “2b", acc — self, bal — b, val — v])})
A mazVVal' = [maxVVal EXCEPT ![self] = v]
A mazBal" = [maxBal EXCEPT ![self] = b]
A maxVBal' = [mazVBal EXCEPT ![self] = b]
A UNCHANGED (2avSent, knowsSent)
V A3S € SUBSET sentMsgs(“1b", b) :
knowsSent’ = [knowsSent EXCEPT ![self]| = knowsSent[self] U S]
A UNCHANGED (maxBal, mazVBal, mazVVal, 2avSent, bmsgs)

leader(self) = AV A bmsgs' = (bmsgs U {([type — “1a", bal — self])})
V A3S € SUBSET [type : {“1c"}, bal : {self}, val : Value] :
bmsgs’ = (bmsgs U S)
A UNCHANGED (mazBal, maxVBal, maxVVal, 2avSent, knowsSent)

A

facceptor(self) = AIm € {mm € 1bMessage U 2avMessage U 2bMessage :
mm.acc = self } :
bmsgs’ = (bmsgs U {m})
A UNCHANGED (mazBal, mazVBal, mazVVal, 2avSent,
knowsSent)

Next = (I self € Acceptor : acceptor(self))
V (I self € Ballot : leader(self))
V (3 self € FakeAcceptor : facceptor(self))

Spec = Init A O[Next]yars

END TRANSLATION

| |
r 1

As in module PConProof, we now rewrite the next-state relation in a form more convenient for
writing proofs.

Phaselb(self, b) =
A (b > mazBal[self]) A (sentMsgs(“1a", b) # {})
A mazBal" = [mazBal EXCEPT ![self] = b]
A bmsgs’ = bmsgs U {[type — "1b", bal — b, acc > self,
m2av — 2avSent[self],
mbal — maxVBal[self], mval — mazVVal[self]]}
A UNCHANGED (mazVBal, maxVVal, 2avSent, knowsSent)

Phase2av(self, b) =
A mazBal[self] < b
AYr € 2auSent[self] : r.bal < b
ATm € {ms € sentMsgs(“1c", b) : KnowsSafeAt(self, b, ms.val)} :
A bmsgs’ = bmsgs U
{[type — "2av", bal — b, val — m.val, acc — self]}
A 2avSent’ = [2avSent EXCEPT
[self] = {r € 2avSent][self] : r.val # m.val}
U {[val — m.val, bal — b]}]
A mazBal' = [mazBal EXCEPT ![self] = b]
A UNCHANGED (maxzVBal, maxVVal, knowsSent)

A

Phase2b(self, b) =
A mazBal[self] < b
AJve{w € Value:

3Q € ByzQuorum :

VaeQ:
Im € sentMsgs(“2av”’, b) : A m.val = v
A m.acc = a}:
A bmsgs’ = (bmsgs U
{[type — “2b", acc — self, bal — b, val — v]})

A mazVVal' = [mazVVal EXCEPT ![self] = v]
A mazBal' = [mazBal EXCEPT ![self] = b]
A mazVBal' = [mazrVBal EXCEPT ![self] = b]
A UNCHANGED (2avSent, knowsSent)

LearnsSent(self, b) =
A3 S € SUBSET sentMsgs(“1b", b) :
knowsSent’ = [knowsSent EXCEPT ![self] = knowsSent[self] U S]
A UNCHANGED (mazBal, mazVBal, mazVVal, 2avSent, bmsgs)

Phasela(self) =
A bmsgs’ = (bmsgs U {[type — “1a", bal — self]})
A UNCHANGED (maxzBal, maxVBal, maxVVal, 2avSent, knowsSent)

Phaselc(self) =
A TS € SUBSET [type : {“1c"}, bal : {self}, val : Value] :
bmsgs’ = (bmsgs U S)
A UNCHANGED (mazBal, mazVBal, mazVVal, 2avSent, knowsSent)

FakingAcceptor(self) =
Adm € {mm € 1bMessage U 2avMessage U 2bMessage : mm.acc = self }
bmsgs’ = (bmsgs U {m})
A UNCHANGED (mazBal, maxVBal, maxVVal, 2avSent, knowsSent)

|

1
The following lemma describes how the next-state relation Next can be written in terms of the
actions defined above.

LEMMA NeztDef =
Next = V Jself € Acceptor :
3b € Ballot : V Phaselb(self, b)
V Phase2av(self, b)
V Phase2b(self, b)
V LearnsSent(self, b)
V 3self € Ballot : vV Phasela(self)
V Phaselc(self)
V 3self € FakeAcceptor : FakingAcceptor (self)
(1)1. V self : acceptor(self) = NextDef 211! (self)
BY DEF acceptor, Phaselb, Phase2av, Phase2b, LearnsSent
(1)2. ¥V self : leader(self) = NextDef 212! (self)
BY DEF leader, Phasela, Phaselc
(1)3. V self : facceptor(self) = NextDef 12131 (self)
BY DEF facceptor, FakingAcceptor

10

(1)4. QED
BY (1)1, (1)2, (1)3, Zenon
DEF Next, acceptor, leader, facceptor

THE REFINEMENT MAPPING

We define a quorum to be the set of acceptors in a Byzantine quorum. The quorum assumption
QA of module PConProof, which we here call QuorumTheorem, follows easily from the definition

and assumption BQA.
A

Quorum = {S N Acceptor : S € ByzQuorum}

A
THEOREM QuorumTheorem =

AV QL, Q2 € Quorum : Q1N Q2 # {}
AY Q € Quorum : Q C Acceptor
BY BQA DEF Quorum

We now define refinement mapping under which our algorithm implements the algorithm of module
PConProof. First, we define the set msgs that implements the variable of the same name in
PConProof. There are two non-obvious parts of the definition.

1. The 1c¢ messages in msgs should just be the ones that are legal-that is, messages whose value
is safe at the indicated ballot. The obvious way to define legality is in terms of 1b messages that
have been sent. However, this has the effect that sending a 1b message can add both that 1b
message and one or more 1c messages to msgs. Proving implementation under this refinement
mapping would require adding a stuttering variable. Instead, we define the 1¢ message to be legal
if the set of 1b messages that some acceptor knows were sent confirms its legality. Thus, those 1c¢
messages are added to msgs by the LearnsSent ation, which has no other effect on the refinement
mapping.

2. A 2a message is added to msgs when a quorum of acceptors have reacted to it by sending a
2av message.

msgsOf Type(t) = {m € bmsgs : m.type = t}
acceptorMsgsOf Type(t) = {m € msgsOfType(t) : m.acc € Acceptor}

1bRestrict(m) = [type +— “1b", acc — m.acc, bal — m.bal,
mbal — m.mbal, mval — m.moal]

1bmsgs = {1bRestrict(m) : m € acceptorMsgsOf Type("1b")}

lemsgs = {m € msgsOfType("1c") :
Ja € Acceptor : KnowsSafeAt(a, m.bal, m.val)}

2amsgs = {m € [type : {"2a"}, bal : Ballot, val : Value] :
3Q € Quorum :
Va€e Q:
Im2av € acceptorMsgsOfType(“2av”) :
A m2av.acc = a
A m2av.bal = m.bal
A m2av.val = m.val}

11

msgs = msgsOf Type(“1a") U 1bmsgs U 1emsgs U 2amsgs
U acceptorMsgsOf Type(“2b")

We now define PmazBal, the state function with which we instantiate the variable maxBal of
PConProof. The reason we don’t just instantiate it with the variable mazBal is that mazBal[a]
can change when acceptor a performs a Phase2av ation, which does not correspond to any acceptor
action of the PCon algorithm. We want PmazBal[a] to change only when a performs a Phaselb
or Phase2b ation-that is, when it sends a 1b or 2b message. Thus, we define PmazBal[a] to be
the largest bal field of all 16 and 2b messages sent by a .

To define PmazBal, we need to define an operator MazBallot so that MazBallot(S) is the largest

element of S if S is non-empty a finite set consisting of ballot numbers and possibly the value —1.
N

MazBallot(S) =
IF S ={} THEN —1
ELSE CHOOSE mbe€ S:Vz e S:mb >z

To prove that the CHOOSE in this definition actually does choose a maximum of S when S is
nonempty, we need the following fact.

LEMMA FiniteSetHasMaz =
VS € SUBSET Int :
IsFiniteSet(S) AN (S # {}) = Imazr € S:Vax € S :max >z
(1).DEFINE P(S) = SCIntAS #{} =
dmazr € S:Vz €85 :mar >z
W1 P({})

OBVIOUS

(1)2. AssuME NEW T, NEW z, P(T)
PROVE P(TU{z})

BY (1)2
(1)3. V.S : IsFiniteSet(S) = P(S)

(2).HIDE DEF P

(2).QeD BY (1)1, (1)2, FS_Induction, IsaM (“blast”)
(1).QeD BY (1)3, Zenon

Our proofs use this property of MaxBallot.

THEOREM MazxBallotProp =
ASSUME NEW S € SUBSET (Ballot U { —1}),
IsFiniteSet(S)
PROVE IF S = {} THEN MazBallot(S) = —1
ELSE A MazBallot(S) € S
AYz € §: MaxBallot(S) > x
(1)1.casE S = {}
BY (1)1 DEF MazBallot
(1)2.casE S # {}
(2).PICK mb € S:Vz € S:mb>x
BY (1)2, FiniteSetHasMax DEF Ballot
(2).QeD BY (1)2 DEF MazBallot
(1).QED BY (1)1, (1)2

12

We now prove a couple of lemmas about MazBallot.

