
A Graph-Theoretic Analysis of Information ValueKim Leng PohDepartment of Industrial and Systems EngineeringNational University of SingaporeKent Ridge, Singapore 119260isepohkl@leonis.nus.sg Eric HorvitzMicrosoft ResearchRedmond, WA 98052-6399horvitz@microsoft.comAbstractWe derive qualitative relationships about theinformational relevance of variables in graph-ical decision models based on a considera-tion of the topology of the models. Speci�-cally, we identify dominance relations for theexpected value of information on chance vari-ables in terms of their position and relation-ships in inuence diagrams. The qualitativerelationships can be harnessed to generatenonnumerical procedures for ordering uncer-tain variables in a decision model by theirinformational relevance.1 IntroductionE�orts to elucidate qualitative relationships amongvariables in Bayesian networks and inuence diagramsare motivated largely by the promise of identifying ef-�cient nonnumerical methods for solving problems ofbelief and action. In this paper, we add to the growingfamily of qualitative analyses and results (Wellman,1988; Wellman & Henrion, 1991; Leong, 1992) for de-cision making by demonstratingmethods for determin-ing an ordering over the expected value of perfect in-formation (EVPI) for chance variables in an inuencediagram, without resorting to numerical computation.The expressions we develop can be employed to char-acterize qualitatively the value of information for vari-ables in an inuence diagram based solely on a consid-eration of topological relationships among variables.The results can be harnessed to make qualitative de-cisions about relative value of gathering information,and can provide handles for directing computationale�ort to the most important variables in a decisionmodel at execution time. The results also hold promisefor applications in both supervised and unsuperviseddecision-model construction and re�nement.The EVPI for an uncertain variable in a decision model

is the expected value of acquiring perfect informa-tion about the value of that variable (Howard, 1966b,1967). Determining the EVPI and the cost of infor-mation tells us whether the bene�ts of gathering ad-ditional information before making a decision is worththe costs of acquiring the information. EVPI also canbe used to identify the most valuable information toacquire for a set of uncertain variables.Our attention was drawn to the qualitative charac-terization of EVPI by our previous investigation ofthe expected value of re�nement (EVR) for di�er-ent dimensions of decision-model completeness (Poh& Horvitz, 1993). In that work, we developed ex-pressions for several classes of EVR, for characteriz-ing the value of re�ning di�erent aspects of the struc-ture and quantitative relationships in decision models.We showed how these classes of EVR could be usedto make decisions about allocating e�ort to enhanc-ing the �delity or completeness of a decision model,such as to the tasks of assessing probability and utilitydistributions, deliberating about the discretization ofthe variables, and considering as yet unmodeled eventsand dependencies. In related work, we applied EVRto control the construction of categorization models(Poh, Fehling, & Horvitz, 1994).We have pursued tractable EVR analyses in part tocharacterize e�ciently the inuence of additional con-ditioning events that are not yet integrated into adecision model undergoing re�nement. If we couldqualitatively analyze the relative inuence of variablessolely by considering the appropriate topological po-sition of those variables, we would be able to focusmodel-re�nement e�ort on the most important newevents to model.2 Information and ActionInuence diagrams are a graphical representation ofa decision problem �rst de�ned by Howard and col-leagues nearly twenty years ago (Miller, Merkhofer,
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UtilityFigure 1: An inuence diagram for a simple decisionmodel.& Howard, 1978; Owen, 1978; Howard & Matheson,1981). To build a foundation for the qualitative anal-ysis of the value of information presented later in thepaper, we will present several essential relationshipsbetween the variables in a decision model and theexpected value of information.2.1 A Simple Decision ModelLet us start with a simple decision model, M , repre-sented by the inuence diagram displayed in Figure 1.This model has one decision variable A and considersthe relevance of one uncertain or chance variable X.Let a1; a2; : : : ; am be the list of decision alternativesfor A. Let x1; x2; : : : ; xn be the set of mutually exclu-sive and exhaustive possible world states for X. Letp(X)1 be the probability distribution for X such thatPni=1 p(xi) = 1. Let u(ak; xi) represent the utility tothe decision maker if action ak is taken and the out-come is xi. The expected utility of taking action akis EU (ak) = nXi=1 p(xi)u(ak; xi) (1)Given decision model M , the optimal action A� isA� = argmaxk nXi=1 p(xi)u(ak; xi) (2)We denote the maximum expected utility to the de-cision maker, based on uncertainties, possible actions,and outcomes represented in the decision modelM , asEU (M ) = maxk nXi=1 p(xi)u(ak; xi) (3)It is possible to assess the utility of taking action akcoupled with the outcome event xi via direct assess-ment using lottery-indi�erence methods (Farquhar,1We use p(X) as shorthand for p(Xj�), where � repre-sents implicit background information. We assume that allprobability distributions are assessed based on backgroundinformation in addition to any information that is explic-itly speci�ed.
