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ABSTRACT 

Physically situated, multimodal interactive systems must often 

grapple with uncertainties about properties of the world, people, 

and their intentions and actions.  We present methods for estimating 

and communicating about different uncertainties in situated 

interaction, leveraging the affordances of an embodied 

conversational agent. The approach harnesses a representation that 

captures both the magnitude and the sources of uncertainty, and a 

set of policies that select and coordinate the production of 

nonverbal and verbal behaviors to communicate the system’s 

uncertainties to conversational participants. The methods are 

designed to enlist participants’ help in a natural manner to resolve 

uncertainties arising during interactions. We report on a 

preliminary implementation of the proposed methods in a deployed 

system and illustrate the functionality with a trace from a sample 

interaction.  

Categories and Subject Descriptors 

H.1.2 [Models and Principles]: User/Machine System – Human 

Information Processing; H.5.2 [Information Interfaces and 

Presentation]: Multimedia Information Systems – Audio 

input/outputs; User Interfaces – Natural Language 
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Algorithms; Human Factors 
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1. INTRODUCTION 
Physically situated, multimodal interactive systems often rely on 

probabilistic inferences drawn from multiple streams of noisy 

perceptual data. Multiple uncertainties come to the fore during 

interactions. For example, dialog systems reason about 

uncertainties that arise in recognizing natural language via 

measures of recognition confidence and may employ clarification 

strategies such as explicit or implicit confirmations to keep a 

conversation on track. Robots or virtual agents that interact with 

users in physically situated settings grapple with uncertainties 

extending well beyond speech. These systems use probabilistic 

models to continually make state inferences based on streaming 

evidence from multiple sensors such as cameras, microphones, and 

proximity sensors. They must reason about people engaging with 

the system as well as those in the periphery, considering their 

physical position, orientation, and motion, focus of attention, 

interaction roles, intentions, and relationships. Beyond reasoning 

about the presence and contents of speech, these systems must 

monitor engagement (understanding who is involved in the 

interaction, when participants are joining or leaving, etc.) and turn-

taking (understanding who is talking to whom, who has the 

conversational floor, to whom they are releasing the floor, etc.) 

Uncertainties arise in each of these processes and managing 

communication becomes particularly challenging.  

Physically situated conversational agents may have at their disposal 

the affordances of a virtual or physical embodiment, with the ability 

to communicate via facial expressions, posture, and gaze. Just as in 

human-human interaction, these nonverbal affordances can be 

leveraged and coordinated with verbal grounding acts, so as to 

communicate about and help to resolve uncertainties.  

We present a methodology for reasoning and communicating about 

the multiple uncertainties that arise in multiparty situated dialog. 

We use entropy as a measure of uncertainty about inferred beliefs 
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and consider the magnitude and the sources of each uncertainty. We 

introduce a set of policies to schedule and coordinate the production 

of verbal utterances and nonverbal behaviors that reflect the 

system’s uncertainties. The affordances of embodiment (facial 

expressions, posture, and eye gaze) are leveraged to signal the 

inferred underlying causes of confusion and to direct signals to the 

users who are best positioned to assist with resolving the 

uncertainties. We have implemented the methodology in the 

context of a deployed, physically situated automated assistant. 

We begin with a review of related work, followed by a description 

of the various types of inferences and associated uncertainties 

considered by a physically situated system. In Section 4, we 

describe the proposed approach and each of its components. In 

Section 5, we illustrate the approach with an analysis of a trace from 

a multiparty interaction with the implemented system. Finally, in 

Section 6 we summarize and present directions for future work.  

2. RELATED WORK 
In previous research in psycholinguistics, models of grounding [1] 

have been proposed to explain how participants establish and 

maintain mutual understanding over the course of the conversation. 

Participants coordinate their actions as they present utterances to 

each other, and they produce evidence of understanding in return. 

This evidence can come in multiple forms, e.g., continued attention, 

a relevant next contribution, or an acknowledgement, such as a 

head nod or short verbal utterance (“Uh-huh”, “Yeah”, etc.). The 

latter acts are also referred to as feedback or backchannel responses 

[2]. Grounding is achieved if the provided evidence satisfies the 

grounding criterion [3], defined as follows: “The contributor [of the 

utterance] and the partners mutually believe that the partners have 

understood what the contributor meant to a criterion sufficient for 

the current purpose.” If the grounding criterion is not satisfied, the 

contributing participant can initiate a repair, for example, by 

repeating or restating their previous utterance. 

