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ABSTRACT
We describe and evaluate methods for learning to forecast
forthcoming events of interest from a corpus containing 22
years of news stories. We consider the examples of identi-
fying significant increases in the likelihood of disease out-
breaks, deaths, and riots in advance of the occurrence of
these events in the world. We provide details of methods
and studies, including the automated extraction and gener-
alization of sequences of events from news corpora and mul-
tiple web resources. We evaluate the predictive power of the
approach on real-world events withheld from the system.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.1 [Artificial
Intelligence]: Applications and Expert Systems

General Terms
Algorithms, experimentation

Keywords
News corpora, predicting future news, learning from Web
content

1. INTRODUCTION
Mark Twain famously said that “the past does not repeat

itself, but it rhymes.” In the spirit of this reflection, we de-
velop and test methods for leveraging large-scale digital his-
tories captured from 22 years of news reports from the New
York Times (NYT) archive to make real-time predictions
about the likelihoods of future human and natural events of
interest. We describe how we can learn to predict the future
by generalizing sets of specific transitions in sequences of
reported news events, extracted from a news archive span-
ning the years 1986–2008. In addition to the news corpora,
we leverage data from freely available Web resources, in-
cluding Wikipedia, FreeBase, OpenCyc, and GeoNames, via
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the LinkedData platform [6]. The goal is to build predic-
tive models that generalize from specific sets of sequences of
events to provide likelihoods of future outcomes, based on
patterns of evidence observed in near-term newsfeeds. We
propose the methods as a means of generating actionable
forecasts in advance of the occurrence of target events in
the world.

The methods we describe operate on newsfeeds and can
provide large numbers of predictions. We demonstrate the
predictive power of mining thousands of news stories to cre-
ate classifiers for a range of prediction problems. We show
as examples forecasts on three prediction challenges: proac-
tive alerting on forthcoming disease outbreaks, deaths, and
riots. These event classes are interesting in serving as ex-
amples of predictions that can serve as heralds for attention
for guiding interventions that may be able to change out-
comes for the better. We compare the predictive power of
the methods to several baselines and demonstrate precisions
of forecasts in these domains ranging from 70% to 90% with
a recall of 30% to 60%.

The contributions of this work include automated abstrac-
tion techniques that move the level of analysis from specific
entities to consideration of broader classes of observations
and events. The abstractions enlarge the effective sizes of
training sets by identifying events as members of more gen-
eral sets of evidence and outcomes at higher-levels of onto-
logical hierarchies. For example, we can learn from news
data about events in specific countries (e.g., Angola and
Rwanda) to build classifiers that consider the likelihood of
events on a continent (e.g., Africa) or to regions character-
ized by particular demographic and geological properties.
The knowledge that Angola and Rwanda are elements of
the broader set of countries comprising Africa is extracted
from LinkedData.

As an example, the learning and inference methods can
be used to provide alerts about increases in the likelihood
of a forthcoming cholera outbreak within a specified hori-
zon. Cholera is a fast-paced infection causing over 100,000
deaths per a year, with a mortality rate exceeding 50% for
people with the ailment who do not receive treatment. With
prompt rehydration therapy, the mortality rate drops to less
than 1%. Alerts about inferred jumps in the likelihoods of
future cholera outbreaks based on the monitoring of news
stories could assist with the triaging of attention and plan-
ning effort. For example, inferred likelihoods of a cholera
outbreak over specific periods of time could guide proactive
designs for distributing fresh water in areas at raised risk.
The methods we describe might one day be used to continue
to monitor evolving news stories and to provide automated



alerting about the raised likelihood of outcomes of inter-
est. Such predictions could serve as adjuvants to existing
monitoring and communication services, such as the World
Health Organizations (WHO) Global Alert and Response
(GAR) system for coordinating responses to public health
emergencies1. In tests, we found that automated predictions
would have provided an alert a week in advance of several
of the outbreaks of cholera (Figure 6).