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UtilityFigure 3: A model representing the observation of anuncertain variable X prior to taking action A.1984). In practical decision analyses, however, we of-ten use an intermediate value scale to capture the de-sirability of an outcome, or any combination of out-comes. A utility function over the value scale is thenused in the analysis.Figure 2 shows the possible steps involved in prefer-ence assessment. A common measure is the equiva-lent dollar value scale, also called the certain equiva-lent . We denote the certain equivalent of ak and xiby ce(ak; xi), and the utility function by u(ce(ak; xi)).In general, we expect the utility function u(ce) to bemonotonically non-decreasing in the value of ce, i.e.,the decision maker always prefers more to less. Thecertain equivalent for the decision maker for modelMis ce(M ) = u�1[EU (M )] (4)Consider the situation where the value of X is ob-served prior to taking action A as indicated by theinformation arc from x to A in Figure 3. We denotethis decision model by MAjX . The expected utility forMAjX isEU (MAjX ) = nXi=1 p(xi)maxk u(ak; xi): (5)Lemma 1 Given a basic decision model M with a de-cision variable A, an uncertain variable X, and utilityfunction u(A;X),EU (MAjX ) � EU (M ) (6)



where EU (M ) is the maximum expected utility for thesimple decision model and EU (MAjX) is the maximumexpected utility for the same model with perfect infor-mation on A prior to decision A.Proof : EU (MAjX ) = Pni=1 p(xi)maxk u(ak; xi) �maxkPni=1 p(xi)u(ak; xi) = EU (M ). The inequalityabove follows from the fact that, if we sum each col-umn in a two dimensional matrix and �nd the maximalvalue, then we will never exceed the result from sum-ming over the maximal value from each of the columns.Lemma 1 tells us that a decision maker's utility willnever be degraded by receiving and using perfect in-formation.2.2 Expected Value of Perfect InformationThe expected value of perfect information on X be-fore action A is the maximum amount that a deci-sion maker is willing to pay before he is indi�erent be-tween acquiring and not acquiring information on Xbefore taking action A (Howard, 1966b, 1967). Moreformally, the expected value of perfect information onX before action A, denoted EVPIM(AjX) is � whereXi p(xi)[maxk u(ce(ak; xi)� �)]= maxk Xi p(xi)u(ak; xi) (7)Note that the expected value of perfect informationof X with respect to decision A is generally not equalto the di�erence in expected utility with and with-out perfect information on X, i.e. EVPIM (XjA) 6=EU (MAjX )�EU (M ), except for the risk-neutral casewhere u(ce) = ce. A well-known result is that theexpected value of perfect information for any variablecannot be negative.Lemma 2 In a basic decision model M with a de-cision variable A and an uncertain variable X,EVPIM (AjX) � 0.Proof : Pi p(xi)[maxk u(ce(ak; xi) � �)]= maxkPi p(xi)u(ak; xi) where � = EVPIM (AjX).By Lemma 1 Pi p(xi)[maxk u(ce(ak; xi))] -maxkPi p(xi)u(ak; xi) � 0 Since the utility functionis monotonically non-decreasing in the certain equiva-lent values, it follows that, in order to make the termsin the formula for EVPI equal, we must have � � 0.In general, computing EVPI is an iterative process.However, if a decision maker's preferences satisfy a