LEMMA MazBallotLemmal =
ASSUME NEW S € SUBSET (Ballot U{ —1}),
IsFiniteSet(S),
NEW y € S,Ve e S:y>=x
PROVE y = MazBallot(S)
(1)1. A MazBallot(S) € S
A MazBallot(S) > y
BY MaxzBallotProp
(2N y € Ballot U{ -1}
Ay > MazBallot(S)
BY MazBallotProp
(1)3. MaxzBallot(S) € Int Ny € Int
BY (1)1, (1)2, Isa DEF Ballot
(1).QeDp BY (1)1, (1)2, (1)3

LEMMA MazBallotLemma2 =
ASSUME NEW S € SUBSET (Ballot U { — 1}),
NEW T € SUBSET (Ballot U { —1}),
IsFiniteSet(S), IsFiniteSet(T)
PROVE MaxBallot(S U T) = 1F MazBallot(S) > MazBallot(T)
THEN MazBallot(S) ELSE MaxzBallot(T)
(1)1. A MazBallot(S) € Ballot U {— 1}
A MazBallot(T) € Ballot U { — 1}
BY MazBallotProp
(LH).SUTC Int
BY DEF Ballot
(1)2.cASE MazBallot(S) > MaxBallot(T)
(2).SUFFICES ASSUME T # {}
PROVE MazBallot(S U T) = MaxBallot(S)
BY (1)2, Zenon
(2)1. A MazBallot(T) € T
AV z € T : MazBallot(T) > =
BY MazBallotProp
(2)2.casE S = {}
(3)1. MaxBallot(S) = —
BY (2)2 DEF MaxBallot
(3)2. MazBallot(T) = — 1
BY (3)1, (1)2, (1)1 DEF Ballot
(3).QED BY (2)2, (3)1, (3)2, (2)1, MazBallotLemmal, FS_Union
(2)3.cAsE S # {}
(3)1. A MazBallot(S) € S
AYz € §: MaxBallot(S) >
BY (2)3, MazBallotProp
(3)2. A MazBallot(S) € SUT

13

AV z € SUT : MaxBallot(S) > «
BY (3)1, (2)1, (1)2
(3).QED BY (3)2, MazBallotLemmal, FS_Union, Zenon
(2).QED BY (2)2, (2)3
(1)3.CASE —(MazBallot(S) > MazBallot(T))
(2).SUFFICES ASSUME S # {}
PROVE MaxBallot(S U T) = MaxzBallot(T)
BY (1)3
(2)1. A MazBallot(S) € S
AV z € S : MaxBallot(S) > «
BY MaxBallotProp
(2)2. A MazBallot(S) < MazxBallot(T)
A MazBallot(T) # — 1
BY (1)3, (1)1 DEF Ballot
(2)3. A MazBallot(T) € T
AV z € T : MazBallot(T) > =
BY (2)2, MazBallotProp
(2)4. A MazBallot(T) € SUT
AVz € SUT : MazxBallot(T) > x
BY (2)3, (2)2, (2)1
(2).QED BY (2)4, MaxBallotLemmal, FS_Union, Zenon
(1).Qep BY (1)2, (1)3

We finally come to our definition of PmazBal, the state function substituted for variable mazBal
of module PConProof by our refinement mapping. We also prove a couple of lemmas about
PmazxBal.

A

160r2bMsgs = {m € bmsgs : m.type € {"1b", “2b"}}
PmazBal = [a € Acceptor —

MazBallot({m.bal : m € {ma € 1b0r2bMsgs :
ma.acc = a}})]

LEMMA PmazBalLemmal =
ASSUME NEW m,
bmsgs’ = bmsgs U {m},
m.type # “1b" A m.type # “2b"
PROVE PmazxBal' = PmazBal
BY Zenon DEF PmaxBal, 160r2bMsgs

LEMMA PmazBalLemma2 =
ASSUME NEW m,
bmsgs’ = bmsgs U {m},
NEW a € Acceptor,
m.acc # a
PROVE PmaxBal'[a] = PmazBal[a]

14

BY DEF PmazBal, 160r2bMsgs

Finally, we define the refinement mapping. As before, for any operator op defined in module
PConProof, the following INSTANCE statement defines P! op to be the operator obtained from op
by the indicated substitutions, along with the implicit substitutions

Acceptor < Acceptor,
Quorum < Quorum
Value < Value
mazVBal < mazVBal
mazVVal < maxVVal
msgs < msgs

P £ INSTANCE PConProof WITH mazBal < PmazBal
|

1
We now define the inductive invariant Inv used in our proof. It is defined to be the conjunction of
a number of separate invariants that we define first, starting with the ever-present type-correctness
invariant.

TypeOK = AmazBal € [Acceptor — Ballot U { — 1}]
A2avSent € [Acceptor — SUBSET [val : Value, bal : Ballot])
A mazVBal € [Acceptor — Ballot U { — 1}]
A mazVVal € [Acceptor — Value U { None}]
A knowsSent € [Acceptor — SUBSET 1bMessage]
A bmsgs C BMessage

To use the definition of PmaxzBal, we need to know that the set of 1b and 2b messages in bmsgs
is finite. This is asserted by the following invariant. Note that the set bmsgs is not necessarily

finite because we allow a Phaselc action to send an infinite number of 1¢ messages.
N

bmsgsFinite = IsFiniteSet(160r2bMsgs)

The following lemma is used to prove the invariance of bmsgsFinite.

LEMMA FiniteMsgsLemma =
ASSUME NEW m, bmsgsFinite, bmsgs’ = bmsgs U {m}
PROVE bmsgsFinite’

BY FS_AddElement DEF bmsgsFinite, 1bOr2bMsgs

Invariant 1bInv1 asserts that if (good) acceptor a has mCBalla] # — 1, then there is a 1¢ message
for ballot mCBal[a] and value mCVal[a| in the emulated execution of algorithm PCon.
1bInvl = V'm € bmsgs
A m.type = “1b"
A m.acc € Acceptor
=Vr e mm2av:
[type — “1c", bal — r.bal, val — r.val] € msygs

Invariant 1b/nv2 asserts that an acceptor sends at most one 1b message for any ballot.
1bInv2 = Yml, m2 € bmsgs

A ml.type = "1b"

A m2.type = "1b"

A ml.acc € Acceptor

15

A ml.acc = m2.acc
A ml.bal = m2.bal
= ml=m2

Invariant 2avinvl asserts that an acceptor sends at most one 2av message in any ballot.

2avinvl = Vml, m2 € bmsgs :
A ml.type = "2av”
A m2.type = "2av”
A ml.acc € Acceptor
A ml.acc = m2.acc
A ml.bal = m2.bal
= ml=m2

Invariant 2avinv2 follows easily from the meaning (and setting) of 2avSent.

2avInv2 = Vm € bmsgs :
A m.type = "2av"
A m.acc € Acceptor
= Jr € 2avSent[m.acc] : A r.val = m.val
A r.bal > m.bal

Invariant 2avInv3 asserts that an acceptor sends a 2av message only if the required 1c¢ message
exists in the emulated execution of algorithm PConf.
2avInv3 = Ym € bmsgs :

A m.type = “2av"

A m.acc € Acceptor

= [type — “1c", bal — m.bal, val — m.val] € msgs

Invariant mazBallnv is a simple consequence of the fact that an acceptor a sets mazBal[a] to b
whenever it sends a 1b, 2av, or 2b message in ballot b.
mazBallny = VYm € bmsgs :

A m.type € {“1b", "2av", “2b"}

A m.acc € Acceptor

= m.bal < mazBal[m.acc]

Invariant acclnv asserts some simple relations between the variables local to an acceptor, as well
as the fact that acceptor a sets mazCBal[a] to b and mazCVal[a] to v only if there is a ballot-b

1c message for value c in the simulated execution of the PCon algorithm.
acclnv = Y a € Acceptor
Vr € 2avSent[a) :
A r.bal < maxBal|a]

A [type — “1c", bal — r.bal, val — r.val] € msgs

Invariant knowsSentInv simply asserts that for any acceptor a , knowsSent[a] is a set of 1b
messages that have actually been sent.

knowsSentInv = Y a € Acceptor : knowsSent[a] C msgsOf Type(“1b")

A
Inv =

16

TypeOK N bmsgsFinite A 1bInvl A 1bInv2 A maxBallnv A 2avinvl A 2avinv2

A 2avinv3 A accInv N knowsSentInv

| |
r 1

We now prove some simple lemmas that are useful for reasoning about PmazBal.

LEMMA PMazBalLemma3 =
ASSUME TypeOK
bmsgsFinite,
NEW a € Acceptor
PROVE LET S = {m.bal : m € {ma € bmsgs :
A ma.type € {"1b", “2b"}
A ma.acc = a}}
IN A IsFiniteSet(S)
A S € SUBSET Ballot
(1) DEFINE T = {ma € bmsgs : A ma.type € {"1b", “2b"}
A ma.acc = a}
S = {m.bal:m e T}
()1. IsFiniteSet(S)
(2)1. IsFiniteSet(T)
BY FS_Subset DEF bmsgsFinite, 1b60r2bMsgs
(2).QED
BY (2)1, FS_Image, Isa
(1).Qep BY (1)1, BMessageLemma DEF 1bMessage, 2bMessage, TypeOK

LEMMA PmazBalLemma4 =
ASSUME TypeOK
mazBallnv,
bmsgsFinite,
NEW a € Acceptor
PROVE PmazBal[a] < mazBalla)
(1) DEFINE SM = {ma € bmsgs : A ma.type € {"1b", "“2b"}
A ma.acc = a}
S = {ma.bal : ma € SM}
(1)1. PmaxBal[a] = MaxzBallot(S)
BY DEF PmazBal, 160r2bMsgs
(1)2. A IsFiniteSet(S)
A S € SUBSET Ballot
BY PMaxBalLemma3
(1)3.¥b € S: b < mazBal[a]
BY DEF mazBallnv
(1)4.caseE S = {}

(2)1. PmaxBalla] = — 1
BY (12, (1)1, (1)4, MazBallotProp
(2).QED

BY (2)1 DEF Ballot, TypeOK
(1)5.casE S # {}

17

(2)1. MaxzBallot(S) € S
BY (1)2, (1)5, MazxBallotProp, Zenon
(2)2. QED
BY (1)1, (1)3, (2)1
(1)6. QED
BY (1)4, (1)5

LEMMA PmazBalLemmab =
ASSUME TypeOK, bmsgsFinite, NEW a € Acceptor
PROVE PmazBal[a] € Ballot U { — 1}

BY PMaxBalLemma3, MazBallotProp DEF PmazBal, 1bOr2bMsgs

Now comes a bunch of useful lemmas.