Experts such as epidemiologists who explore the relation-
ships between the spread of disease and natural disasters
make similar inferences. However, such studies are typically
few in number, employ heuristic assessments, and are fre-
quently retrospective analyses, rather than aimed at gener-
ating predictions for guiding near-term action. In contrast,
a computational system has the ability to learn patterns
from large amounts of data, can monitor numerous informa-
tion sources, can learn new probabilistic associations over
time, and can continue to do real-time monitoring, predic-
tion, and alerting on increases in the likelihoods of forth-
coming concerning events. Beyond knowledge that is easily
discovered in studies or available from experts, new relation-
ships and context-sensitive probabilities of outcome can be
discovered by a computational system with long tentacles
into historical corpora and real-time feeds. As an example,
the methods we describe identified a relationship in Angola
between droughts and storms that, in turn, catalyze cholera
outbreaks. Alerts about a downstream risk of cholera could
have been issued nearly a year in advance (Figure 1). Human
experts who focus on shorter time horizons may overlook
such long-term interactions. Computational systems can
consider multiple time granularities and horizons in pursuing
the probabilistic influences among events. Beyond alerting
about actionable situations based on increased likelihoods
of forthcoming outcomes of interest, predictive models can
more generally assist by providing guidance when inferences
from data run counter to expert expectations. It can be
valuable to identify situations where there is a significantly
lower likelihood of an event than expected by experts based
on the large set of observations and feeds being considered
in an automated manner. Finally, a system monitoring like-
lihoods of concerning future events typically will have faster
and more comprehensive access to news stories that may
seem less important on the surface (e.g., a story about a fu-
neral published in a local newspaper that does not reach the
main headlines), but that might provide valuable evidence in
the evolution of larger, more important stories (e.g., massive
riots).

2. EVENT PREDICTION
We assume that events in the real-world are generated by

a probabilistic model that also generates news reports corre-
sponding to these events. We use the text of news stories to
build an inferential model of the form P

(
evj(τ + ∆)

∣∣evi(τ)
)

for some future event evj at time τ + ∆ and past event evi
happening at time τ (e.g., today). For example, the model
learns that the probability of a news report about a drought
(evj) happening after a news report about a flood (evi) to
be 18%. This probability approximates the relationship be-
tween the two real-world events.

Given a target future event (such as cholera outbreak),
calculating this probability for every possible future time

1
http://www.who.int/csr/alertresponse/en/

February 17, 2006 January 26, 2007 January 30, 2007 

In deep drought,  
at 104 degrees,  
dozens of Africans  
are dying. 
 
“The worst drought to hit  
eastern Africa in decades…” 

Angola: death toll in storm at 71 
 
``Mozambique’s worst Zambezi  
river flooding has forced more than  
68,000 people from their homes,  
but the government said it did not yet  
need large-scale international aid... 
almost 27,000 flood refugees had been  
placed in 53 camps and nearly 42,000 more  
had fled rising waters and sought refuge elsewhere.'' 

Angola: Cholera cases rise sharply after floods 
 
“Cholera cases have surged after floods last week left thousands 
of people without clean drinking water and access to sewage Facilities” 

Figure 1: Example of likelihood of cholera rising af-

ter a drought followed by storms in Angola. Triangular

alert icons represent inferences of significant upswings in

likelihood of a cholera outbreak occurring within several

days.

τ + ∆ and every possible evi is an intractable problem. We
simplify the analysis by focusing on a small subset of event
sequence candidates that may be causally linked, and de-
fine sets of events evi that are linked to target events evj
in this manner. In particular, we define and extract from
the NYT archive news storylines—sets of topically cohesive
ordered segments of news that include two or more declar-
ative independent clauses about a single story. As an ex-
ample, the following events form a storyline: {(drought in
Africa, 02/17/2006), (storm in Rwanda, 01/26/2007), (flood
in Rwanda, 01/27/2007), (cholera outbreak in Rwanda,
01/30/2007)}. We then use such storylines as a heuristic for
identifying possible causal relationships among events. The
process is performed by clustering news stories with similar
text and semantic entities, as detailed in Section 2.1.