Computational models of grounding have also been proposed and 

have found practical implementation in human-computer 

interaction [4]. Such models include Traum’s grounding acts 

model [5], which represents the grounding process as a series of 

communicative actions that serve specific functions, such as 

providing acknowledgment of understanding or requesting repair. 

An adaptation of the model has been proposed [6] within a 

framework for multiparty interaction with embodied agents, which 

considers conversation as a multilayer process requiring inferences 

about engagement, turn-taking, and utterance contents of multiple 

actors. Paek and Horvitz [7,8] explicitly model spoken dialog as 

decision-making under uncertainty. Their system uses Bayesian 

models to represent and infer uncertainty about the contents and 

targets of spoken utterances, requesting clarifications when 

uncertainty is high or when the expected value of seeking 

clarification is positive. Nakano et al. [9] propose an approach to 

multimodal, embodied grounding, which takes into account 

nonverbal grounding acts produced by users.  Their system 

monitors users’ gaze and head nods for evidence of understanding. 

In addition to making inferences about the users’ grounding acts, 

embodied agents need to produce coordinated verbal and nonverbal 

acts in response. Poggi and Pelachaud [10] propose a representation 

of communicative acts that decouples propositional content from 

performative aspects, mapping them to verbal utterances and 

nonverbal behaviors, respectively. Marsi et al. [11] model the 

agent’s head motions and facial expressions to convey uncertainty 

about the information the agent is conveying through speech. Other 

work has focused on providing incremental embodied feedback to 

ongoing user utterances [12, 13], using verbal confirmations and 

clarification requests, as well as nonverbal cues such as head nods 

and facial expressions, to indicate the system’s degree of 

understanding. The DeepListener system [8] uses verbal 

clarification requests paired with smooth shifting of the color of a 

glowing lens graphic to provide incremental feedback about the 

system’s confidence and readiness to accept utterances.  

Our work is related to the aforementioned efforts and aims to 

construct an integrative solution that enables embodied 

communication under uncertainty in situated, multiparty contexts. 

Like Traum and Rickel [6] and Paek and Horvitz [7, 8], we model 

conversation as action that happens at multiple levels, each 

supported by a different set of communicative competencies. The 

latter work also focuses on representations and handling of 

uncertainty. The main difference is that we focus on a broader range 

of communicative competencies, and construct an implementation 

that operates in the more complex context of a deployed multiparty, 

situated interactive system. 

3. UNCERTAINTIES AND INTERACTION  
Developing systems that are capable of engaging in interaction in 

physically situated settings leveraging multiple streams of sensory 

evidence hinges on a minimal set of communicative competencies, 

such as the ability to manage engagement and turn-taking and to 

recognize and understand speech. These competencies rely in turn 

on lower-level perceptual processes like vision and auditory scene 

analyses, and often involve probabilistic inferences. Inaccuracies in 

inferences can lead to failures at one or more levels of analysis, and 

ultimately to the breakdown of interaction. 

Table 1 enumerates layered competencies for situated dialog and 

highlight key uncertainties encountered at each level. For 

concreteness, we shall focus on examples from the Assistant 

project. The Assistant is an embodied conversational agent that 

make continuous inferences about the presence and availability of 

its owner, and interacts with visitors on the handling of various 

administrative tasks, such as setting up meetings or relaying 

messages. The system is deployed outside its owner’s office, and 

displays an animated, expressive head. A typical interaction might 

start with the Assistant looking up, making eye contact and saying, 

“Hi, are you here to see [owner]?”  

Perception. Communicative competencies are anchored in a 

perceptual layer, which enables the system to sense its surrounding 

environment through the use of cameras, microphones, and other 

sensors. The visual channel often carries large amounts of 

information, and vision algorithms can be used to detect and track 

people in the environment, as well as their orientation, body pose, 

and gaze direction or visual focus of attention. Audio data, captured 

via microphone arrays, can be processed to infer the content and 

directional source of speech. Beyond sensing the physical 

environment, we also include in this category the processes that 

enable the system to access domain-specific information relevant 

for the task at hand. For instance, the Assistant has access to its 

owner’s calendar and computing activities, as well as to inferences 

from predictive models about the expected cost of interruption of 

the owner, the probability distribution over time until the system’s 

owner will return to his office or read email, and the likelihood of 

the owner attending particular meeting. Across all of these different 

channels, perception involves the use of probabilistic models, 

which produce beliefs over hidden world state variables, such as 

the location of a participant in the scene, their focus of attention, 

and the directions sounds are coming from. As these inferences 

underpin many of the higher-level communicative abilities, 

uncertainty and inaccuracies often propagate to the higher levels, 

where they can lead to interaction breakdowns.  