We first prove that P! NextDef is a valid theorem and give it the name PNextDef. This requires
proving that the assumptions of module PConProof are satisfied by the refinement mapping. Note
that P! NextDef! : is an abbreviation for the statement of theorem P! NextDef — that is, for the
statement of theorem NeztDef of module PConProof under the substitutions of the refinement
mapping.
LEMMA PNeztDef = PlNextDef! :
(1)1. P1QA

BY QuorumTheorem
(1)2. P!BallotAssump

BY BallotAssump DEF Ballot, P! Ballot, ByzAcceptor
(1)3. QED

BY P!NextDef, (1)1, (1)2, NoSetContainsEverything

For convenience, we define operators corresponding to subexpressions that appear in the definition
of KnowsSafeAt.

KSet(a, b) = {m € knowsSent|a] : m.bal = b}
KS1(S) £ 3BQ € ByzQuorum :Va € BQ :
dm € S :m.acc=aAm.mbal = —1
KS2(v, b,8) = 3¢c¢e€0..(b—1):
A3 BQ € ByzQuorum :Ya € BQ :
dm € S: Am.acc = a
A m.mbal < ¢
A (m.mbal = ¢) = (m.mval = v)
ANIWQ € WeakQuorum : ¥ a € WQ :
dm e S: Am.acc=a
Adr € m.m2av: Ar.bal > ¢
Arwal =v

The following lemma asserts the obvious relation between KnowsSafeAt and the top-level defini-
tions KS1, KS2, and KSet. The second conjunct is, of course, the primed version of the first.

LEMMA KnowsSafeAtDef 2

18

VYa, b, v:
A KnowsSafeAt(a, b, v) = KS1(KSet(a, b)) V KS2(v, b, KSet(a, b))
A KnowsSafeAt(a, b, v)' = KS1(KSet(a, b))V KS2(v, b, KSet(a, b))
BY DEF KnowsSafeAt, KSet, KS1, KS2

LEMMA MsgsTypeLemma =

V'm € msgs: A (m.type = “1a") = (m € msgsOfType(“1a"))
A (m.type = "1b") = (m € 1bmsgs)
A (m.type = “1c") = (m € lemsgs)
A (m.type = *23") = (m € 2amsgs)
A (m.type = "2b") = (m € acceptorMsgsOf Type(“2b"))

BY DEF msgsOfType, 1bmsgs, 1bRestrict, 1cmsgs, 2amsgs, acceptorMsgsOfType, msgs

The following lemma is the primed version of MsgsTypeLemma. That is, its statement is just the
statement of MsgsTypeLemma primed. It follows from MsgsTypeLemma by the meta-theorem
that if we can prove a state-predicate F' as a (top-level) theorem, then we can deduce F’. This is
an instance of propositional temporal-logic reasoning. Alternatively the lemma could be proved
using the same reasoning used for the unprimed version of the theorem.

LEMMA MsgsTypeLemmaPrime =]

VYm € msgs’ : A (m.type = “13") = (m € msgsOfType(“1a")’)
A (m.type = “lb”) = (m € 1bmsgs’)
A (m.type = “1c") = (m € 1cmsgs’)
A (m.type = “23') = (m € 2amsgs’)
A (m.type = “2b") = (m € acceptorMsgsOf Type(“2b")")

(1)1. MsgsTypeLemma’

BY MsgsTypeLemma, PTL
(1).QED

BY (1)1

The following lemma describes how msgs is changed by the actions of the algorithm.

LEMMA MsgsLemma 2
TypeOK =
A Vself € Acceptor, b € Ballot :
Phaselb(self, b) =
msgs’ = msgs U
{[type — “1b", acc — self, bal — b,
mbal — maxVBal[self], mval — maxVVal[self]]}
A Vself € Acceptor, b € Ballot :
Phase2av(self, b) =
V msgs’ = msgs
VvV 3v € Value :
A [type — “1c", bal — b, val — v] € msgs
A msgs’ = msgs U {[type — “2a", bal — b, val — v]}
N Vself € Acceptor, b € Ballot :
Phase2b(self, b) =
Jv € Value :

19

A3 Q € ByzQuorum :
VaeQ:
Im € sentMsgs(“2av", b) : Am.val = v
A m.acc = a

A msgs’ = msgs U
{[type — “2b", acc — self, bal — b, val — v]}
A bmsgs’ = bmsgs U
{[type — “2b", acc — self, bal — b, val — v]}
A mazVVal' = [maxVVal EXCEPT ![self] = v]
A Vself € Acceptor, b € Ballot :
LearnsSent(self, b) =
35 € suBSET {m € msgsOfType(“1c") : m.bal = b} :
msgs’ = msgs U S
A Vself € Ballot :
Phasela(self) =
msgs’ = msgs U {[type — “1a", bal — self]}
A Vself € Ballot :
Phaselc(self) =
35 € SUBSET [type : {“1c"}, bal : {self}, val : Value] :
AVm e S:
Ja € Acceptor : KnowsSafeAt(a, m.bal, m.val)
A msgs’ = msgs U S
A Vself € FakeAcceptor : FakingAcceptor(self) = msgs’ = msgs
(1) HAVE TypeOK

(1)1. ASSUME NEW self € Acceptor, NEW b € Ballot, Phaselb(self, b)
PROVE msgs’ = msgs U
{[type +— “1b", acc — self, bal — b,
mbal — mazVBal[self], mval — maxzVVal[self]]}
(2) DEFINE m = [type — “1b”, acc — self, bal — b,
m2av — 2avSent]self],
mbal — maxVBal[self], mval — mazVVal[self])
(2)1. bmsgs’ = bmsgs U {m} A knowsSent’ = knowsSent
BY (1)1 DEF Phaselb
(2)a. A msgsOfType(“1a") = msgsOf Type("1a")
A 1bmsgs’ = 1bmsgs U {1bRestrict(m)}
A lemsgs’ = 1emsgs
A 2amsgs’ = 2amsgs
A acceptorMsgsOf Type(“2b") = acceptorMsgsOf Type(“2b")
BY (2)1 DEF msgsOfType, 1bmsgs, acceptorMsgsOfType, KnowsSafeAt, 1cmsgs, 2amsgs
(2).QED
BY (2)a DEF msgs, 1bRestrict

(1)2. ASSUME NEW self € Acceptor, NEW b € Ballot, Phase2av(self, b)
PROVE V msgs’ = msgs

20

VvV 3v € Value :
A [type — “1c", bal — b, val — v] € msgs
A msgs’ = msgs U {[type — “2a", bal — b, val — v]}
(2)1. PICK m € sentMsgs("1c", b) :
A KnowsSafeAt(self, b, m.val)
A bmsgs’ = bmsgs U
{[type — "2av", bal — b, val — m.val, acc — self]}
BY (1)2 DEF Phase2av
(2)2. m = [type — “1c", bal — b, val — m.val]
BY BMessageLemma DEF sentMsgs, TypeOK , 1cMessage
(2) DEFINE ma = [type — “2a”, bal — b, val — m.val
mb [type — “2av”, bal — b, val — m.val, acc — self]
(2)3. SUFFICES ASSUME msgs’ # msgs
PROVE A m € msgs
A msgs’ = msgs U {ma}
BY (2)2, BMessageLemma DEF sentMsgs, TypeOK, 1cMessage
(2)4. m € msgs
BY (2)1, (2)2 DEF sentMsgs, 1emsgs, msgsOfType, msgs
(2)5. msgs’ = msgs U {ma}
(3)1. knowsSent’ = knowsSent
BY (1)2 DEF Phase2av
(3)2. A msgsOf Type(“1a")" = msgsOf Type("1a")
A 1bmsgs’ = 1bmsgs
A lemsgs’ = 1emsgs
A acceptorMsgsOfType("2b") = acceptorMsqgsOf Type(“2b™)
BY (2)1, (3)1 DEF msgsOfType, 1bmsgs, 1bRestrict, acceptorMsgsOfType, KnowsSafeAt, 1cmsgs
(3).QED
BY (3)1, (3)2, (2)1, (2)3 DEF msgs, 2amsgs, msgsOf Type, acceptorMsgsOfType
(2)6. QED
BY (2)4, (2)5

>

(1)3. ASSUME NEW self € Acceptor, NEW b € Ballot, Phase2b(self, b)
PROVE Jv € Value :
A3 Q € ByzQuorum :
VaeQ:
Im € sentMsgs(2av", b) : A m.val = v
A m.acc = a
A msgs’ = msgs U
{[type — "2b", acc — self, bal — b, val — v]}
A bmsgs’ = bmsgs U
{[type — “2b", acc — self, bal — b, val — v]}
A mazVVal' = [maxVVal EXCEPT ![self] = v]
(2)1. PICK v € Value :
A3 Q € ByzQuorum :
VaceQ@Q:

21

Im € sentMsgs("2av”’, b) : Am.val = v
A m.acc = a
A bmsgs’ = bmsgs U
{[type — “2b", acc — self, bal — b, val — v]}
A mazVVal' = [mazVVal EXCEPT ![self] = v]
A knowsSent’ = knowsSent
BY (1)3, Zenon DEF Phase2b
(2) DEFINE bm = [type — “2b", acc — self, bal — b, val — v]
(2)2. A msgsOf Type(“1a") = msgsOf Type(“1a")
A 1bmsgs’ = 1bmsgs
A lemsgs’ = 1emsgs
A 2amsgs’ = 2amsgs
A acceptorMsgsOf Type(“2b”) = acceptorMsgsOf Type(“2b") U {bm}
BY (2)1 DEF msgsOfType, 1bmsgs, 1bRestrict, 1emsgs, KnowsSafeAt, 2amsgs, acceptorMsgsOfType
(2)4. msgs’ = msgs U {bm}
BY (2)2 DEF msgs
(2).QED
BY (2)1, (2)4, Zenon