We show a componentized view of the method in Figure
2. At the start of the learning phase, the system mines
the NYT news corpora and extracts storylines, using tech-
niques adapted from well-known topic tracking and detec-
tion algorithms [8, 3, 7], that cluster similar texts together
(Section 2.1). We next enrich the storylines with informa-
tion extracted from Web knowledge sources via the Linked-
Data project(Section 2.2). We extract a wide variety of
facts, including such information as the population density
in Rwanda, percentage of land in Rwanda covered by wa-
ter, and the gross domestic product of the country. We
generalize both features and events to increase the num-
ber of equivalent samples for constructing predictive models
(Section 2.3). For example, we can learn from data about
events in specific countries (e.g., Angola and Rwanda) to
build classifiers that consider the likelihood of events of in-
terest on a larger scale (e.g., larger continent of Africa) or to
regions characterized by particular demographic and geolog-
ical properties. At the end of the learning phase, the system
estimates the probabilities P

(
evj(τ + ∆)

∣∣evi(τ)
)

and builds
a probabilistic classifier for use in the prediction phase. The
classifier can be used to provide real-time probabilities of
events of interest, such as an impending “cholera outbreak
in Angola” based on the previous knowledge obtained in a
storyline about Angola or its generalization, Africa. The
classifier we construct provides binary predictions of whether



an event will occur following an observed event sequence. In
experiments, we also evaluate both the occurrence of the
target event and the mean time between the prediction and
occurrence. We show results on providing such alerts nearly
three weeks prior to the actual predicted event. We leave
the prediction of the exact date of events of interest based
on specific dynamics to future work.

2.1 Extracting Event Chains
We define and extract news storylines from the NYT archive

as a heuristic for identifying potential causal relationships
among events. A storyline is a set of topically cohesive or-
dered segments of news that includes two or more declarative
independent clauses about a single story. As an example,
a story line about the arrest of Carlos the Jackal includes
the stories about verification of his identity, his transport to
prison, and so on. Methods for extracting such storylines
are referred to as topic detection and tracking (TDT) [8].
Topic detection involves identifying a series of linked events
in streams of stories. To identify storylines, we modified
the Inc.LM method, an approach to topic tracking found
to be most successful for this task in several competitions

[3]. Consider Chains ∈ 22|T |×Time

as the set of all possible
storylines, where T is all the news articles and T ime is a
discrete representation of time. We denote with t1 <<c t2
an event represented by the news article t1 occurring be-
fore an event represented by the news article t2 in a chain
c ∈ Chains. We use the notation t(τ) to represent an event
as defined by the appearance of the text t of a news story
at time τ ∈ T ime. Under the assumption that causality
occurs only within storylines, the prediction challenge is re-
duced to calculating the probability P

(
t(τi > τ)

∣∣tj(τ)
)

for
{tj |∃c ∈ Chains, tj <<c t}.

Similar to other vector space approaches for topic detec-
tion [7], we first cluster documents with similar text. We
consider news articles as documents and represent each news
article as a vector (σt

1 . . . σ
t
n), such that

σt
i = tfw,t · log

|T |
|{t′ ∈ T |wi ∈ t′}|

,

where |T | is all the news articles, and tfw,t is the frequency of
the word w in article t. We then perform a nearest-neighbor
analysis, where we find for each article the k closest (in our
experiments k = 50) articles to it using a cosine similarity
measurement, defined as

sim(ta, tb) =

∑N
i=1 σ

ta
i σ

tb
i√∑N

i=1 σ
ta
i

2
√∑N

i=1 σ
tb
i

2
,

with a constraint on temporal proximity. Articles are ei-
ther generated within a threshold time horizon or the date
of an article is mentioned in a text of a more recent arti-
cle in the chain. We performed several experiments using
the time threshold on the TDT4 corpus2, and reached our
best performance when limiting the chains to 14 days. This
type of analysis has a high recall for identifying articles that
cover the same topic, referring to the fraction of relevant
instances that are retrieved. However, the procedure has
a low precision; a large fraction of the identified instances
are false positives. We wish to enhance the precision, while
maintaining the high recall. As an approach to reducing the