speci�c property, then a closed-form solution for EVPIcan be derived. Let us explore this property. Supposea decision maker is faced with a situation whose possi-ble outcomes are s1; s2; : : : ; sn with probabilities p(si).The certain equivalent for the decision maker can becomputed as follows:ce = u�1(Xi p(si)u(si)): (8)The decision maker's preferences is said to exhibit thedelta property if the certain equivalent in this situa-tion is increased by � whenever the certain equiva-lents for all the outcomes are also increased by exactly� (Howard, 1970). That isce(Xi p(si)u(ce(si) + �)) = �+ ce(Xi p(si)u(si))(9)If the delta property is satis�ed, thenEVPIM (AjX) = ce(MAjX )� ce(M ): (10)The delta property greatly simpli�es the computationof EVPI by taking the di�erence between the certainequivalent when there is free perfect information andthe certain equivalent when there is no information.In real-world applications, we must consider the spe-ci�c costs of information in addition to the value ofinformation. The net expected value of perfect infor-mation (NEVPI) is the di�erence between the valueof perfect information and the cost of acquiring thatinformation. The NEVPI of a chance variable X withrespect to a decision A in decision model M isNEVPIM (AjX) = EVPIM(AjX) � Cost(X) (11)where Cost(X) is the cost of information about thevalue of X.3 Decision-Model Topology andInformation ValueWe �rst present a qualitative analysis of individualnodes in general decision model structures based onindependence or d-separation (Pearl, 1988) of chancenodes from the value node. Then, we examine specialcases of chain structures of chance nodes and showthe general attenuation of the value of information forchance variables with their increasing distance fromthe value node. Finally, we generalize the results tovalue of information analyses involving sets of nodes.We denote a graphical decision model by the 4-tuple(C;D; V;E) where C is the set of chance nodes, D isthe set of decision nodes, V is the value node, andE is set of directed arcs such that (X;Y ) 2 E if and



only if nodes X and Y are connected in the graphicaldecision model. The set of direct successors S(X), ofnode X 2 C [D is de�ned asS(X) = fY 2 C [D [ fV gj(X;Y ) 2 Eg: (12)Similarly, the set of direct predecessors �(X), of nodeX 2 C [D [ fV g is de�ned as�(X) = fY 2 C [Dj(Y;X) 2 Eg: (13)We say that a list of n nodes X1; X2; : : : ; Xn forms adirected chain if and only if, for i = 1; : : : ; n� 1, Xi 2�(Xi+1). We say that a list of n nodes X1; X2; : : : ; Xnforms a chain if and only if, for i = 1; : : : ; n� 1, Xi 2�(Xi+1) [ S(Xi+1). If there is a directed chain fromnode X to node Y , then Y is said to be a descendantof X and denote the set of all descendants of X byD(X). We denote the set of descendants of node Xby D(X), Similar, we say that X is an ancestor of Y ifand only if Y is a descendant of X. We denote the setof ancestors of Y by A(Y ). Finally, two nodes X andY are said to be adjacent if (X;Y ) 2 E or (Y;X) 2 E.3.1 Independence and Information ValueWe formalize the necessary topological relations be-tween the chance nodes, the decision node, and thevalue node in general decision models based on (con-ditional) relevance which can be conveniently revealedusing d-separation. d-separation is a graphical crite-rion for identifying independence in directed acyclicgraphics (DAG) (Pearl, 1988; Pearl, Geiger, & Verma,1990). If X, Y , and Z are three disjoint subsets ofnodes in a DAG, then Z is said to d-separate X fromY if there is no path between a node in X and a nodein Y along which the following two conditions hold:(1) every node with converging arcs is in Z or has adescendant in Z and (2) every other node is outside Z.When each of the disjoint set of nodes contains onlya single node, we say that one node d-separates theother two nodes. The d-separation criterion providesthe necessary and su�cient conditions for probabilisticconditional independence. Given any three uncertainvariablesA, B, and C, we use the notationA ? BjC toassert that A is conditionally independent of B givenC, i.e., C d-separates A and B, and A ? B when A isunconditionally independent of B.Theorem 1 Let M = (C;D; V;E) be a general deci-sion model, A 2 D a decision node, X 2 C a chancenode. If X ? V jA thenEVPIM (AjX) = 0 (14)Proof : Given that X ? V jA, we haveEU (MAjX ) = Pi p(xi)maxk u(ak) = EU (M ). HenceEVPIM(AjX) = 0.