(1)4. ASSUME NEW self € Acceptor, NEW b € Ballot, LearnsSent(self, b)
PROVE 3.5 € SUBSET {m € msgsOfType(“1c") : m.bal = b} : msgs’ = msgs U S
(2)1. A msgsOfType(“1a")" = msgsOf Type(“1a")
A 1bmsgs’ = 1bmsgs
A 2amsgs’ = 2amsgs
A acceptorMsgsOf Type(“2b") = acceptorMsgsOf Type(“2b")
BY (1)4 DEF LearnsSent, msgsOfType, 1bmsgs, 1bRestrict, 2amsgs, acceptorMsgsOfType
(2). A lemsgs C 1emsgs’
A lemsgs’ \ lemsgs € SUBSET {m € msgsOfType(“1c”) : m.bal = b}
(3)1. bmsgs’ = bmsgs
BY (1)4 DEF LearnsSent
(3)2. PICK S € SUBSET sentMsgs(“1b", b) :
knowsSent’ = [knowsSent EXCEPT ![self] = knowsSent[self] U 5]
BY (1)4, Zenon DEF LearnsSent
(3)3. ASSUME NEW m € lemsgs
PROVE m € lcmsgs’
BY (3)1, (3)2 DEF TypeOK, KnowsSafeAt, 1ecmsgs, msgsOfType
(3)4. ASSUME NEW m € lemsgs’, m ¢ 1emsgs
PROVE m € msgsOfType(“1c") A m.bal = b
DH1. m € msgsOfType("1c")
BY (3)1 DEF lcmsgs, msgsOfType
(4)2. PICK a € Acceptor : KnowsSafeAt(a, m.bal, m.val)
BY DEF lcmsgs
(4)3. ~KnowsSafeAt(a, m.bal, m.val)
BY (3)4, (4)1 DEF lcmsgs
(4)4. V aa € Acceptor, bb € Ballot :

22

Vmm € KSet(aa, bb) :
mm ¢ KSet(aa, bb) = bb=1>
BY (1)4, (3)2 DEF TypeOK, LearnsSent, TypeOK , sentMsgs, KSet
(4)5. m.bal € Ballot
BY (4)1, BMessageLemma DEF 1lcMessage, msgsOfType, TypeOK
(4)6.cASE KS1(KSet(a, m.bal)") N ~KS1(KSet(a, m.bal))
BY (4)6, (4)1, (4)4, (4)5 DEF KS1
(4)7.cASE KS2(m.val, m.bal, KSet(a, m.bal)") A = KS2(m.val, m.bal, KSet(a, m.bal))
BY (4)7, (4)1, (4)4, (4)5 DEF KS2
(4) QED
BY (4)6, (4)7, (4)2, (4)3, KnowsSafeAtDef
(3)5. QED
BY (3)3, (3)4
(2).WITNESS lemsgs’'\ 1emsgs € SUBSET {m € msgsOfType(“1c") : m.bal = b}
(2).QED
BY (2)1 DEF msgs

(1)5. ASSUME NEW self € Ballot, Phasela(self)
PROVE msgs’ = msgs U {[type — “1a", bal — self]}
BY (1)5 DEF Phasela, msgs, msgsOfType, 1bmsgs, 1bRestrict, 1ecmsgs, KnowsSafeAt,
2amsgs, acceptorMsgsOf Type

(1)6. ASSUME NEW self € Ballot, Phaselc(self)
PROVE 3.5 € SUBSET [type : {“1c"}, bal : {self}, val : Value] :
AVm e S:
Ja € Acceptor : KnowsSafeAt(a, m.bal, m.val)
A msgs’ = msgs U S
(2)1. PICK S € SUBSET [type : {“1c" }, bal : {self }, val : Value] :
A bmsgs’ = bmsgs U S
A knowsSent’ = knowsSent
BY (1)6 DEF Phaselc
(2) DEFINE S8 = {m € S:3a € Acceptor : KnowsSafeAt(a, m.bal, m.val)}
(2) SUFFICES msgs’ = msgs U SS
BY (2)1, Zenon
(2)2. A msgsOfType(“1a")" = msgsOf Type(“1a")
A 1bmsgs’ = 1bmsgs
A lemsgs’ = 1emsgs U SS
A 2amsgs’ = 2amsgs
A acceptorMsgsOf Type(“2b") = acceptorMsgsOf Type(*“2b")
BY (2)1 DEF msgsOfType, 1bmsgs, 1bRestrict, 1emsgs, KnowsSafeAt, 2amsgs, acceptorMsgsOfType
(2)3. QED
BY (2)2 DEF msgs

(1)7. ASSUME NEW self € FakeAcceptor, FakingAcceptor(self)
PROVE msgs’ = msgs
BY (1)7, BQA DEF FakingAcceptor, msgs, 1bMessage, 2avMessage, 2bMessage,

23

msgsOf Type, 1ecmsgs, KnowsSafeAt, 1bmsgs, 2amsgs, acceptorMsgsOfType, msgsOfType

(1)9. QED
BY (1)1, (1)2, (1)3, (1)4, (1)5, (1)6, (1)7, Zenon

| |
r 1

We now come to the proof of invariance of our inductive invariant Inv.

THEOREM Invariance = Spec = OInv
(1)1. Init = Inv
BY FS_EmptySet DEF Init, Inv, TypeOK , bmsgsFinite, 1bOr2bMsgs, 1bInvl, 1bInv2,
mazBallnv, 2avinvl, 2avinv2, 2avinv3, acclnv, knowsSentInv

(1)2. Inv A [Next)yars = Inv’
(2) SUFFICES ASSUME Inv, [Next|yqrs
PROVE Inv’
OBVIOUS
(2)1. ASSUME NEW self € Acceptor,
NEW b € Ballot,
V Phaselb(self, b)
V Phase2av(self, b)
V Phase2b(self, b)
V LearnsSent(self, b)
PROVE [Inv’
(3)1.CASE Phaselb(self, b)
(4) DEFINE mb = [type +— “1b", bal — b, acc — self,
m2av — 2avSent|[self],
mbal — mazVBal[self], mval — mazVVal[self]]
me = [type +— “1b", acc — self, bal — b,
mbal — mazVBal[self], mval — mazVVal[self]]
(D)1, msgs’ = msgs U {mc}
BY (3)1, MsgsLemma DEF Inv
(4)2. TypeOK'’
BY (3)1 DEF Inv, TypeOK, BMessage, 1bMessage, ByzAcceptor, Phaselb
(4)3. bmsgsFinite’
BY (3)1, FiniteMsgsLemma, Zenon DEF Inv, bmsgsFinite, Phaselb
(4)4. 1bInvl’
BY (3)1, (4)1, Isa DEF Phaselb, 1bInvl, Inv, acclnv
(4)5. 1bInv2’
BY (3)1 DEF Phaselb, 1bInv2, Inv, mazBallnv, TypeOK , 1bMessage, Ballot
(4)6. mazBallnv'
BY (3)1, BMessageLemma DEF Phaselb, maxBallnv, Ballot, Inv, TypeOK ,
1bMessage, 2avMessage, 2bMessage
4)7. 2avinvl’
BY (3)1 DEF Phaselb, Inv, 2avinvl
(4)8. 2avInv2’
BY (3)1 DEF Phaselb, Inv, 2avInv2

24

(4)9. 2avInv3’
BY (3)1, (4)1 DEF Phaselb, Inv, 2avInv3
(4)10. accInv’
(5) SUFFICES ASSUME NEW a € Acceptor,
NEW 7 € 2avSent]a]
PROVE A r.bal < mazBal'[a)
A [type — “1c", bal — r.bal, val — r.val]
€ msgs’
BY (3)1, Zenon DEF accInv, Phaselb
(5) [type — “1c", bal — r.bal, val — r.val] € msgs’
BY (3)1, MsgsLemma DEF Inv, acclnv
(5) QED
BY (3)1 DEF Phaselb, Inv, Ballot, TypeOK, acclnv
(D11, knowsSentInv’
BY (3)1 DEF Phaselb, Inv, knowsSentInv, msgsOfType
(4)12. QED
BY (4)2, (4)3, (4)4, (4)5, (4)6, (4)7, (4)8, (4)9, (4)10, (4)11 DEF Inv
(3)2.CASE Phase2av(self, b)
(4)1. PICK mc € sentMsgs(“1c", b) :
A KnowsSafeAt(self, b, mc.val)
A bmsgs’ = bmsgs U
{[type — "2av", bal b,
val — mc.val, acc — self]}
A 2avSent’ = [2avSent EXCEPT
self] = {r € 2avSent]self] : r.val # mc.val}
U {[val — mec.val, bal — b]}]
BY (3)2, Zenon DEF Phase2av
(4)2. me = [type — “1c", bal — mc.bal, val — mc.val]
BY (4)1, BMessageLemma DEF sentMsgs, Inv, TypeOK, 1cMessage
(4) DEFINE mb = [type — “2av", bal +— b,
val — mc.val, acc — self]
mme(v) = [type — “1c”, bal — b, val — v
ma(v) = [type — “2a", bal — b, val — v
(4)3.V msgs’ = msgs
V3w € Value :
A mme(v) € msgs
A msgs’ = msgs U {ma(v)}
BY (3)2, MsgsLemma, Zenon DEF Inv
(4)4. msgs C msgs’
BY (4)3, Zenon
(4)5. TypeOK'’
BY (3)2, (4)1, BMessageLemma
DEF sentMsgs, Inv, TypeOK, 1cMessage, Phase2av, 2avMessage, ByzAcceptor, BMessage
(4)6. bmsgsFinite’
BY (4)1, FiniteMsgsLemma, Zenon DEF Inv, bmsgsFinite