2
http://www.nist.gov/TDT

false positives, we overlay a preference that the entropy of
the entities {e ∈ Entities} of the story articles C, defined
as

StoryEntropy(C) = −
n∑

i=1

P (ei ∈ C) logP (ei ∈ C)),

grows “slowly” as the story evolves over time. A similar ap-
proach has been shown to provide major improvements on a
related topic-detection task [2]. We employ conditional ran-
dom fields (CRF), trained on a heterogeneous corpus [9], to
identify entities of the types location, people, and organiza-
tions. We define a vector of counts of entities and operations
of addition and removal of an article from a chain. We use a
greedy algorithm that selects at each step the next best doc-
ument to add or decides to halt if all remaining documents
increase the entropy by more than a threshold amount α,
which we evaluate from a validation set. We performed ex-
periments showing that this extension improves precision
while maintaining levels of recall (see Section 3.4).

We performed the latter process on an offline corpus. We
note that studies have addressed the usage of similar tech-
niques for extraction from online streams of news (e.g., [2]).
Such online approaches could be adapted in our approach to
forecasting future events.

2.2 Lexical and Factual Features
We seek to infer the probability of a predefined future

news event of interest given a vector representing the news
events occurring up to a certain time. To perform this task,
we create training cases for each target event, where each
case is represented using a set of observations or features.
We define both lexical and factual features. We set the
label for each case as true only if the text representing the
future target event occurs in a document dated at a later
time in the chain.

Let w1 . . . wn be the words representing the concepts of
the event at time τ and let a1 . . . am be additional real-
world characteristics of the event concepts. We refer to these
attributes respectively as lexical and factual features. The
words wi are extracted from the text of each news article us-
ing the Stanford Tokenizer, and filtered using a list of stop
words. The factual characteristics ai are extracted from the
different LinkedData sources, specifically the properties un-
der the type rdf:Property for the event concepts wi. For
example, given the text of the news story title, “Angola:
Cholera Cases Rise Sharply After Floods,” the feature vec-
tor contains both the tokenized and filtered words of the
text (Angola, cholera, rise, sharp, flood), and other features
describing characteristics of Angola (GDP, water coverage,
population, etc.). We map each concept in the event text
to a LinkedData concept. If several concepts are matched,
we perform disambiguation based on the similarity between
the concept text (e.g., its Wikipedia article) and the news
article, using a bag-of-words representation.

We denote f1(ev) . . . fn+m(ev) to be the features of the
event ev (either lexical or factual features). We make a naive
simplifying assumption that all features are independent,
and describe the probability P (evj(τ+∆)

∣∣evi(τ)) as follows:

P (evj(τ + ∆)
∣∣evi(τ)) ∝

n+m∏
k=1

P
(
evj(τ + ∆)

∣∣fk(evi(τ))
)
.
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Figure 2: Main components and flow of analysis of event prediction pipeline.

Using Bayes rule, we can derive that

P
(
evj(τ + ∆)

∣∣fk(evi(τ))
)

=
P
(
evj(τ + ∆), fk(evi(τ))

)
P (fk(evi(τ)))

,

where P
(
evj(τ + ∆), fk(evi(τ))

)
is evaluated from the data

by counting how many times the event evj happens in the
same storyline after an event having the value of feature fk of
the event evi at time τ . Similarly, P (fk(evi(τ)) is evaluated
from the data by counting the portion of times that an event
with this feature value happens in the corpus. We build a
predictor based on these learned probabilities. The predictor
outputs the probability that each future event represented
in the system will occur. Changes in this probability can be
noted and thresholds set for alerting.