Engagement. A base-level challenge with interaction that must be 

resolved is that of initiating, maintaining, and terminating a 

connection with one or more participants in the conversation. We 

refer to this process as engagement [14]. In human-human 

interaction, engagement is a mixed-initiative process that involves 

verbal and nonverbal signals, including facial expressions, 

proximity, and body posture. In multimodal interaction, inferences 

about engagement intentions and actions are made with models that 

leverage lower-level perceptual and sensory evidence [15], such as 

a participant’s location or focus of attention. Uncertainties may 

arise about whether a participant is still maintaining or terminating 

an interaction, or whether someone is initiating a new engagement. 

Inaccurate inferences may lead to incorrect initiations of 

engagement with people passing by, or to abrupt, early terminations 

of engagement while participants expect the interaction to continue.  

Turn taking. Once engaged in an interaction, the system must 

coordinate with other participants on the production of verbal 

outputs throughout the conversation in a process known as turn 

taking. Like engagement, turn taking involves nonverbal signals 

and cues [16, 17, 18]. Managing multiparty turn taking is 

challenging and hinges on accurate tracking of several variables, 

including who is currently speaking or expected to speak, the 

sources and targets of utterances, and the floor control actions 

performed by the participants. The Assistant uses a turn-taking 

model [19] that relies on tracking which participant has the 

conversational floor, and the floor actions produced by each 

engaged participant, e.g. holding, taking, or releasing the floor. In 

this context, uncertainties can arise about which participant took 

the floor and to whom a floor release action is targeted towards. 

Making good turn-taking decisions, such as whether now is a good 

time for the system to start an utterance, depends on the 

probabilities inferred about who is likely to next start talking and 

when they will start [20] and inaccurate inferences about these 

variables may lead to interaction breakdowns. For instance, if the 

system misrecognizes a release of the floor by one participant to 

another as a release to the system, it may start talking at an 

inopportune moment, leading to a potential floor battle. On the 

other hand, if the system is not able to correctly recognize that a 

participant has taken the floor and has provided a response, it may 

pause for an unusually long time while waiting for the participant’s 

turn, creating an awkward gap in the conversation.  

Language understanding. Typically, automatic speech 

recognition and natural language understanding systems analyze 

the audio signal and produce an n-best list of hypotheses, which 

captures the belief over the contents of the utterance. In multiparty 

settings, systems must additionally identify the source and target of 

each utterance. Such an understanding of intentions and roles in a 

conversation is important in understanding contributions and in 

guiding plans for interaction. Left unchecked, uncertainty in speech 

recognition often leads to misunderstandings and can throw an 

interaction off track.    

Intention understanding. At the next level, the contents of the 

decoded utterances must be placed in context and used in 

conjunction with the discourse history and other perceptual 

evidence to continuously track beliefs over the high-level user 

goals and intentions, as well as other world state information that 

are relevant to the task at hand. For instance, if the identity of a user 

is important for a given task, a physically situated system may 

update its belief over the identity by integrating probabilistic 

evidence from multiple decoded utterances across a clarification 

dialog about identity, e.g., “Sorry, did you say you’re John?”, with 

evidence that is streaming continuously from a face recognizer.  

Inaccurate inferences at lower levels may lead to incorrect 

understanding at the intention level, e.g., the system might 

incorrectly infer the user’s identity on the basis of inaccurate facial 

recognition and speech recognition results. 

In summary, uncertainties arise at many levels of the system, 

ranging from perceptual uncertainty (visual and auditory), to 

uncertainty about the state of the conversation (engagement and 

turn taking), to the higher-level uncertainty about intentions. We 

next discuss how we incorporate communications about important 

uncertainties into the interactions through nonverbal expressions 

and verbal utterances.  

4. METHODOLOGY 
We now describe methods that can provide interactive systems with 

capabilities to communicate about key uncertainties arising during 

an interactive session. Our goal is to give systems the ability to 

enhance interactive sessions by sharing uncertainties and enlisting 

the help of participants to resolve them—all in a natural manner. 