25

(4)y7. 1bInvl’
BY (3)2, (4)1, (4)3, Isa DEF Phase2av, 1bInvl, Inv
(4)8. 1bInv2’
BY (4)1 DEF Inv, 1bInv2
(4)9. mazBallnv’
BY (3)2, (4)1, BMessageLemma
DEF Phase2av, mazBallnv, Ballot, Inv, TypeOK , 1bMessage, 2avMessage, 2bMessage
(4)10. 2avinvl’
BY (3)2, (4)1 DEF Phase2av, Inv, 2avinvl, 2avinv2, TypeOK , 1bMessage, Ballot
(4H11. 2avInv2’
(5)1. SUFFICES ASSUME NEW m € bmsgs’,
2avInv2!(m)!1
PROVE 371 € 2avSent’'[m.acc] : A r.val = m.val
A r.bal > m.bal
BY DEF 2avinv2
(5)2.CASE m.acc = self
(6)1.CASE m = mb
BY (4)1, (6)1, Isa DEF Inv, TypeOK, Ballot
(6)2.CASE m # mb
(71)1. m € bmsgs
BY (4)1, (6)2
(7)2. PICK r € 2avSent[m.acc] : A r.val = m.val
A r.bal > m.bal
BY (5)1, (7)1 DEF Inv, 2avinv2
(7)3.CASE r.val = mc.val
(8).DEFINE 77 = [val — mc.val, bal — b]
(8).rr € 2avSent’'[m.acc]
BY (4)1, (5)2 DEF Inv, TypeOK
(8).WITNESS 77 € 2avSent’[m.acc]
(8).QED
BY (7)2, (7)3, (5)2, (5)1, (3)2, BMessageLemma
DEF Phase2av, Inv, TypeOK , accInv, Ballot, 2avMessage
(7)4.CASE r.val # mc.val
BY (7)2, (4)1, (5)2, (7)4 DEF Inv, TypeOK
(7)5. QED
BY (7)3, (7)4
(6)3. QED
BY (6)1, (6)2
(5)3.CASE m.acc # self
BY (5)3, (5)1, (4)1, BMessageLemma DEF Inv, TypeOK, 2avinv2, 2avMessage
(5)4. QED
BY (5)2, (5)3
(4)12. 2avinv3’
BY (4)1, (4)2, (4)4 DEF Inv, 2avInv3, sentMsgs, msgs, 1emsgs, msgsOf Type
(4)13. accInv’

26

(5)1. SUFFICES ASSUME NEW a € Acceptor,
NEW r € 2avSent’[a]
PROVE A r.bal < mazBal'[a]
A [type — 1", bal — r.bal, val — r.val]
€ msgs’
BY Zenon DEF acclnv
(5)2.CASE 1 € 2avSent[a]
BY (5)2, (4)4, (4)5, (3)2 DEF Phase2av, Inv, TypeOK, accInv, Ballot
(5)3.CASE r ¢ 2avSent[a]
BY (5)3, (3)2, ()1, (4)2, (4)4
DEF Phase2av, Inv, TypeOK , sentMsgs, msgsOfType, msgs, 1cmsgs, Ballot
(5)4. QED
BY (5)2, (5)3
(4)14. knowsSentInv’
BY (3)2, (4)1 DEF Phase2av, Inv, knowsSentInv, msgsOfType
(4)15. QED
BY (4)5, (4)6, (4)7, (4)8, (4)9, (4)10, (4)11, (4)12, (4)13, (4)14 DEF Inv
(3)3.CASE Phase2b(self, b)
(4)1. PICK v € Value :
A 3 Q € ByzQuorum :
Vae @:
Im € sentMsgs(“2av’, b) : Am.val = v
A m.acc = a
A msgs' = msgs U
{[type — “2b", acc — self, bal — b, val — v]}
A bmsgs’ = (bmsgs U
{[type — “2b", acc — self, bal — b, val — v]})
A mazVVal' = [mazVVal EXCEPT ![self] = v]
BY (3)3, MsgsLemma DEF Inv
(4) DEFINE mb = [type — “2b", acc — self, bal — b, val — v)
(4)2. TypeOK'’
BY (3)3, (4)1 DEF Phase2b, Inv, TypeOK, BMessage, 2bMessage, ByzAcceptor
(4)3. bmsgsFinite’
BY (4)1, FiniteMsgsLemma, Zenon DEF Inv, bmsgsFinite
(4)4. 1bInv1’
BY (4)1, Isa DEF Inv, 1bInvl
(4)5. 1bInv2’
BY (4)1 DEF Inv, 1bInv2
(4)6. mazBallnv’
BY (3)3, (4)1, (4)2, BMessageLemma
DEF Phase2b, Inv, mazBallnv, TypeOK , Ballot, 1bMessage, 2avMessage, 2bMessage
7. 2avinvl’
BY (4)1 DEF Inv, 2avinvl
(4)8. 2avInv2’
BY (3)3, (4)1 DEF Phase2b, Inv, TypeOK, 2avinv2

27

(4)9. 2avInv3’
BY (4)1 DEF Inv, 2avinv3
(4)10. accInv’
(5) SUFFICES ASSUME NEW a € Acceptor,
NEW 7 € 2avSent]a)
PROVE A r.bal < mazBal'[a)
A [type — “1c", bal — r.bal, val — r.val]
€ msgs’
BY (3)3, Zenon DEF accInv, Phase2b
(5) [type — “1c", bal — r.bal, val — r.val] € msgs’
BY (3)3, MsgsLemma DEF Inv, accInv
(5) QED
BY (3)3 DEF Phase2b, Inv, Ballot, TypeOK, acclnv
(D11, knowsSentInv’
BY (3)3, (4)1 DEF Phase2b, Inv, knowsSentInv, msgsOfType
(4)12. QED
BY (4)2, (4)3, (4)4, (4)5, (4)6, (4)7, (4)8, (4)9, (4)10, (4)11 DEF Inv
(3)4.CASE LearnsSent(self, b)
(M1, pick MS : A MS C {m € msgsOfType("1c") : m.bal = b}
A msgs’ = msgs U MS
BY (3)4, MsgsLemma, Zenon DEF Inv
(4)2. PICK S :
A S C sentMsgs(“1b", b)
A knowsSent’ =
[knowsSent EXCEPT ![self] = knowsSent[self] U S]
BY (3)4, Zenon DEF LearnsSent
(4)3. TypeOK'
BY (3)4, (4)2, BMessageLemma DEF Inv, TypeOK, sentMsgs, LearnsSent
(4)4. bmsgsFinite’
BY (3)4 DEF LearnsSent, Inv, bmsgsFinite, 160r2bMsgs
(4)5. 1bInvl’
BY (3)4, (4)1, Zenon DEF LearnsSent, Inv, 1bInvl
(4)6. 1bInv2’
BY (3)4 DEF LearnsSent, Inv, 1bInv2
(4)7. mazBallnv’
BY (3)4 DEF LearnsSent, Inv, mazBallnv
(4)8. 2avinvl’
BY (3)4 DEF LearnsSent, Inv, 2avinvl
4)9. 2avinv2’
BY (3)4 DEF LearnsSent, Inv, 2avinv2
(4)10. 2avInv3’
BY (3)4, (4)1 DEF LearnsSent, Inv, 2avinv3
(MH11. acclnv’
BY (3)4, (4)1, Zenon DEF LearnsSent, Inv, accInv
(4)12. knowsSentInv’

28

BY (3)4, (4)2 DEF LearnsSent, Inv, TypeOK, knowsSentInv, sentMsgs, msgsOf Type
(4)13. QED
BY (4)3, (4)4, (4)5, (4)6, (4)7, (4)8, (4)9, (4)10, (4)11, (4)12 DEF Inv
(3)5. QED
BY (2)1, (3)1, (32, (3)3, (3)4
(2)2. ASSUME NEW self € Ballot,
V Phasela(self)
V Phaselc(self)
PROVE Inv’
(3)1.CASE Phasela(self)
(4) DEFINE ma = [type — “1a”, bal — self]
(4)1. msgs’ = msgs U {ma}
BY (3)1, MsgsLemma DEF Inv
(4)2. TypeOK'’
BY (3)1 DEF Phasela, Inv, TypeOK, BMessage, 1laMessage
(4)3. bmsgsFinite’
BY (3)1, FiniteMsgsLemma, Zenon DEF Inv, bmsgsFinite, Phasela
(4)4. 10Inv1’
BY (3)1, (4)1, Isa DEF Phasela, Inv, 1bInvl
(4)5. 1bInv2’
BY (3)1 DEF Phasela, Inv, 1bInv2
(4)6. mazBallnv’
BY (3)1 DEF Phasela, Inv, mazBallnv
4)7. 2avinvl’
BY (3)1 DEF Phasela, Inv, 2avInvl
(4)8. 2avInv2’
BY (3)1 DEF Phasela, Inv, 2avinv2
(4)9. 2avInv3’
BY (3)1, (4)1 DEF Phasela, Inv, 2avinv3
(4)10. accInv’
BY (3)1, (4)1, Zenon DEF Phasela, Inv, acclnv
(4)11. knowsSentInv’
BY (3)1 DEF Inv, knowsSentInv, msgsOfType, Phasela
(4)12. QED
BY (4)2, (4)3, (4)4, (4)5, (4)6, (4)7, (4)8, (4)9, (4)10, (4)11 DEF Inv
(3)2.CASE Phaselc(self)
(4)1. PICK S : A S € SUBSET [type : {“1c"}, bal : {self}, val : Value]
A bmsgs’ = bmsgs U S
BY (3)2 DEF Phaselc
(4)2. PICK MS :
A MS € SUBSET [type : {"1c"}, bal : {self }, val : Value]
AV m e MS :
Fa € Acceptor : KnowsSafeAt(a, m.bal, m.val)
A msgs’ = msgs U MS
BY (3)2, MsgsLemma DEF Inv