We may be interested in predicting various characteris-
tics of a future event as scalar values. For example, beyond
predicting the likelihood that deaths will be associated with
a later accident or disruption occurring within a horizon,
we may wish to predict the number of people who will per-
ish given the occurrence of a target event that causes or is
associated with deaths. To do this, we bin target predic-
tions of numbers of deaths into a set of buckets capturing
a mutually exclusive and exhaustive set of ranges of num-
bers of deaths, e.g., less than ten deaths, greater than 10
but less than 100 deaths, and greater than 100 deaths. We
say that evj belongs to bink, if evj holds the bink rela-
tion. As an example, for the less than 10 deaths bin, we
say that evj ∈ bin0−10 if the text representing evj con-
tained text indicating how many people died and this num-
ber was less than 10. We learn predictors that estimate
the probability of the event to belong to a certain bin k,
P
(
evj(τ+∆), evj(τ+∆) ∈ bink

∣∣evi(τ)
)
, and output the bin

with the highest probability. We present results on a study
of the accuracy of inferring the number of deaths caused by
an event in Section 3.2.

2.3 Learning to Predict with Abstractions
Event sequences are relatively sparse in the domains we

explored. For example, the target event “Rwanda cholera

outbreak”appeared only 33 different times in the news archive.
Such sparsity may degrade classifier performance due to
the poor estimation of both P

(
evj(τ + ∆), fk(evi(τ))

)
and

P (fk(evi(τ))). In other cases, the feature values might not
appear with high enough frequency in the data for deriv-
ing high-confidence inferences about the future. For exam-
ple, there is not even a single mention of the African coun-
try of Comoros in the news corpus. Such sparsity in lexi-
cal features can lead to poor estimation of the probability
P
(
evj(τ + ∆), fk(evi(τ))

)
, and therefore to poor predictors.

As an example, for the target prediction of the likelihood of
a forthcoming large-scale evacuation, a hurricane originating
in Comoros might be important information for predicting a
storm in nearby countries which might be useful in predict-
ing evacuations in those countries. Similarly, if the system
is focused on making predictions about upcoming storms
in Comoros, i.e., “storm in Comoros” is the target event,
there may not be enough data to evaluate the aforemen-
tioned probabilities.

We address the joint challenges of event and feature spar-
sity via employing procedures for automated abstraction.
Instead of considering only “Rwanda cholera outbreak,” an
event with a small number of historical cases, we consider
more general events of the form: “[Country in Africa] cholera
outbreak.” We turn to world knowledge available on the
Web. Some LinkedData resources provide hierarchical on-
tologies. For example, Fabian et al.[24] created an isA ontol-
ogy from Wikipedia content. This ontology maps Rwanda to
the following concepts: Republics, African countries, Land-
locked countries, Bantu countries, etc. Similarly, WordNet
provides hypernym relations, that map Rwanda to the con-
cept country.

We developed a an automated method for guiding abstrac-
tion. The method determines when to generalize events and
features. As features are evaluated separately, estimations
are made about the value of each feature abstraction to en-
hance the accuracy of predicting the target event. We eval-
uate for each feature and its abstractions the precision over
the training data using cross validation. We note that it



is insufficient to measure the precision associated with us-
ing an abstracted feature without altering the target event.
Consider the abstracted feature [Country in Africa], and the
target event “Death in Kigali.” The probability of a death in
Kigali, the capital of Rwanda, caused by an event in some
country in Africa, is small. Therefore, given an event in
[Country in Africa], the probability of death being caused
by the event in CapitalOf([Country in Africa]) may typi-
cally be more appropriate. We now formalize this intuition.

Let the semantic network graph G be an edge-labeled
graph, where each edge is a triplet 〈v1, v2, l〉 and l is a
predicate (e.g., “CapitalOf”). We look for a path of max-
imum length k (in our experiments k = 3)that connects
the concept representing the abstraction and the concepts
described in the target event. For example, given a chain
where the first event discusses the large attendance at the
opera “The Nose,” and the second event discusses an award
that the opera writer Dmitri Shostakovich receives, we find
the following path in the Wikipedia graph, connecting the

articles: “The Nose”
OperasBy−−−−−−−→Dmitri Shostakovich. Later,

we can use a similar observation, observing a large atten-
dance at the opera “The Murder of Comrade Sharik,” to
predict an award for the opera writer William Bergsma using