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1Figure 4: Decision model with chance nodes in a chaincon�guration.Theorem 1 allows us to identify nodes that have novalue of information with respect to a decision node.These zero-value chance nodes are ancestors of the de-cision node and are not connected to the value nodeexcept via the decision node.Theorem 2 Let M = (C;D; V;E) be a general deci-sion model, A 2 D a decision node, X 2 C and Y 2 Cbe distinct chance nodes. If Y ? V jX, and X and Yare not descendants of A, thenEVPIM (AjX) � EVPIM (AjY ): (15)Proof : X and Y are not descendants of A im-plies that EU (MAjY ) = Pj p(yj)[maxk u(ak; yj)] andEU (MAjX ) =Pi p(xi)[maxk u(ak; xi)]. Y ? V jX im-plies that u(ak; yj) = Pi p(xijyj)u(ak; xi). ThereforeEU (MAjY ) = Pj p(yj)[maxkPi p(xijyj)u(ak; xi)].By rewriting p(xi) as Pj p(xijyj)p(yj), and letting�x = EVPIM (AjX) and �y = EVPIM (AjY ) wehave Pj p(yj)[maxk[Pi p(xijyj)u(ce(ak; xi) � �y)]] =EU (M ) and Pj p(yj)Pi p(xijyj)[maxk u(ce(ak; xi) ��x)] = EU (M ). The last two equations implythat Pj p(yj)Pi p(xijyj)[maxk u(ce(ak; xi) � �x)] =Pj p(yj)[maxk[Pi p(xijyj)u(ce(ak; xi) � �y)]]. Forany j, Lemma 1 implies Pi p(xijyj)maxk u(ak; xi) �maxkPp(xijyj)u(ak; xi). Since the utility function uis monotonically non-decreasing in the certain equiva-lent values, it follows that �x � �y in order for the lastequation to hold.Theorem 2 formalizes the intuition that the value ofinformation for a chance node generally increases withits proximity to the value node. For example, in thecase of decision models with a directed chain of chancenodes as shown in Figure 4, we can deduce that, if Xiand Xj are two distinct chance nodes such that i > j,then EVPIM (AjXi) � EVPIM (AjXj) (16)In a general inuence diagram, the respective graphi-cal distances of two chance nodes from the value nodeis not su�cient to characterize the relative order oftheir values of information. However, we can employd-separation to identify an ordering over the EVPI of



these chance nodes. In particular, we can show that, ifone chance node is d-separated from the value node byanother chance node, then we can characterize the rel-ative value of information of these nodes with respectto any decision node, so long as the chance nodes arenot descendants of the decision node.The requirement that chance nodes not be descendantsof decision nodes is addressed by forcing inuence dia-grams to be formulated (or reformulated) into canoni-cal form (Howard, 1990). A graphical decision model isin canonical form with respect to decision and chancenodes if no chance nodes are descendants of decisionnodes. Howard developed the notion of formulating adecision problem in canonical form to address prob-lems with computing the informational value in in-uence diagrams. If a decision model M is not incanonical form with respect to nodes D and X, thenEVPIM(DjX) is unde�ned since a loop is created inthe EVPI analysis.In general, any valid decision problem can be refor-mulated into Howard canonical form through a proce-dure of converting descendant chance nodes into deter-ministic nodes and then introducingmapping variableswhich are not descendants of the decision node. Forexample, suppose thatM is not in canonical form withrespect to decision node D and chance node X, i.e.,X 2 S(D). We can reformulateM into canonical formby converting X into a deterministic node (denotedby Xd), and by introducing a mapping variable X(D)such that �(Xd) = fD;X(D)g: In this new form, it ispossible to compute EVPIM(DjX(D)). More detailson canonical form for decision models can be found inHoward (1990) and in Heckerman and Shachter (1995).Finally, we note that for decision models formulated incanonical form, we are free to use d-separation crite-rion to identify partial orderings of EVPI values withrespect to that decision node.Corollary 1 Let M = (C;D; V;E) be a general deci-sion model in canonical form with respect to decisionnode A 2 D. For any chance nodes X and Y 2 C, ifY ? V jX, thenEVPIM (AjX) � EVPIM (AjY ): (17)3.2 Generalizing to Sets of Chance andDecision NodesWe can generalize the results from a consideration ofsingle chance and decision nodes to sets of nodes.2 Theresults can be generalized as follows:2We thank Michael Wellman and Chaolin Liu of theUniversity of Michigan for suggesting this generalizationin their comments on an earlier version of this paper (Poh& Horvitz, 1995).