Key components of such capabilities include: (1) uncertainty state 

estimation—assessing and diagnosing relevant uncertainties in the 

system, (2) uncertainty communication policy—selecting and 

coordinating verbal and nonverbal behaviors that communicate one 

Table 1: Uncertainties at various levels of processing modeled in the current implementation 

  Level Uncertainty type State variable Potential uncertainty sources Instances 

Intention  
Recognition 

Concept 
Domain specific relevant intentions and 
information 

UserIdentity, SpeechInputPresent, 
SpeechInputTarget, SpeechInputContents, 
SpeechInputSource 

Per-concept 

UserIdentity The identity (e.g. name) of a user - Per-user 

Speech 
Understanding 

SpeechInputTarget Target of a spoken utterance - Per-input 

SpeechInputSource Source of a spoken utterance - Per-input 

SpeechInputContents Contents of a spoken utterance - Per-input 

SpeechInputPresent 
Whether or not a spoken utterance was 
produced since the last system floor release 

FloorReleaseDidAnyUserTake 1 

Turn taking 

FloorReleaseTarget Target of the last user floor release - 1 

FloorReleaseDidAnyUserTake 
Indicates whether any user took floor since 
the last system floor release 

FloorReleaseDidUserTake 1 

FloorReleaseDidUserTake 
Indicates whether a given user took the floor 
since the last system floor release 

- Per-user 

Engagement Engagement 
Whether a given user intends to be engaged 
with the system 

FaceTracking Per-user 

Perception FaceTracking 
Whether a user is present at the location 
specified by the face tracker 

- Per-user 

 



or more uncertainties, with a goal of enhancing interaction by 

sharing or working to reduce uncertainty, and (3) uncertainty 

behavior execution—rendering these behaviors.  

Complex interactive systems often use layered inferences per 

considerations of modularity and tractability. As such, key 

variables typically depend on inferences made about other 

variables, as well as attributes observed in streams of perceptual 

information. For instance, inferences for engagement intention may 

leverage inferences about lower-level variables, such as tracking 

confidence, estimated visual-focus of attention, proximity, and 

motion. In light of such dependencies, multiple steps can be taken 

to resolve the degree of uncertainty about one or more variables 

deemed to be important in the success of an interaction.  In the 

general case, plans for sharing the uncertainty for a target variable 

can be guided by computing the expected value of information over 

all influencing variables and seeking to identify observations or 

states that would best resolve the uncertainty. Beyond information 

value, plans for sharing and coordinating about uncertainties must 

also consider the constraints of available gestures and perceived 

naturalness of interaction. The general problem of computing 

policies for identifying and communicating about key uncertainties 

is a complex decision-theoretic challenge.  Below, we describe key 

representation elements and an initial framework and 

implementation that we have developed. The implementation uses 

handcrafted heuristics for identifying and communicating about 

key sources of uncertainty arising during interactions.  

4.1 Uncertainty State Estimation 
We assume as a starting point an existing system that tracks the 

world state (𝑺) via probabilistic inference models, i.e., for each 

world state variable 𝑋𝑖 ∈ 𝑺 (or variable in short), an inference 

model computes the belief over 𝑋𝑖, i.e., 𝑝(𝑋𝑖). Variables may 

represent any relevant properties of an individual user (e.g., 

engagement intention, floor action, goals and domain specific 

intentions), of an utterance (e.g., its source, target, or contents), of 

a floor action, etc. The belief captures the system’s probabilistic 

estimate for the variable’s possible values.  

We measure the uncertainty in the inferred belief of a variable 𝑋𝑖 
by computing the entropy 𝐻(𝑋𝑖), defined as: 

𝐻(𝑋𝑖) =∑−𝑝(𝑋𝑖 = 𝑥𝑗
𝑖) log𝑏 (𝑝(𝑋𝑖 = 𝑥𝑗

𝑖))

𝑗

 

We consider influences among 𝑋𝑖 and other variables used in the 

estimation of 𝑋𝑖 in considering plans for communicating about and 

resolving potential failures in understanding. We use a recursive 

uncertainty state representation that captures not just the 

magnitude of the uncertainty (entropy), but also contributing 

influences or sources of error. 

Specifically, we define an uncertainty state 𝑢𝑖 as a tuple consisting 

of the world state variable 𝑋𝑖, its uncertainty score 𝐻(𝑋𝑖), and a 

set of uncertainty sources 𝑈𝑖, which are other uncertainty states: 

𝑢𝑖 = (𝑋𝑖 , 𝐻(𝑋𝑖), 𝑈𝑖) 

In the current implementation of the framework, we identify 

uncertainty sources based on heuristic rules, informed by the 

structure of inferences in the system. For instance, at the highest 

level of the communicative stack (Intention level in Table 1), our 

system reasons about concepts, state variables which capture 

domain-specific information such as user goals and intentions, e.g., 

IsPersonOnCalendar, IsLookingForOwner, etc. The system’s 

belief over concepts is typically updated based on speech 

recognition results. As a consequence, a low-confidence 

recognition result can give rise to uncertainty over the concept. In 

such a case, the lower level SpeechInputContents uncertainty 

would be assigned as a source of the Concept uncertainty. 