the path“The Murder of Comrade Sharik”
OperasBy−−−−−−−→William

Bergsma. Given two events’ concepts c1, c2, represented by
the nodes v1 and v2 in G, we call the labels of the k-sized
path, connecting v1 and v2, an abstraction path abs(c1, c2) =
l1, . . . , lk. Applying an abstraction on a node v determines
the node v′ that satisfies the abstraction path, i.e.,
ApplyAbs(v, abs(c1, c2)) = v′,
s.t ∃vi ∈ V (G)(v, v1, l1) . . . , (vk−1, v

′, lk) ∈ E(G).
When inferring probabilities for each entity en in the tar-

get event and a feature of the causing event, we iteratively
abstract each feature f to a more general concept gen(f),
using a semantic hierarchical graph GH , calculating the ab-
straction path abs(f, en) (based on the semantic graph G),
and instead of P

(
evj(τ + ∆), fk(evi(τ))

)
, we calculate the

probability for the more abstract event,

P

(
ApplyAbs

(
evj(τ + ∆), abs(fk, en)

)
, gen(fk)(evi(τ))

)
.

A similar process is conducted when generalizing the tar-
get event. In this case, the probabilities are calculated for
the abstracted target event, and the precision is calculated
on the concrete target event. For each entity en in the tar-
get event and a feature of the causing event, we wish to
iteratively abstract each feature f to a more general con-
cept gen(f), using a semantic hierarchical graph GH (in our
experiments we used the IsA and InCategory relations).

Figure 3 shows pseudocode for the abstraction process.
Given a target and a possible causative event, the goal of
the procedure is to estimate the probability of the causative
event or any of its abstractions to cause the target event.
The algorithm is given as input several parameters: a target
event (e.g., cholera Outbreak in Rwanda), denoted as target,
and an event occurring at time τ (cause), the storylines the
system extracted, denoted as Chains, the hierarchical graph
GH , the semantic graph (G), and some parameter specifying
a maximum degree of abstraction (k). The system evaluates

the probability

P

(
ApplyAbs

(
evj(τ + ∆), abs(fk, en)

)
, gen(fk)(evi(τ))

)
.

At stages 1-2, the system builds a classifier estimating the
probability that any of the entities of the lexical features
of the causative event precede an appearance of the target
event in a text of an event in a storyline. For example,
the bestClassifier at this stage will have estimations of the
probability of “cholera Outbreak in Rwanda” given the en-
tity Kigali (Rwanda’s capital). At stage 3, the algorithm
iteratively estimates the probability of the target event hap-
pening given any of the abstracted features (extracted using
the hierarchical graph GH). For example, one iteration can
be the evaluation of the number of times the entity “Capital
of Africa”preceded“cholera Outbreak in Rwanda”in our sto-
rylines. Stages 3.1-3.2 evaluate the needed transformations
to the target event given the abstracted cause entity. For
example, instead of looking for cases where an event with
an entity belonging to “Capitals in Africa” occurred and an
event regarding “cholera Outbreak in Rwanda” followed, we
look for examples where an event of the type “cholera Out-
break in Africa” followed. We then train and evaluate new
classifier using the transformed training data. If its per-
formance, as measured by cross validation on the training
data, is superior to that of the classifier in advance of the
abstraction, we update the best classifier found.

3. EXPERIMENTAL EVALUATION
We now describe the experiments that we conducted to

test the methodology, and present the results of the studies
of inferences performed on a test portion of the news archive
held out from the training phase.

3.1 Experimental Setup
In this Section we outline the data we obtained for the ex-

periments, the experimental methodology, and the baselines
we compared against.

3.1.1 Data
We crawled and parsed the NYT archive containing news

articles for the years 1986–2007. We say that a chain of
events belongs to a domainD, if it consists one of the domain
relevant words, denoted as wi(D). For example, for the
challenge of predicting future deaths, we consider the words
“killed,” “dead,” “death,” and their related terms.3 For the
challenge of predicting future disease outbreak, we consider
all mentions of “cholera, ”“malaria, ” and “dysentery.”