29

(4)3. TypeOK'’
BY (3)2, (4)1 DEF Phaselc, Inv, TypeOK, BMessage, 1cMessage
(4)4. bmsgsFinite’
BY (4)1 DEF Inv, bmsgsFinite, 160r2bMsgs
(4)5. 1bInvl’
BY (3)2, (4)2, Zenon DEF Phaselc, Inv, 1bInvl
(4)6. 1bInv2’
BY (4)1 DEF Inv, 1bInv2
(4)7. mazBallnv'
BY (3)2 DEF Phaselc, Inv, mazBallnv
(4)8. 2avInvl’
BY (4)1 DEF Inv, 2avinvl
(4)9. 2avinv2’
BY (3)2 DEF Phaselc, Inv, 2avInv2
(4)10. 2avinvd’
BY (3)2, (4)2 DEF Phaselc, Inv, 2avInv3
(MH11. acclnv’
BY (3)2, (4)2, Zenon DEF Phaselc, Inv, accInv
(4)12. knowsSentInv’
BY (3)2 DEF Inv, knowsSentInv, msgsOfType, Phaselc
(4)13. QED
BY (4)3, (4)4, (4)5, (4)6, (4)7, (4)8, (4)9, (4)10, (4)11, (4)12 DEF Inv
(3)3. QED
BY (3)1, (3)2, (2)2
(2)3. ASSUME NEW self € FakeAcceptor,
FakingAcceptor(self)
PROVE Inv’
(3)1. PICK m € 1bMessage U 2avMessage U 2bMessage :
A m.acc & Acceptor
A bmsgs’ = bmsgs U {m}
BY (2)3, BQA DEF FakingAcceptor
(3)2. msgs’ = msgs
BY (2)3, MsgsLemma DEF Inv
(3)3. TypeOK'’
BY (2)3, (3)1 DEF Inv, TypeOK, BMessage, FakingAcceptor
(3)4. bmsgsFinite’
BY (3)1, FiniteMsgsLemma DEF Inv, TypeOK
(3)5. 1bInvl’
BY (3)1, (3)2, Zenon DEF Inv, 1bInvl
(3)6. 1bInv2’
BY (3)1 DEF Inv, 1bInv2
(3)7. mazBallnv'
BY (2)3, (3)1 DEF Inv, mazBallnv, FakingAcceptor
(3)8. 2avInvl’
BY (3)1 DEF Inv, 2avinvl

30

(3)9. 2avInv2’
BY (2)3, (3)1 DEF Inv, 2avInv2, FakingAcceptor
(3)10. 2avInv3’
BY (3)1, (3)2 DEF Inv, 2avinv3
(3)11. accInv’
BY (2)3, (3)2, Zenon DEF Inv, acclnv, FakingAcceptor
(3)12. knowsSentInv’
BY (2)3, (3)1 DEF Inv, knowsSentInv, msgsOfType, FakingAcceptor
(3)13. QED
BY (3)3, (3)4, (3)5, (3)6, (3)7, (3)8, (3)9, (3)10, (3)11, (3)12 DEF Inv
(2)4. ASSUME UNCHANGED vars
PROVE [Inv’
(3) USE UNCHANGED wvars DEF Inv, vars
(3) msgs = msgs’
BY DEF msgs, msgsOfType, 1bmsgs, 1bRestrict, acceptorMsgsOfType, 1cmsgs,
KnowsSafeAt, 2amsgs
(3) QED
BY DEF TypeOK, bmsgsFinite, 160r2bMsgs, 1bInvl, 1bInv2,
mazxBallnv, 2avinvl, 2avinv2, 2avinv3d, acclnv, knowsSentInv, msgsOf Type
(2)5. QED
BY (2)1, (2)2, (2)3, (2)4, NextDef

(1)3. QED
BY (1)1, (1)2, PTL DEF Spec

! |
I 1

We next use the invariance of Inv to prove that algorithm BPCon implements algorithm PCon
under the refinement mapping defined by the INSTANCE statement above.
THEOREM Spec = P! Spec
(D)1, Init = P!Init
(2).HAVE Init
(2)1. MazBallot({}) = —1
BY MazBallotProp, FS_EmptySet
(2)2. P! Init'1 A P'Init'2 A P! Init!3
BY (2)1 DEF Init, PmazBal, 1b0r2bMsgs, None, P! None
(2)3. msgs = {}
BY BQA DEF Init, msgsOfType, acceptorMsgsOfType, 1bmsgs, 1cmsgs, 2amsgs, Quorum, msgs
(2)4. QED
BY (2)2, (2)3 DEF P!Init

(1)2. Inv A Inv' A [Next]yars = [P! Nexat]plvars
(2) InvP = Ino/
(2) SUFFICES ASSUME Inv, InuvP, Next
PROVE P!TLANextV Plvars’ = Plvars
(3) UNCHANGED wars = UNCHANGED P!vars
BY DEF wvars, Plvars, PmazBal, 160r20Msgs, msgs, msgsOfType, acceptorMsgsOfType,

31

1bmsgs, 2amsgs, 1cmsgs, KnowsSafeAt
(3) QED
BY PNextDef DEF Inv, P! ProcSet, P!Init, Ballot, P! Ballot
(2) HIDE DEF InvP
(2)2. Va € Acceptor : PmazBalla] € Ballot U{ —1}
BY PMaxBalLemma3, MazBallotProp DEF Inv, PmazBal, 1bOr2bMsgs
(2)3. ASSUME NEW self € Acceptor, NEW b € Ballot,
Phaselb(self, b)
PROVE P!TLANext V Plvars’ = Plvars
(3)1. msgs’ = msgs U {[type — “1b", acc — self, bal — b,
mbal — mazVBal[self], mval — mazVVal[self]]}
BY (2)3, MsgsLemma DEF Inv
(3)2. PlsentMsgs("1a", b) # {}
BY (2)3 DEF Phaselb, sentMsgs, msgsOfType, msgs, P!sentMsgs
(3)3. UNCHANGED (mazVBal, mazVVal)
BY (2)3 DEF Phaselb
(3Y4. b > PmazBal[self]
BY (2)2, (2)3, PmazBalLemma4 DEF Phaselb, Inv, TypeOK, Ballot
(3)5. PmaxzBal’ = [PmaxzBal EXCEPT ![self] = b]
(4) DEFINE m = [type +— “1b", bal — b, acc — self,
m2av — 2avSent]self],
mbal +— mazVBal[self], mval — mazVVal[self]]
mA(a) = {ma € bmsgs : A ma.type € {“1b", “2b"}
A ma.acc = a}
S(a) = {ma.bal : ma € mA(a)}
(4)1. bmsgs’ = bmsgs U {m}
BY (2)3 DEF Phaselb
(4)Y2. mA(self) = mA(self)U{m}
BY (4)1
(4)3. A PmazBal = [a € Acceptor — MazBallot(S(a))]
A PmazBal' = [a € Acceptor — MazBallot(S(a))’]
BY DEF PmazBal, 160r2bMsgs
(4) HIDE DEF mA
(4)Y4. S(self) = S(self) U {b}
BY (4)2, Isa
(4)5. MaxBallot(S(self)U{b}) =1b
(5) DEFINE 85 = S(self)U {b}
(5)1. IsFiniteSet(S(self))
(6).IsFiniteSet(mA(self))
BY F'S_Subset DEF Inv, bmsgsFinite, mA, 1bOr2bMsgs
(6).QED
BY FS_Image, Isa
(5)2. IsFiniteSet(SS)
BY (5)1, FS_AddFElement
(5)3. S(self) C Ballot U { — 1}

32

BY BMessageLemma DEF mA, Inv, TypeOK , 1bMessage, 2bMessage
(5)d.Vz € 8S:b>=x
BY (3)4, (4)3, (5)1, (5)3, MaxBallotProp, Z3T(10) DEF Ballot
(5)5. QED
BY (5)2, (5)3, (5)4, MazBallotLemmal
(4)6. Y a € Acceptor : a # self = S(a)’ = S(a)
BY (4)1 DEF mA
(4)7. QED
BY (4)3, (4)4, (4)5, (4)6, Zenon DEF PmazBal, 160r2bMsgs
(3)6. QED
BY (3)1, (3)2, (3)3, (3)4, (3)5, Zenon DEF P!TLANext, P!Ballot, Ballot, P!Phaselb
(2)4. ASSUME NEW self € Acceptor, NEW b € Ballot,
Phase2av(self, b)
PROVE P!TLANext V Plvars’ = Plvars
(3)1. PmaxzBal’ = PmazBal
(4) DEFINE mm(m) = [type — “2av", bal — b,
val — m.val, acc — self]
(4)1. PICK m : bmsgs’ = bmsgs U {mm(m)}
BY (2)4 DEF Phase2av
(4)2. mm(m).type = "2av”
OBVIOUS
(4) QED
BY (4)1, (4)2, PmazBalLemmal, Zenon
(3)2.CASE msgs’ = msgs
BY (3)1, (3)2, (2)4 DEF Phase2av, Plvars
(3)3.CASE A msgs’ # msgs
A3Jv € Value :
A [type — “1c", bal — b, val — v] € msgs
A msgs’ = msgs U {[type — “2a", bal — b, val — v]}
(41, PicK v € Value :
A [type — “1c", bal — b, val — v] € msgs
A msgs’ = msgs U {[type — “2a", bal — b, val — v]}
BY (3)3
(4)2. P!sentMsgs(2a", b) = {}
(5)1. SUFFICES ASSUME NEW m € PlsentMsgs("2a", b)
PROVE m = [type — "2a", bal — b, val — v]
BY (3)3, (4)1 DEF P!sentMsgs
(5)2. A'm € 2amsgs
A m.type = “2a"
A m.bal = b
BY MsgsTypeLemma DEF P!sentMsgs
(5)3. PICK @ € Quorum :
VaceQ :
Imav € acceptorMsgsOfType("2av") :
A mav.acc = a