However, speech recognition confidence is not the only potential 

source leading to concept uncertainties. In Section 5 we present in 

more detail an example where concept uncertainty arises based on 

uncertainty about which user spoke the utterance 

(SpeechInputSource uncertainty). The set of uncertainty states 

implemented so far, together with their corresponding state 

variables and their potential sources are shown in Table 1. 

4.2 Policies for Communicating Uncertainties 
At any given time, based on its assessment of the uncertainties 

present, the Assistant must decide which uncertainties to 

communicate to the users and how to communicate them. The 

actions are guided by the uncertainty communication policy. Given 

the state of the art with perception and recognition, uncertainties 

generally abound in situated systems, to a much larger degree than 

in human-human interaction. For instance, the Assistant will be 

confused much more often than a human would be about where a 

person is, whether they are still engaged, and who is speaking to 

whom. Thus, it may not be useful and could even appear unnatural 

if all uncertainties that arose were communicated. The uncertainty 

communication policy judiciously selects among multiple 

uncertainty states that may exist at any given time, and coordinates 

the production of corresponding communicative behaviors across 

time. This must be done in a manner that focuses the effort on the 

uncertainties that are most critical to the task at hand, while 

working to keep the interaction natural and useful. In the most 

general sense, the policy must take into account not only the 

instantaneous joint uncertainty state over all variables, but the 

history and dynamics of the uncertainty state.  

In an effort to alleviate challenges with coordination between 

verbal and nonverbal behaviors for communicating uncertainty, we 

structured the uncertainty communication policy into two sub-

policies: (1) a speaking policy selects and triggers verbal dialog 

acts, whose production may be accompanied by synchronized 

nonverbal gestures, and (2) a listening policy selects and triggers 

nonverbal gestures that communicate uncertainty when the agent is 

not speaking. We now describe each of these components. 

4.2.1 Speaking Policy 
The task of a speaking policy is to trigger verbal dialog acts that 

alert users about uncertainty and attempt to resolve grounding 

failures. Given the current world state and joint uncertainty state, 

every time the system is about to take a turn, the speaking policy 

may decide to produce a dialog act, i.e. a set of verbal utterances, 

coupled with nonverbal behaviors, that communicates and attempts 

to resolve a given uncertainty. This is a two-step process. In the first 

step, a dialog act is constructed, specifying the semantic content 

that is being communicated (a semantic representation of the 

prompt, including the domain-specific information communicated 

or requested), a set of addressees (users at whom the act will be 

addressed), and an uncertainty communication action that captures 

the uncertainty states being communicated and the set of resolving 

users, i.e., users expected to be involved in the resolution of these 

uncertainties. In a second step, the dialog act is mapped into a 

lexical form (prompt) accompanied by nonverbal behaviors, which 

are then rendered via the embodied agent. 

In the most general case, speaking policies produce dialog acts that 

aim to clarify uncertainties over concepts, so the uncertainty 

communication action will typically reflect a Concept uncertainty 

state. As previously described, the Concept uncertainty state may 

in turn point to other uncertainties as its sources. This 

representation of uncertainty sources enables the speaking policy to 



construct a more refined rendering of the dialog act that 

communicates not just general uncertainty about a concept, but also 

indicates the suspected sources of this uncertainty. For instance, if 

the source of the Concept uncertainty is low recognition 

confidence, i.e., SpeechInputContents uncertainty, the policy may 

trigger a dialog act requesting a confirmation or clarification. 

Another example, discussed in Section 5, has SpeechInputSource 

uncertainty attached as source of the Concept uncertainty. In this 

case, the speaking policy can trigger a dialog act that points to the 

problem (“Sorry, I can’t tell who is speaking…”) and asks for a 

clarification (“Which one of you said they were John?”) 

The set of resolving users specified as part of the uncertainty 

communication action is usually the same as the set of addressees; 

the system communicates the uncertainty to people who are 

expected to assist with its resolution. There are counter-examples, 

however. Sometimes concepts are not elicited from the users, but 

may be updated from external knowledge sources, e.g., information 

about the owner’s whereabouts and expected return time. When 

such information is uncertain, the uncertainty communication 

action does not specify any resolving users. As such, the produced 

verbal utterance and nonverbal behavior communicate the 

uncertainty in a way that does not explicitly solicit external help, 

for instance by producing a confused expression accompanied by a 

gaze avert (see example from Section 5.) 