During prediction, we hold out from the learning phase
a test set of a decade of events for the period of 1998–2007
(the test period). We say that a chain is a test-domain chain
if (1) the dates of all of its events occurred in the test period
dates, and (2) the first chronological event in the chain does
not contain one of the domain terms, e.g., the first event did
not contain a mention of death (otherwise the prediction
might be trivial). Formally, let C = {e1 . . . ek} be a test
chain, thus ∀i : wi(D) 6∈ e1.

3We consider all the similarity relations in Wordnet: Synonyms,
pertainyms, meronyms/holonyms, hypernyms/hyponyms, similar
to, attribute of, and see also relations.



Procedure Abstract(target, cause, Chains,GH , G, k)
(1) Foreach {entity ∈ Entities(cause)}
(1.1) PositiveExamples← {(ev1, ev2)|ev1 <<c∈Chains ev2, entity ∈ ev1,

∀e ∈ Entities(target) : e ∈ ev2}
(1.2) NegativeExamples← {(ev1, ev2)|ev1 <<c∈Chains ev2, entity ∈ ev1,

∃e ∈ Entities(target) : e 6∈ ev2}
(2) bestClassifier ← Build(PositiveExamples,NegativeExamples)
(3) Foreach {entity ∈ Entities(cause), absEntity ∈ Abstractions(entity,GH)}

(3.1) absPaths← FindPaths(absEntity, Entities(target), G, k)
(3.2) absTargets← ApplyAbs(absEntity, absPaths,G)
(3.2) Foreach absTaret ∈ absTargets

(3.2.1) PositiveExamples← {(ev1, ev2)|ev1 <<c∈Chains ev2, absEntity ∈ ev1,
∀e ∈ Entities(absTarget) : e ∈ ev2}

(3.2.2) NegativeExamples← {(ev1, ev2)|ev1 <<c∈Chains ev2, absEntity ∈ ev1,
∃e ∈ Entities(absTarget) : e 6∈ ev2}

(3.2.3) absClassifier ← Build(PositiveExamples,NegativeExamples)
(3.2.4) If CV (bestClassifier, Chains) < CV (absClassifier, Chains)
bestClassifier ← Update(absClassifier)

(4) Return bestClassifier

Figure 3: Procedure for generalizing features via abstraction. Build takes as input positive and negative examples

and estimates the probability of our target event. FindPaths finds all predicate paths of size k between two nodes in

the graph given as input. ApplyAbs applies the predicate path on a node, returning nodes that are connected to the

given node via the predicates of the directed paths. CV calculates the precision via cross validation of a classifier on

the training data.

3.1.2 Experimental Methodology
For each prediction experiment we first select a target

event etarget from a test-domain chain. The procedure dif-
fers depending on the type of the experiment:

1. Predicting general events in the period 2006–2007. In
this type of experiment, a target event is any news
headline published during 2006–2007, i.e., we build a
classifier for each possible headline.

2. Predicting events in specific three domains: deaths,
disease outbreaks, and riots. In this case, any news
story containing one of the domain words is selected.
Additionally, we validate manually that those events
actually contain an event from the domain. If sev-
eral of the target events exist, we choose the first one
appearing chronologically to be the identified target
event, i.e., etarget = argminj{ej |∃i : wi(D) ∈ ej}. As
etarget is selected from a test-domain chain j > 1, i.e.,
it is not the first event in the chain. That is, we con-
sider only event chains that are not observed by the
system during the years 1998–2007, and do not con-
tain words implying the target event within a domain
(e.g., the word death) during the first event chain. The
first event of the chain is given as input to the system.

In summary, the general events predictions represents pre-
diction of all the events in 2006-2007. The system is given an
event from 2006–2007 as input, and we measure the success
in predicting the event. For the domain-specific predictions
(death, disease outbreak, and riots), we manually check to
see if the event occurs using the domain representative words
or their synonyms as filters. We consider only event chains
that are not observed during the years 1998–2008, and do
not contain words implying the target event within a domain
(e.g., the word death) during the first event chain. The first
event of the chain is given as an input.