Theorem 3 Let M = (C;D; V;E) be a decisionmodel. Suppose X � C is a set of chance nodes andA � D is a set of decision nodes. If X ? fV gjA, thenEVPIM (AjX) = 0 (18)where EVPIM (AjX) is the joint expected value of per-fect information on all chance variables in X.Proof : The proof is identical to that for Theorem 1with replacement of all single nodes by a correspond-ing set of nodes, all (conditional) probabilities of singlenode by the joint (conditional) probabilities of the cor-responding set of nodes, and all summationsperformedover every node in the set.Theorem 4 Let M = (C;D; V;E) be a decisionmodel. Suppose X � C and Y � C are sets of disjointchance nodes and A � D is a set of decision nodes. IfY ? fV gjX, X \D(A) = ; and Y \D(A) = ;, thenEVPIM(AjX) � EVPIM(AjY ) (19)where EVPIM (AjX) and EVPIM (AjY ) denote thejoint expected values of perfect information on allchance variables in X and Y respectively.Proof : The proof is identical to that for Theorem2 with replacement of all single nodes by their corre-sponding set of nodes, all (conditional) probabilitiesof single node by the joint (conditional) probabilitiesof the corresponding set of nodes, and all summationsperformed over every nodes in the set.Corollary 2 Let M = (C;D; V;E) be a general deci-sion model in canonical form with respect to a set ofdecision nodes A � D. For any disjoint sets of chancenodes X and Y � C, if Y ? fV gjX thenEVPIM (AjX) � EVPIM (AjY ): (20)4 Identifying EVPI OrderingsWe can use Theorems 2 or 4 to determine all pos-sible orderings of EVPI values that can be revealed.We need not embark on the combinatorial approach ofidentifying each possible ordering separately; we canderive orderings by taking advantage of the transitiv-ity property of the � relation.4.1 Procedure for Revealing EVPI OrderingsUsing Theorem 2, we can e�ciently identify EVPIorderings over chance variables by inspecting chancenodes that are either adjacent to one another or arethat are separated by a decision node. We construct
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X7Figure 5: A decision model in canonical form.a directed graph representing partial orderings of theEVPI values for the chance nodes in the decision modelwith respect to a speci�c decision node. This directedgraph is a subgraph of the original decision model. Tobuild this graph, we proceed as follows:1. Given a graphical decision model M =(C;D; V;E), let A be the decision node with re-spect to which EVPI values are to be computed.ReformulateM in canonical form w.r.t. A if nec-essary.2. Let G = (C; ;) be the completely unconnectedgraph comprising only of all the chance nodes ofthe canonical decision model.3. For each chance node X 2 C, if 9Y 2 C s.t.Y 2 S(X) OR Y 2 S(A)9A 2 S(X), then if Yd-separates V fromX, add a directed arc fromXto Y in G.4. G represents a partial ordering of EVPI values ofthe chance nodes in M with respect to decisionnode A.4.2 ExamplesLet us consider some examples of the application ofthis procedure. Consider the decision model in canon-ical form with a single decision node and seven chancenodes as displayed in Figure 5. Using the short nota-tion I(Xi) to mean EVPIM (XijA), we can derive thefollowing weak orderings: I(X4) � I(X3), I(X5) �I(X2), I(X6) � I(X5), and I(X7) � I(X5). TheEVPI ordering graph is displayed in Figure 6. Notethat this is a subgraph of the original inuence dia-gram.Next, consider a model with multiple decision nodes asshown in Figure 7. Note that this model is in canonicalform with respect to both A1 and A2. Our procedureproduces the ordering of EVPI values with respect tothe decision node A1 as shown in Figure 8. Similarly,the ordering of EVPI values with respect to the deci-sion node A2 is shown in Figure 9. Notice that in thiscase, EVPIM (A2jX4) = 0.
