Summary of TLA ${ }^{+}$Module-Level Constructs
The Constant Operators
Miscellaneous Constructs
Action Operators
Temporal Operators
User-Definable Operator Symbols
Precedence Ranges of Operators
Operators Defined in Standard Modules.
ASCII Representation of Typeset Symbols

Module-Level Constructs

\square MODULE $M \longrightarrow$
Begins the module or submodule named M.
Extends M_{1}, \ldots, M_{n}
Incorporates the declarations, definitions, assumptions, and theorems from the modules named M_{1}, \ldots, M_{n} into the current module.
constants $C_{1}, \ldots, C_{n}{ }^{(1)}$
Declares the C_{j} to be constant parameters (rigid variables). Each C_{j} is either an identifier or has the form $C\left(_, \ldots,\right)^{\prime}$, the latter form indicating that C is an operator with the indicated number of arguments.

VARIABLES $x_{1}, \ldots, x_{n}{ }^{(1)}$
Declares the x_{j} to be variables (parameters that are flexible variables).

ASSUME P

Asserts P as an assumption.
$F\left(x_{1}, \ldots, x_{n}\right) \triangleq \exp$
Defines F to be the operator such that $F\left(e_{1}, \ldots, e_{n}\right)$ equals exp with each identifier x_{k} replaced by e_{k}. (For $n=0$, it is written $F \triangleq \exp$.)
$f[x \in S] \triangleq \exp ^{(2)}$
Defines f to be the function with domain S such that $f[x]=\exp$ for all x in S. (The symbol f may occur in exp, allowing a recursive definition.)
(1) The terminal S in the keyword is optional.
(2) $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.

INSTANCE M WITH $p_{1} \leftarrow e_{1}, \ldots, p_{m} \leftarrow e_{m}$
For each defined operator F of module M, this defines F to be the operator whose definition is obtained from the definition of F in M by replacing each declared constant or variable p_{j} of M with e_{j}. (If $m=0$, the with is omitted.)
$N\left(x_{1}, \ldots, x_{n}\right) \triangleq$ INSTANCE M WITH $p_{1} \leftarrow e_{1}, \ldots, p_{m} \leftarrow e_{m}$
For each defined operator F of module M, this defines $N\left(d_{1}, \ldots, d_{n}\right)!F$ to be the operator whose definition is obtained from the definition of F by replacing each declared constant or variable p_{j} of M with e_{j}, and then replacing each identifier x_{k} with d_{k}. (If $m=0$, the wITH is omitted.)

THEOREM P

Asserts that P can be proved from the definitions and assumptions of the current module.

LOCAL def
Makes the definition(s) of def (which may be a definition or an instance statement) local to the current module, thereby not obtained when extending or instantiating the module.
\qquad
Ends the current module or submodule.

The Constant Operators

Logic

```
\wedge ᄀ # \equiv
TRUE FALSE BOOLEAN [the set {True, FALSE}]
\forallx\inS:p (1) }\existsx\inS:p (1)
CHOOSE }x\inS:p [An x in S satisfying p
```


Sets

	$\cup \cap \subseteq$ set
, $\left.\ldots, e_{n}\right\}$	[Set consisting of elements
$\{x \in S: p\}^{(2)}$	[Set of elements x in S satisfying p]
$\{e: x \in S\}^{(1)}$	[Set of elements e such that x in S]
SUBSET S	[Set of subsets of S]
NIO	Union of all element

Functions

```
\(f[e] \quad\) [Function application]
DOMAIN \(f\)
\([x \in S \mapsto e]^{(1)} \quad[\) Function \(f\) such that \(f[x]=e\) for \(x \in S]\)
\([S \rightarrow T] \quad[\) Set of functions \(f\) with \(f[x] \in T\) for \(x \in S]\)
\(\left[f \text { EXCEPT }!\left[e_{1}\right]=e_{2}\right]^{(3)} \quad\left[\right.\) Function \(\widehat{f}\) equal to \(f\) except \(\left.\widehat{f}\left[e_{1}\right]=e_{2}\right]\)
```