33

A mav.bal = b
A mav.val = m.val
BY (5)2 DEF 2amsgs
(5)4. PICK Q2 € Quorum :
Vae Q2
Im2av € acceptorMsgsOfType(*2av")" :
A m2av.acc = a
A m2av.bal = b
A m2av.val = v
BY (4)1, MsgsTypeLemmaPrime, Isa DEF 2amsgs
(5)5. PICK a € QN Q2: a € Acceptor
BY QuorumTheorem
(5)6. PICK mav € acceptorMsgsOf Type(*2av”) :
A mav.acc = a
A mav.bal = b
A mav.val = m.val
BY (5)3, (5)5
(5)7. PICK m2av € acceptorMsgsOfType(2av")’ :
A m2av.acc = a
A m2av.bal = b
A m2av.val = v
BY (5)4, (5)5
(5)8. mav € acceptorMsgsOfType(“2av")’
BY (2)4 DEF acceptorMsgsOfType, msgsOfType, Phase2av
(5)9. m.val = v
BY (5)5, (5)6, (5)7, (5)8 DEF 2avInvl, InvP, Inv, acceptorMsgsOfType, msgsOfType
(5)10. QED
BY (5)2, (5)9 DEF 2amsgs
(4)4. QED
BY (2)4, (3)1, (4)1, (4)2 DEF P!TLANext, P! Phase2a, Phase2av, Ballot, P! Ballot
(3)4. V msgs’ = msgs
V (A msgs’ # msgs
A Fv € Value :
A [type — “1c", bal — b, val — v] € msgs
A msgs’ = msgs U {[type — “2a", bal — b, val — v]})
BY MsgsLemma, (2)4, Zenon DEF Inv
(3)5. QED
BY (3)2, (3)3, (3)4
(2)5. ASSUME NEW self € Acceptor, NEW b € Ballot,
Phase2b(self, b)
PROVE P!TLANextV Plvars’ = Plvars
(3)1. PmaxBal[self] < b
(4)1. PmazBal[self] < mazBal[self]
BY PmaxBalLemma4 DEF Inv
(4)2. mazBal[self] < b

34

BY (2)5 DEF Phase2b
(4)3. QED
BY (4)1, (4)2, PmazBalLemma5 DEF Inv, TypeOK, Ballot
(3)2. PICK v € Value :
A3 Q € ByzQuorum :
Vae@Q:
Im € sentMsgs(“2av”’, b) : Am.val = v
A m.acc = a
A msgs’ = msgs U
{[type — "2b", acc — self, bal — b, val — v]}
A bmsgs’ = bmsgs U
{[type — “2b", acc — self, bal — b, val — v]}
A mazVVal' = [maxVVal EXCEPT ![self] = v]
BY (2)5, MsgsLemma DEF Inv
(3) DEFINE m = [type — “2a", bal — b, val — v]
m2b £ [type — “2b", acc > self, bal — b, val — v]
(3)3. m € PlsentMsgs(“2a", b)
(4)1. PICK @ € Quorum :
Yae Q
Imm € sentMsgs(“2av”’, b) : A mm.val = v
A mm.acc = a
BY (3)2, Isa DEF Quorum
(4)2. m € 2amsgs
BY (4)1 DEF sentMsgs, Quorum, acceptorMsgsOfType, msgsOfType, 2amsgs
(4)3. QED
BY (4)2 DEF P!sentMsgs, msgs
(3)4. PmazBal' = [PmazBal EXCEPT ![self] = b]
(4)1. ASSUME NEW a € Acceptor,
a # self
PROVE PmazBal'[a] = PmaxBal|a]
BY (3)2, (4)1, PmaxBalLemma2, m2b.acc = self, Zenon
(4)2. PmazBal'[self] = b
(5) DEFINE S = {mm.bal : mm € {ma € bmsgs :
A ma.type € {"1b", “2b"}
A ma.ace = self }}
T = SU{m2b.bal}
(5)1. IsFiniteSet(S) A (S € SUBSET Ballot)
BY PMazBalLemma3 DEF Inv
(5)2. IsFiniteSet(T) A (T € SUBSET Ballot)
BY (5)1, FS_AddElement
(5)3. PmaxBal[self] = MaxBallot(S)
BY DEF PmazBal, 160r2bMsgs
(5)4. PmazBal'[self] = MaxBallot(T)
BY (3)2, Zenon DEF PmaxzBal, 160r2bMsgs
(b) HIDE DEF S

35

(5)5.casE S = {}
(6) MaxzBallot({b})=b
BY FS_Singleton, MaxBallotLemmal, Isa DEF Ballot
(6) QED
BY (5)4, (5)5
(5)6.cASE S # {}
6y Vbbe T :b>bb
BY (3)1, (5)1, (5)3, MazBallotProp, PmaxzBalLemma5 DEF Inv, Ballot
(6) QED
BY (5)2, (5)4, MazBallotLemmal
(5)7. QED
BY (5)5, (5)6
(4)3. QED
BY (4)1, (4)2, Zenon DEF PmazBal, 160r2bMsgs
(3)5. A maxVBal' = [maxzVBal EXCEPT ![self] = b]
A mazVVal' = [maxVVal EXCEPT ![self] = m.val]
BY (2)5, (3)2, Zenon DEF Phase2b
(3)6. QED
BY (3)1, (3)2, (3)3, (3)4, (3)5, Zenon
DEF P!TLANext, P! Phase2b, Ballot, P! Ballot
(2)6. ASSUME NEW self € Acceptor, NEW b € Ballot,
LearnsSent(self, b)
PROVE P!TLANext V Plvars’ = Plvars
(3)1. PICK SM € SUBSET {m € msgsOfType(“1c") : m.bal = b} :
msgs’ = msgs U SM
BY (2)6, MsgsLemma DEF Inv
(3) DEFINE S = {m.val : m € SM}
(3)2. S € SUBSET Value
BY BMessageLemma DEF Inv, TypeOK, msgsOfType, 1cMessage
(3)3. msgs’ = msgs U {[type — “1c", bal — b, val — v] : v € S}
BY (3)1, BMessageLemma DEF Inv, TypeOK, msgsOfType, 1cMessage
(3)4. ASSUME NEW v € §
PROVE 3 Q € Quorum : P!ShowsSafeAt(Q, b, v)
(4)1. PICK ac € Acceptor : KnowsSafeAt(ac, b, v)’
BY (3)1, MsgsTypeLemmaPrime DEF msgsOfType, 1cmsgs
(4)2. bmsgs’ = bmsgs
BY (2)6 DEF LearnsSent
(4) DEFINE Q(BQ) = BQ N Acceptor
SS = {m € knowsSent'[ac] : m.bal = b}
SQ(BQ) = {1bRestrict(mm) :
mm € {m € SS: m.acc € Q(BQ)}}
Q1b(BQ) = {m € PlsentMsgs(“1b", b) : m.acc € Q(BQ)}
(4)3. ASSUME NEW BQ € ByzQuorum,
Va e BQ:dm € S5 :m.acc =a
PROVE SQ(BQ) = Q1b(BQ)

36

(5)1. ASSUME NEW m € PlsentMsgs(“1b", b),
m.acc € Q(BQ)
PROVE m € SQ(BQ)
BY (4)2, (4)3, (5)1, MsgsTypeLemma
DEF P!sentMsgs, msgs, 1bmsgs, acceptorMsgsOfType, msgsOfType,
1bRestrict, InvP, Inv, knowsSentInv, 1bInv2
(5)2. ASSUME NEW m € SS,
m.acc € Q(BQ)
PROVE 1bRestrict(m) € Q1b(BQ)
BY (4)2, (5)2
DEF InvP, Inv, knowsSentInv, msgsOfType, acceptorMsqgsOfType, msgs,
1bmsgs, P!sentMsgs, 1bRestrict
(5)3. QED
BY (5)1, (5)2 DEF Q1b, SQ
(4)4.cASE KnowsSafeAt(ac, b, v)!111’
(5)1. PICK BQ € ByzQuorum : KnowsSafeAt(ac, b, v)!1111(BQ)’
BY (4)4
(5)2.Va € Q(BQ):3m € SQ(BQ): Am.acc =a
Am.mbal = —1
BY (5)1, Isa DEF 1bRestrict
(5)3. Vm € SQ(BQ) : m.mbal = — 1
BY (4)2, (5)2
DEF InvP, Inv, knowsSentInv, msgsOfType, 1bRestrict, 1bInv2
(5)4. SQ(BQ) = Q1b(BQ)
BY (4)3, (5)1
(5)5. Q(BQ) € Quorum
BY DEF Quorum
(5) HIDE DEF SS, Q, SQ
(5) WITNESS Q(BQ) € Quorum
(5)6. QED
BY (5)2, (5)3, (5)4 DEF P!ShowsSafeAt
(4)5.cASE KnowsSafeAt(ac, b, v)!1112
(5)1. PICK ¢ € 0.. (b —1) : KnowsSafeAt(ac, b, v)!1121(c)’
BY (4)5
(5)2. PICK BQ € ByzQuorum :
Va€ BQ:dm € 85 : ANm.acc = a
A m.mbal < ¢
A (m.mbal = ¢) = (m.mval = v)
BY ()1
(5)3. SQ(BQ) = Q1b(BQ)
BY (5)2, (4)3
(5)4. P! ShowsSafeAt(Q(BQ), b, v)!1!1
(6)1. SUFFICES ASSUME NEW a € Q(BQ)
PROVE dm € Q1b(BQ): m.acc = a
OBVIOUS

37

(6)2. PICK m € 85 : m.acc = a
BY (5)2
(6)3. A 1bRestrict(m) € SQ(BQ)
A 1bRestrict(m).acc = a
BY (6)2 DEF lbRestrict
(6).QED
BY (6)3, (5)3
(5)5. PICK mlc € msgs :
A mle = [type — “1c", bal — mlc.bal, val — v]
Amlc.bal > ¢
A mlc.bal € Ballot
(6)1. PICK WQ € WeakQuorum :
Vae WQ:dm € 85 : Am.acc = a
AIr € m.m2av :
Ar.bal > ¢
Arwal =v
BY (5)1
(6)2. PICK a € WQ, m € 55 :
A a € Acceptor
AN m.acc = a
Adr € mm2av : Ar.bal > ¢

Ar.val =v
BY (6)1, BQA
(6)4. PICK r € m.m2av : Ar.bal > ¢
Ar.val = v
BY (6)2
(6)5. A m.bal = b
A m € bmsgs