4.2.2 Listening Policy 
The listening policy enables the system to communicate about 

uncertainty nonverbally, during listening periods, without 

committing to verbal dialog acts. This is in accordance with the 

principle of least joint effort in grounding [1], which states that 

partners in a conversation expend the minimal effort required to 

achieve mutual ground. 

In general, the listening policy maps the various uncertainty states 

to certain nonverbal behaviors. For example, partial hypotheses 

generated by the speech recognizer during a user utterance may 

already indicate uncertainty about speech contents, as the utterance 

is in progress. Based on this, the listening policy can trigger a 

corresponding nonverbal expression of straining to hear, in an 

attempt to convey the uncertainty and also potentially shape future 

user behavior – in this case, speak more clearly. Similarly, a 

FaceTracking uncertainty is mapped to a straining to see 

expression, and so on. The set of expressions we have currently 

implemented is described in the next section. 

When multiple uncertainties occur simultaneously, the listening 

policy must select which one to attend to. The prioritization is done 

based on two criteria. First, the system considers it more important 

to communicate uncertainty about things said or done by users who 

are currently involved in the interaction. The listening policy 

therefore prioritizes uncertainties pertaining to engaged users over 

ones pertaining to bystanders. Second, it is more critical to resolve 

uncertainties about communicative processes that are more 

fundamental to supporting the interaction. The listening policy 

therefore prioritizes uncertainties on the lower levels in the 

communicative stack (Table 1). 

The listening policy also considers history when deciding whether 

it communicates about a particular uncertainty state. Specifically, 

we prevent excessive nonverbal feedback about the same 

communicative problem by using a simple principle: only one non-

verbal communicative behavior is produced per listening stage for 

each uncertainty state.  

4.3 Behaviors 
Policies coordinate the production of verbal utterances and 

nonverbal behaviors to signal uncertainty. Nonverbal behaviors are 

constructed by coordinating facial expression changes, postural 

shifts, and eye gaze. In this section we provide a brief overview of 

the behaviors supported in our current implementation and explain 

the coordination mechanisms. 

4.3.1 Facial Expressions and Posture 
To support the production of nonverbal behaviors, we have 

developed a set of six predefined facial expressions: StrainToHear, 

StrainToSee, StrainToPerceive, Bewildered, Confused, 

Understood. These expressions were authored by a professional 3D 

artist, who was guided by his intuitions about human motion and 

prior literature on nonverbal expressions of uncertainty [21, 22]. 

Each expression includes both facial movements and posture 

changes. The expressions are parameterized by a continuous 

intensity score in the 0-1 interval. At the lower level, the animation 

procedure for each expression constructs a set of animation curves 

that smoothly animate the agent’s facial expression and posture at 

the specified intensity. The construction of these curves involves a 

certain degree of randomization, so facial actions and posture shift 

directions are not always the same, even when the expression is 

triggered with the same intensity. Figure 1 shows the peak points 

of the six predefined expressions, applied at intensity 0.7. 

The performance of nonverbal behaviors is carried out via a 

sequence of expression intensity updates. For listening policies, 

these updates are set to happen at predefined times. For example, 

when the listening policy executes the behavior for communicating 

Engagement uncertainty towards an engaged participant, the 

behavior first applies the Bewildered expression at intensity 0.15, 

then after 2.0 seconds it increases the intensity of the expression to 

0.3. For speaking policies, expression changes are synchronized 

with verbal utterances via tags embedded into the prompts that can 

specify starting points, duration and intensities for expressions. 

4.3.2 Eye Gaze 
Apart from facial expressions and posture changes, the nonverbal 

uncertainty communication behaviors also control eye gaze. This is 

a particularly important affordance in multiparty interaction, as it 

enables the agent to unambiguously indicate addressees of 

communicative acts [23]. In the implementation, the agent relies on 

gaze to communicate uncertainty towards or to solicit help from 

specific participants. 

Addressees for communicative acts about uncertainty are generally 

chosen on the basis of utility; the system conveys uncertainty to 

participants who are most likely to assist with resolution. In 

practice, this can mean gazing towards participants who are 

StrainToHear StrainToSee StrainToPerceive Bewildered Confused Understood

Figure 1. Nonverbal expressions of uncertainty. 



believed to be “responsible” for uncertainty in the first place. For 

example, when there is SpeechInputContents uncertainty about an 

utterance, the non-verbal feedback produced by the listening policy 

is accompanied by gaze towards the user who is the source of the 

utterance. In other cases, uncertainty signals are addressed at 

multiple parties; an example is the dialog act about 

SpeechInputSource uncertainty presented in Section 5. On the other 

hand, informing acts that communicate a Concept uncertainty not 

arising from the communicative process are accompanied by 

averted gaze (see example in Section 5), as the agent does not 

expect users’ help in its resolution. 