Records

$e . h \quad[T h e h$-field of record e]
[$h_{1} \mapsto e_{1}, \ldots, h_{n} \mapsto e_{n}$] [The record whose h_{i} field is e_{i}]
[$h_{1}: S_{1}, \ldots, h_{n}: S_{n}$] [Set of all records with h_{i} field in S_{i}]
$[r \text { EXCEPT !. } h=e]^{(3)} \quad[$ Record \widehat{r} equal to r except $\widehat{r} . h=e]$

Tuples

$e[i]$	[The $i^{\text {th }}$ component of tuple $\left.e\right]$
$\left\langle e_{1}, \ldots, e_{n}\right\rangle$	[The n-tuple whose $i^{\text {th }}$ component is e_{i}]
$S_{1} \times \ldots \times S_{n}$	[The set of all n-tuples with $i^{\text {th }}$ component in S_{i}]

(1) $x \in S$ may be replaced by a comma-separated list of items $v \in S$, where v is either a comma-separated list or a tuple of identifiers.
(2) x may be an identifier or tuple of identifiers.
(3)! $\left[e_{1}\right]$ or !. h may be replaced by a comma separated list of items! $a_{1} \cdots a_{n}$, where each a_{i} is $\left[e_{i}\right]$ or . h_{i}.

Miscellaneous Constructs

Action Operators

e^{\prime}	[The value of e in the final state of a step]
$[A]_{e}$	$\left[A \vee\left(e^{\prime}=e\right)\right]$
$\langle A\rangle_{e}$	$\left[A \wedge\left(e^{\prime} \neq e\right)\right]$
ENABLED A	$[$ An step is possible $]$
UNCHANGED e	$\left[e^{\prime}=e\right]$
$A \cdot B$	$[$ Composition of actions $]$

Temporal Operators

$\square F$	$[F$ is always true $]$
$\diamond F$	$[F$ is eventually true $]$
$\mathrm{WF}_{e}(A)$	$[$ Weak fairness for action $A]$
$\mathrm{SF}_{e}(A)$	$[$ Strong fairness for action $A]$
$F \sim G$	$[F$ leads to $G]$

User-Definable Operator Symbols

Infix Operators

$+{ }^{(1)}$	- ${ }^{(1)}$	* (1)	$1{ }^{(2)}$	- ${ }^{(3)}$	++
$\div{ }^{(1)}$	\% ${ }^{(1)}$	${ }^{(1,4)}$.. ${ }^{(1)}$...	--
$\oplus^{(5)}$	$\theta{ }^{(5)}$	\otimes	\bigcirc	\odot	**
$<^{(1)}$	$>{ }^{(1)}$	$\leq{ }^{(1)}$	$\geq{ }^{(1)}$	\square	//
\prec	\succ	\preceq	\succeq	\sqcup	-
\ll	\gg	$<$:	$:>^{(6)}$	\&	
\sqsubset	\sqsupset	$\sqsubseteq{ }^{(5)}$	\sqsupseteq	\|	\%\%
\subset	\bigcirc		\bigcirc	\star	@@ ${ }^{(6)}$
\vdash	\dashv	\vDash	=	\bullet	\#\#
\sim	\simeq	\approx	\cong	\$	\$
\bigcirc	::=	\asymp	\doteq	??	!!
\propto	ℓ	\uplus			

Postfix Operators ${ }^{(7)}$

^ + * $\#$
(1) Defined by the Naturals, Integers, and Reals modules.
(2) Defined by the Reals module.
(3) Defined by the Sequences module.
(4) $x^{\wedge} y$ is printed as x^{y}.
(5) Defined by the Bags module.
(6) Defined by the TLC module.
(7) $e^{\wedge}+$ is printed as e^{+}, and similarly for ${ }^{\wedge} *$ and ${ }^{\wedge} \#$.