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XFigure 7: A decision model with multiple decisionnodes.4.3 Extension to Net Value of InformationWe can extend the qualitative results on EVPI tostatements about the NEVPI. If the cost of acquir-ing information is equal for all chance variables, theordering of variables by NEVPI is identical to the or-dering for EVPI. For the more general situation ofheterogeneous costs for information, we can employ aprocedure similar to that presented earlier, yielding apartial ordering of NEVPI values in a decision model.We can specify additional relationships about NEVPI,given the cost of information and an EVPI ordering.Theorem 5 Let M = (C;D; V;E) be a deci-sion model, A 2 D a decision node, X 2C and Y 2 C be distinct chance nodes. IfEVPIM (AjX) � EVPIM (AjY ) and Cost(X) <Cost(Y ) then NEVPIM (AjX) > NEVPIM (AjY ).The result can be used to prioritize information gath-ering, or to order the attention given by a decisionanalyst to variables in a decision model drawn from aset of unassessed candidate variables.5 Opportunities for Real-WorldApplicationsThe qualitative relationships of the informational rele-vance of variables in a graphical decision model can beharnessed to make decisions about the relative value
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XFigure 9: The partial ordering of EVPIM(A2jXi) forthe decision model depicted in Figure 7.of expending e�ort to acquire information about vari-ables in a decision model, based solely on the topo-logical relationships in the model. Applications of themethods range from obvious, well-understood tasks tolonger-range research opportunities.In a straightforward application, a decision ana-lyst can employ the qualitative analyses during theinformation-gathering phase of a decision-analysis cy-cle (Howard, 1966a). For example, assume that ananalyst has constructed the decision model depictedin Figure 5 and is considering gathering informationto resolve key uncertainties. Which variables shouldbe examined �rst? In principle, the analyst couldcompute the EVPI values for all of the variables andchoose the variable with the highest expected value ofperfect information. However, armed with the resultsdescribed in this paper, the analyst could employ atopological analysis to eliminate candidate variables.For example, in the model depicted in Figure 5, ifNEVPIM (AjX7) < NEVPIM (AjX5), an analyst canrule out X7 as the next most important variable tofocus on. We can repeat this type of analysis to elim-inate other candidates.The results can be similarly used to identify an or-dering over the next best test to perform or informa-

tion to gather in decision-theoretic diagnostic systemssuch as the Path�nder system (Heckerman, Horvitz,& Nathwani, 1989; Heckerman, 1991). At any pointin a consultative session with such a system, there isan opportunity to gather more information. Quanti-tative analysis of EVPI for variables can be performedquickly in simple decision problems (Jensen & Liang,1994). However, evaluating the value of informationfor large sets of chance nodes and complex sequencesof decisions can be computationally costly. In prac-tice, approximation methods have been employed forcomputing EVPI for large problems. Approximationsfor EVPI include the popular use of relative entropyand related metrics (Ben-Bassat, 1978; Ben-Bassat &Teeni, 1984; Heckerman et al., 1989; Horvitz, Heck-erman, Ng, & Nathwani, 1989a). More recent ap-proximations have explored the use of the statisticalproperties of large samples to develop value of infor-mation approximations (Heckerman, Horvitz, & Mid-dleton, 1991). Our results may be useful in decision-theoretic diagnostic systems for providing an orderingover �ndings that are most useful for disciminatingamong hypotheses, with little or no numerical compu-tation at all.Moving beyond gathering information, the qualitativeanalysis of EVPI can be used to guide the re�nementof decision models. Ordering variables by EVPI canhelp to prioritize the e�ort allocated to re�ning