5. EXAMPLE 
We implemented the methodology described above within a 

previously developed infrastructure for physically situated, spoken 

language interaction used to construct the Assistant [24]. We 

demonstrate the operation of the implementation with a sample 

interaction with the Assistant. In the scenario, two people arrive for 

a meeting with Zack, the Assistant’s owner. The Assistant knows 

about the meeting from Zack’s calendar, but only one person is 

expected to arrive for that meeting. In addition, Zack himself is not 

there at the moment. Both of these facts coupled with ambiguity in 

verbal interactions lead to various forms of uncertainty within this 

short interaction. This scenario was constructed to illustrate the 

various functional aspects of the proposed methodology. A trace of 

the interaction with relevant key frames is shown in Figure 2 and a 

video is available at http://1drv.ms/1uwhfrm. 

At the beginning of the interaction, two participants enter in the 

space in front of the Assistant, as they approach Zack’s office. They 

do not directly engage with the Assistant, rather they peer into the 

office (located to the left). During this time (segment A) the 

engagement inference model indicates that the probability that the 

participants are trying to engage is in the middle range, which leads 

to an increase in the uncertainty scores about engagement for both 

users – see Engagement scores, Figure 2.A. As the Assistant has 

not yet engaged in a conversation, the listening policies, based on 

the high uncertainty state, activate and trigger a Bewildered 

expression (Figure 2.A.1), which persists for a few seconds (Figure 

2.A.2). Several seconds later, as participants turn their attention and 

orient towards the system, uncertainty about engagement intention 

dissipates, and the system begins the interaction (Figure 2.A.3).  

Later in the dialog (segment B), the Assistant tries to determine if 

one of the participants is the person expected for the 2 o’clock 

meeting (captured by the concept IsPersonOnCalendar), by asking: 

“Is one of you John?” The left participant responds “Yes”. As the 

utterance is being produced, information from the sound source 

localizer is used to infer which participant is speaking. As the 

participants are close together, there is high uncertainty about the 

utterance source (Figure 2.B, SpeechInputSource score, pink 

graph). Throughout the production of the utterance, the system is 

listening; the listening policy activates (Figure 2.B.1) and responds 

to the SpeechInputSource uncertainty by triggering the Bewildered 

expression at a low intensity. Once the utterance finishes, while its 

contents are correctly understood, because the utterance source is 

uncertain a Concept uncertainty state for IsPersonOnCalendar is 

constructed that points to the lower level SpeechInputSource 

uncertainty state as its source. The speaking policy constructs an 

appropriate grounding act that both points to the source of the 

problem “Sorry, I can’t tell who is speaking when you stand so 

close together”, and requests a clarification “Which one of you said 

they’re John?” The production of this verbal utterance is coupled 

with a nonverbal Bewildered expression which temporally extends 

and increases the intensity of the Bewildered expression already 

started by the listening policy (Figure 2.B.2). Furthermore, since 

this grounding act is directed towards both participants, the 

Assistant’s gaze shifts between them throughout the production of 

these utterances (see System Gaze in Figure 2.B).  

Informed by the agent about the speech source inference issue, 

participants move apart and the left participant responds “I did.” 

(Figure 2.B.3) The utterance is recognized with fairly low 

confidence, but sufficient for current purposes. This time there is 

little SpeechInputSource uncertainty, and the Assistant considers 

the IsPersonOnCalendar concept grounded. The speaking policy 

first triggers a verbal grounding act that presents evidence of 

understanding, and then continues the interaction. The 

understanding act is rendered by saying “Right!” coordinated with 

a nonverbal Understood behavior, rendered as a head-nod and 

confident smile (Figure 2.B.4). 

Next, the Assistant tries to determine whether the participant on the 

right will be joining the meeting (Segment C). At this point the 

participants move slightly back and start speaking softly to each 

other. As time elapses and the Assistant does not receive an 

utterance, the floor inference model leads to increased uncertainty 

in the system about whether any of the participants took the floor 

(see FloorDidAnyUserTake score, Figure 2.C.1). The listening 

policy responds by beginning a Bewildered expression at low 

intensity (Figure 2.C.1). Simultaneously, uncertainty about 

Engagement also increases. With both uncertainties present, the 

engagement issue takes precedence–as it is on a lower level of the 

communicative stack–and the corresponding policy continues the 

existing Bewildered expression at low intensity (Figure 2.C.2).  