Precedence Ranges of Operators

The relative precedence of two operators is unspecified if their ranges overlap. Left-associative operators are indicated by (a).

Prefix Operators

\neg	$4-4$	\square	$4-15$	UNION	$8-8$
ENABLED	$4-15$	\diamond	$4-15$	DOMAIN	$9-9$
UNCHANGED	$4-15$	SUBSET	$8-8$	-	$12-12$

Infix Operators

\Rightarrow	1-1	\leq	5-5	$<$	7-7	\ominus	11-11 (a)
\pm	2-2	\ll	5-5	1	8-8	-	11-11 (a)
三	2-2	\prec	5-5	\cap	8-8 (a)	-	11-11 (a)
\sim	2-2	\preceq	5-5	\cup	8-8 (a)	\&	13-13 (a)
\wedge	3-3 (a)	\propto	5-5	. .	9-9	\& \&	13-13 (a)
V	3-3 (a)	\sim	5-5	\ldots	9-9	\odot	13-13 (a)
\neq	5-5	\simeq	5-5	!!	9-13	\oslash	13-13
\dashv	5-5	\sqsubset	5-5	\#\#	9-13 (a)	\otimes	13-13 (a)
::=	5-5	\sqsubseteq	5-5	\$	9-13 (a)	*	13-13 (a)
: $=$	5-5	\sqsupset	5-5	\$\$	9-13 (a)	**	13-13 (a)
$<$	5-5	\sqsupseteq	5-5	??	9-13 (a)	1	13-13
$=$	5-5	\subset	5-5	\square	9-13 (a)	//	13-13
$=$	5-5	\subseteq	5-5	\sqcup	9-13 (a)	\bigcirc	13-13 (a)
$>$	5-5	\succ	5-5	\uplus	9-13 (a)	\bullet	13-13 (a)
\approx	5-5	\succeq	5-5	2	9-14	\div	13-13
\asymp	5-5	\supset	5-5	\oplus	10-10 (a)	\bigcirc	13-13 (a)
\cong	5-5	\supseteq	5-5	$+$	10-10 (a)	\star	13-13 (a)
\pm	5-5	\vdash	5-5	++	10-10 (a)	-	14-14
\geq	5-5	\vDash	5-5	\%	10-11	~~	14-14
$>$	5-5	. ${ }^{1)}$	5-14 (a)	\%\%	10-11 (a)	${ }^{(2)}$	17-17 (a)
\in	5-5	@@	6-6 (a)	\|	10-11 (a)		
\notin	5-5	:>	7-7	,	10-11 (a)		

Postfix Operators

$$
{ }^{\circ}+15-15 \quad{ }^{\circ} * \quad 15-15 \quad \text { ^\# } 15-15 \quad \text { ' } 15-15
$$

[^0]
Operators Defined in Standard Modules.

Modul	Naturals, Integers, Reals			
$+$	$-^{(1)}$	*	$/^{(2)}$	
\div	\%	\leq	\geq	$<$
(1) Only infix - is defined in Natural (2) Defined only in Reals module. (3) Exponentiation. (4) Not defined in Naturals module.				

Module Sequences

\circ	Head	SelectSeq	SubSeq
Append	Len	Seq	Tail

Module FiniteSets
IsFiniteSet Cardinality

Module Bags

\oplus	BagIn	CopiesIn	SubBag
\ominus	BagOfAll	EmptyBag	
\sqsubseteq	BagToSet	IsABag	
$\boxed{\text { BagCardinality }}$	BagUnion	SetToBag	

Module RealTime
RTBound RTnow now (declared to be a variable)

Module $T L C$
: \quad @@ Print Assert JavaTime Permutations
SortSeq

ASCII Representation of Typeset Symbols

(1) s is a sequence of characters.
(2) x and y are any expressions.
(3) a sequence of four or more - or $=$ characters.

[^0]: (1) Action composition (\cdot).
 (2) Record field (period).