speci�cvariables, de�nitions, and relationships in a decisionmodel. As we mentioned at the outset of this paper,our work on EVPI was an extension of earlier workon EVR for di�erent dimensions of decision-model re-�nement (Poh & Horvitz, 1993). The EVR measuresare analogs of the value of information. We can employthe relationships developed in this paper to control thesequencing of e�ort in model re�nement.A particularly promising application of automatedcontrol of model re�nement is the guidance of theknowledge-based construction of decision models.There has been growing interest in the automated con-struction of decision models by logical reasoning sys-tem (Breese, 1987; Wellman, 1988; Haddawy, Doan, &Goodwin, 1995; Goldman & Charniak, 1990). Thereis opportunity for combining the qualitative EVPI re-lationships with work on EVR to automate the controlof model construction in applications that employ au-tomated procedures for building and solving decisionproblems. Such methods hold particular opportunityfor such cases as building and solving decision modelsin time-critical situations (Horvitz, Cooper, & Heck-erman, 1989; Horvitz, 1990; Breese & Horvitz, 1990).The qualitative analysis of informational relevancecan also provide a set of handles for controlling andcharacterizing the error on results generated by in-



ference approximation procedures. The qualitativerelationships described in this paper, as well as re-lated results, have been harnessed recently in ongo-ing research on approximate Bayesian-network infer-ence (Liu & Wellman, 1996). Moving beyond prob-abilistic inference, there is opportunity to developutility-directed analogs of probabilistic inference al-gorithms for performing decision-theoretic inferencewith decision models. Having immediate access toan ordering over the informational relevance of vari-ables in a graphical decision model can be used tocontrol the focus of attention of approximation algo-rithms, with a goal of minimizing expected cost assoc-iated with the approximation. In pursuing utility-directed control, investigators may be able to lever-age earlier work on adapting Bayesian network algo-rithms to decision-theoretic inference in inuence dia-grams (Cooper, 1988; Peot & Shachter, 1991). Sev-eral di�erent classes of Bayesian network inference-approximation algorithms are potential substrates fordeveloping new approximation strategies that mightbe controlled by qualitative EVPI analyses. These in-clude algorithms that perform approximate inferenceby simplifying and sequentializing di�cult problemsvia operations on Bayesian networks such as search(Cooper, 1984), conditioning, (Horvitz, Suermondt, &Cooper, 1989b; Dagum & Horvitz, 1992) abstraction(Wellman & Liu, 1994), partial evaluation (Draper& Hanks, 1994), or pruning and clustering (Draper,1995).Another area of application of the methods is the guid-ance of experimentation and learning, given costly in-formation. To date, techniques for learning Bayesiannetworks and inuence diagrams from data focuslargely on the case where some static quantity of datais available for analysis (Cooper & Herskovits, 1991;Heckerman, 1995; Buntine, 1995). In real-world learn-ing, we must often consider the costs and bene�ts ofdi�erent kinds of data. In the general case, we areforced to make decisions about which data to gathernext, given the currently available data set and a deci-sion or set of decisions that must be made. The qual-itative relationships about informational value can beemployed in decisions about the most critical data togather, and about the most important model struc-tures and potential hidden variables to search over.6 Summary and ConclusionsWe have developed a qualitative analysis of EVPI ininuence diagrams. The methods provide an orderingover EVPI values for variables in an inuence diagrambased on the topological relationships among variablesin the model. We described a procedure for identifyinga partial order over variables in terms of their EVPI.
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