Eventually, after enough time has elapsed with no contribution 

detected from the users, the system decides to take the turn. The 

speaking policy checks the Engagement uncertainty for each user 

and, seeing that it is high for both, plans a dialog act that 

communicates the system’s uncertainty: the Assistant produces a 

filled pause “So…” (Figure 2.C.3.) Note that, at the moment that 

the Assistant takes the turn, the FloorDidAnyUserTake uncertainty 

collapses, as now the system has the floor. As the participants start 

turning back towards the system, the Engagement uncertainty for 

the right participant is reduced (Engagement score, dark red graph), 

which triggers the next system contribution. The 

UserJoiningMeeting is still not grounded, and in this case the 

speaking policy produces a clarification request for that concept, 

accompanied again by an extension of the Bewildered expression.  

After the participant on the right responds, the Assistant informs 

the participants that the owner might be running late (segment D). 

The dialog act (Figure 2.D.1) presents the concept 

OwnerShortReturn, which is ungrounded and has a high Concept 

uncertainty score (Figure 2.D, Concept score, green plot). The 

verbal utterance reflects the agent’s uncertainty (“I think Zack is 

running a little late.”) and is coordinated with the production of a 

nonverbal Confused expression (Figure 2.D.2). The dialog act is 

targeted at both participants, but the system does not solicit help 

from either of them to resolve the Concept uncertainty. For that 

reason the Confused expression is accompanied with a coordinated 

gaze aversion gesture, where the Assistant’s gaze is directed 

upwards, away from the participants (indicated by the gray region 

on System Gaze track in Figure 2.D) 

6. CONCLUSION  
We discussed key uncertainties that can arise in physically situated 

interactive systems, explored methods for endowing a system with 

the ability to reflect about and share its uncertainties with people, 

and characterized the general challenge of identifying and resolving 

key uncertainties. We described a specific implementation based on 

http://1drv.ms/1uwhfrm
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Figure 2. Trace of a demo interaction. (Top) System and user utterances, uncertainty policy activities. (Middle) Interaction 

segments, highlighting uncertainty scores (color-coded by the object of uncertainty; purple – right user; blue – left user; green – 

both users or concept), policy execution (light yellow – listening; dark yellow – speaking), nonverbal expression intensity, and 

system gaze (purple – right user; blue – left user; grey – averted gaze). (Bottom) System view and agent. In system view images, red 

dot is the agent’s gaze target, yellow arrows indicate the participants’ attention direction, while yellow lines show engagement. 



a representation that captures both the magnitude and sources of 

uncertainty. We presented policies to coordinate the production of 

verbal utterances and nonverbal behaviors to communicate the 

system’s uncertainties to the conversational participants and to 

enlist their help in resolving them. We illustrated the functionality 

of the proposed approach with a trace from an example interaction.  

The described implementation, while still preliminary, provides a 

foundation for future developments and experimentation. 

Extensions to the approach include introducing uncertainty states 

for other inferences in the system, developing more sophisticated 

blame-assignment models to identify and communicate uncertainty 

sources, building robust, utility-driven policies that take into 

account the dynamics of uncertainty over time, and explicitly 

computing expected costs of persisting or resolving uncertainties 

when deciding whether to communicate about them. Finally, we 

have found that even subtle changes in the rendering of nonverbal 

expressions can have significant influence on the meaning seen in 

the signals by people, so we wish to further explore the rich lexicon 

of nonverbal uncertainty behaviors and their link to utterances. 

The motivation for the work reported here lies in the hypothesis 

that, using the affordances of embodiment and communicating 

about uncertainty not only explicitly, but via the broader nonverbal 

channel, can lead to increased naturalness and efficiency in 

interaction. We expect that, in communicating its internal states of 

uncertainty, an agent may better convey to users its limitations, and 

implicitly shape their behavior so as to optimize interactions over 

time. We expect that such capabilities may have significant 

influence on user empathy and on the overall perceptions of the 

system. User studies will be required to test these hypotheses. 

Finally, we note that uncertainty is only one factor in the successful 

grounding during the volley of contributions in conversational 

dialog. Other aspects include signaling about expectation and 

surprise, as well as expressing confidence and eureka following the 

resolution of key uncertainties, e.g., the Understood expression 

used in the example.  We plan to continue work to understand and 

integrate other signals that may be useful in the engagement and 

overall grounding of communication and collaboration.  We 

believe that the capability to express such rich internal states 

verbally and nonverbally, in stream with the evolving situation, will 

come to serve a central role in human-computer interaction.  
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