A m.type = “1b"
A r.bal € Ballot
BY (4)2, (6)2, BMessageLemma
DEF Inv, InvP, TypeOK, 1bMessage, knowsSentInv, msgsOfType
(6).QED
BY (6)2, (6)4, (6)5, Zenon DEF Inv, 1bInvl
(5)6. ASSUME NEW m € Q1b(BQ)
PROVE A mlc.bal > m.mbal
A (mlec.bal = m.mbal) = (m.mval = v)
(6)1. PICK mm € SS : A mm.acc = m.acc
A mm.mbal < ¢
A (mm.mbal = ¢) = (mm.muval = v)
BY (5)2
(6)2. PICK mm2 € SS : A mm2.acc = m.acc
A m = 1bRestrict(mm2)
BY (5)3 DEF lbRestrict
(6)3. A mm = mm2

38

A mm2.mbal € Ballot U{ — 1}
BY (4)2, (6)1, (6)2, BMessageLemma
DEF Inv, InvP, TypeOK , knowsSentInv, 1bInv2, msgsOfType, 1bMessage
(6).QED
(7) Ymlcbal, mmbal € Ballot U{—1}:
mmbal < ¢ AN mlcbal > ¢ = A mlcbal > mmbal
A mmbal = mlcbal = mmbal = c
BY DEF Ballot
(7) QED
BY (5)5, (6)1, (6)2, (6)3 DEF lbRestrict
(5)7. P! ShowsSafeAt(Q(BQ), b, v)!1112121(mlc)
BY (5)5, (5)6
(5).QED
BY (5)4, (5)7, Isa DEF P!ShowsSafeAt, Quorum
(4)6. QED
BY (3)1, (4)1, (4)4, (4)5 DEF KnowsSafeAt
(3)6. QED
BY (2)6, (3)1, (3)2, (3)3, (3)4, Zenon
DEF LearnsSent, P! Phaselc, P! TLANext, Ballot, P! Ballot, PmaxBal, 1b0r2bMsgs
(2)7. ASSUME NEW self € Ballot,
Phasela(self)
PROVE P!TLANextV Plvars’ = Plvars
(3)1. msgs’ = msgs U {[type — “1a", bal — self]}
BY (2)7, MsgsLemma DEF Inv
(3)2. UNCHANGED (PmazBal, maxVBal, maxVVal)
BY (2)7, Isa DEF Phasela, PmazBal, 1bOr2bMsgs
(3).QED
BY (3)1, (3)2 DEF P!Phasela, P! TLANext, Ballot, P! Ballot
(2)8. ASSUME NEW self € Ballot,
Phaselc(self)
PROVE P!TLANext V Plvars’ = Plvars
(3)1. PICK SS € SUBSET [type : {"1c"}, bal : {self }, val : Value] :
AYm € 85 :3a € Acceptor : KnowsSafeAt(a, m.bal, m.val)
A msgs’ = msgs U SS
BY (2)8, MsgsLemma DEF Inv
(3) DEFINE § = {m.val : m € SS}
(3)2. 8S = {[type — “1c", bal — self, val — v] : v € S}
OBVIOUS
(3)3. ASSUME NEW v € S
PROVE 3@ € Quorum : P!ShowsSafeAt(Q, self, v)
(4) DEFINE m = [type — “1c", bal — self, val — v]
(4)1. PICK a € Acceptor : KnowsSafeAt(a, self, v)
BY (3)1
(4) DEFINE SK = {mm € knowsSent[a] : mm.bal = self}
(4)2. ASSUME NEW BQ € ByzQuorum,

39

Vac € BQ :dmm € SK : mm.acc = ac
PROVE P! ShowsSafeAt(BQ N Acceptor, self, v)!1!1
(5) DEFINE @ 2 BQ N Acceptor
Q1b = {mm € P!sentMsgs("1b", self) : mm.acc € Q}
(5) SUFFICES ASSUME NEW ac € BQ N Acceptor
PROVE dmm € Q1b: mm.acc = ac
OBVIOUS
(5)1. PICK mm € SK : mm.acc = ac
BY (4)2
(5)2. A 1bRestrict(mm) € PlsentMsgs(“1b", self)
A 1bRestrict(mm).acc = ac
BY (5)1 DEF acceptorMsgsOfType, msgsOfType, 1bmsgs, msgs, Inv, knowsSentInv,
1bRestrict, P!sentMsgs
(5).QED
BY (5)2
(4)3.CASE KnowsSafeAt(a, self, v)!111
(5)1. PICK BQ € ByzQuorum :
Vac € BQ :dmm € SK : A mm.acc = ac
A mm.mbal = — 1
BY (4)3
(5) DEFINE @ £ BQ N Acceptor
Q1b = {mm € PlsentMsgs("1b", self) : mm.acc € Q}
(5)2. P! ShowsSafeAt(Q, self, v)!1!1
BY (5)1, (4)2
(5)3. ASSUME NEW mm € Q1b
PROVE mm.mbal = — 1
BY (5)1, MsgsTypeLemma
DEF PlsentMsgs, 1bmsgs, acceptorMsgsOfType, msgsOf Type, 1bRestrict,
Inv, knowsSentInv, 1bInv2, 1bRestrict
(5).QED
BY (5)2, (5)3, Zenon DEF P!ShowsSafeAt, Quorum
(4)4.cASE KnowsSafeAt(a, self, v)!112
(5)1. PICK ¢ € 0 .. (self — 1) : KnowsSafeAt(a, self, v)!1112!(c)
BY (4)4
(5)2. PICK BQ € ByzQuorum : KnowsSafeAt(a, self, v)!1121(c)!1!(BQ)
BY (5)1
(5) DEFINE @ £ BQ N Acceptor
Q1b = {mm € PlsentMsgs(“1b", self) : mm.acc € Q}
(5)3. P! ShowsSafeAt(Q, self, v)!1!1
BY (5)2, (4)2
(5)4. PICK WQ € WeakQuorum : KnowsSafeAt(a, self, v)!112!(c)!12!(WQ)
BY (5)1
(5)5. PICK ac € WQ N Acceptor :
KnowsSafeAt(a, self, v)!1112!(c)121(WQ)!(ac)
BY (5)4, BQA

40

(5)6. PICK mk € SK : A mk.acc = ac
Adr € mk.m2av: Ar.bal > ¢

Arwal = v
BY (5)5
(5)7. PICK r € mk.m2av : Ar.bal > ¢
Ar.val = v
BY (5)6

(5) DEFINE mc = [type — “1c”, bal — r.bal, val — v]
(5)9. me € msgs
BY (5)6, (5)7 DEF Inv, 1bInvl, knowsSentInv, msgsOfType
(5)10. ASSUME NEW mq € @Q1b
PROVE A mc.bal > mq.mbal
A (me.bal = mg.mbal) = (mgq.mval = v)
BY (5)2, (5)7, MsgsTypeLemma, BMessageLemma
DEF PlsentMsgs, 1bmsgs, acceptorMsgsOfType, msgsOfType, 1bRestrict,
Inv, TypeOK, 1bInv2, knowsSentInv, 1bMessage, Ballot
(5)11. QED
(6) @ € Quorum
BY DEF Quorum
(6) WITNESS @ € Quorum

(6) QED
BY (5)3, (5)9, (5)10 DEF P!ShowsSafeAt
(4)5. QED
BY (4)1, (4)3, (4)4 DEF KnowsSafeAt
(3).QED

BY (2)8, (3)1, (3)2, (3)3, Zenon
DEF P!Phaselc, Phaselc, PmazBal, 100r2bMsgs, P! TLANext, Ballot, P! Ballot
(2)9. ASSUME NEW self € FakeAcceptor,
FakingAcceptor(self)
PROVE P!TLANext V Plvars’ = Plvars
(3)1. msgs’ = msgs
BY (2)9, MsgsLemma DEF Inv
(3)2. PmaxzBal' = PmazBal
BY (2)9, BQA, Zenon DEF FakingAcceptor, PmaxBal, 1b0r2bMsgs
(3).QED
BY (2)9, (3)1, (3)2 DEF Plwars, FakingAcceptor
(2)10. QED
BY (2)3, (2)4, (2)5, (2)6, (2)7, (2)8, (2)9, NextDef

(1)3. QED
BY (1)1, (1)2, Invariance, PTL DEF Spec, P!Spec

! |
r 1

To see how learning is implemented, we must describe how to determine that a value has been
chosen. This is done by the following definition of chosen to be the set of chosen values.

41

chosen = {v € Value : 3 BQ € ByzQuorum, b € Ballot :
Va € BQ:dm € msgs: A m.type = “2b"
AN m.acc = a
Am.bal =b
Am.val = v}
The correctness of our definition of chosen is expressed by the following theorem, which asserts

that if a value is in chosen , then it is also in the set chosen of the emulated execution of the
PCon algorithm.

The state function chosen does not necessarily equal the corresponding state function of the PCon
algorithm. It requires every (real or fake) acceptor in a ByzQuorum to vote for (send 2b messages)
for a value v in the same ballot for v to be in chosen for the BPCon algorithm, but it requires
only that every (real) acceptor in a Quorum vote for v in the same ballot for v to be in the set
chosen of the emulated execution of algorithm PCon.

Liveness for BPCon requires that, under suitable assumptions, some value is eventually in chosen
. Since we can’t assume that a fake acceptor does anything useful, liveness requires the assumption
that there is a ByzQuorum composed entirely of real acceptors (the first conjunct of assumption
BQLA).

THEOREM chosen C P!chosen

BY Isa DEF chosen, P!chosen, Quorum, Ballot, P! Ballot

\ * Modification History

\ * Last modified Fri Jul 24 17:51:34 CEST 2020 by merz

\ * Last modified Wed Apr 15 15:16:26 CEST 2020 by doligez
\ * Last modified Mon Aug 18 14:57:27 CEST 2014 by tomer
\ * Last modified Mon Mar 04 17:24:05 CET 2013 by doligez
\ * Last modified Wed Nov 30 15:47:26 PST 2011 by lamport
\ * Last modified Wed Dec 01 11:35:29 PST 2010 by lamport

42