We train from the data via evaluating the probabilities of
etarget happening for events occurring up until the date of

the first event in the chain. During the test, the algorithm
is presented with the first event of the chain e1 and outputs
its prediction about etarget. In the experiments, we consider
the predictor as indicating that the target event will occur
if

P (etarget
∣∣e1) > P (¬ etarget

∣∣e1),

i.e., the probability of the event happening given e1 is big-
ger than the probability of it not happening. We perform
these experiments repeatedly over all the relevant chains,
and evaluate for each:

precision =
|{events reported} ∩ {predicted events}|

|{predicted events}|

and

recall (sensitivity) =
|{events reported} ∩ {predicted events}|

|{events reported}| .

3.1.3 Comparative Analysis
We are not aware of any methods in the literature that

are aimed at tackling the prediction of probabilities of future
news events. Thus, we compare the generated predictions
with two baselines:

1. using prior probabilities of the occurrence of an event
e given the appearance of its corresponding text in the
training set, P (e);

2. using an estimate of how well people do on predicting
these types of events.

For the latter, we implement a method [11] that provides
approximations of whether people, given two events repre-
sented by text of news stories, would agree that the first
event implies the truth of the later event. This baseline
evaluates the probabilities of co-occurrence in text rather
than in time.



Predicted
Few Tens Hundreds

Real
Few 40% 6% 1%
Tens 4% 32% 1%
Hundreds 1% 6% 9%

Table 2: Confusion matrix showing predicted versus ac-

tual number of deaths.

3.2 Prediction Results
We performed experiments evaluating the precision and

recall for the general predictions and for each of the differ-
ent domains. We compare our model (Full model) with the
frequency-based model (Frequency), and the co-occurrence-
based method (Co-occurrence). The results are presented
in Table 1. We observe that in all cases the Full model
outperforms the baselines.

We performed additional experiments to evaluate numer-
ical predictions, such as forecasts of numbers of deaths. For
this purpose, we searched for specific patterns in the news
stories of the form “[number] died” or “[number] killed”. The
number matching [number] is used as the bin classification.
We focus only on chains containing those patterns and eval-
uate our algorithms on those. In Table 2, we show a confu-
sion matrix for the numbers of deaths. The content of each
cell i, j (i is row and j is column) represents the percentage
of the data that in reality belongs in bin i and is classified
as belonging in bin j. For example, 4% of the events re-
sulting in tens of deaths are predicted erroneously as events
associated with only a few (less than ten) deaths. We see
high performance in those types of classifications and most
mistakes are observed in adjacent bins.

3.3 Algorithm Analysis
We now describe additional experiments performed to mea-

sure the performance of the procedures and the contribution
of specific components of the analysis.

3.3.1 Gain from Factual Features and
Generalization

We first consider the influence of adding different sources
of world knowledge on the accuracy of predictions. The re-
sults are displayed in Table 3. We consider predictors based
solely on lexical features (News alone), on both lexical and
factual features (News + factual features), on lexical features
and abstractions (News + generalization), and on using all
categories of features along with the abstraction procedure
(Full model). We find that adding knowledge, either when
abstracting or when adding factual features, improves the
performance of predictions. We see the biggest performance
gain when employing both refinements.

3.3.2 Predicting Times of Forthcoming Events
Table 4 displays the average and median times between

the inference-based alerts and the occurrence of reports that
embody the target event for the three types of predictions we
study. We consider only examples where deaths appear in
the news story title and match a handcrafted template (pat-
terns in the text of the form “[number] died” or “[number]
killed”) to identify certain deaths only on test chains. This
procedure results in 951 death predictions. In many cases,
we find that the alerts would come more than a week in ad-
vance of the target event. We illustrate this phenomenon in
Figure 4, where we show predictions of the number of deaths

General Predictions Death Disease Outbreak Riots
Med. Avg. Med. Avg. Med. Avg. Med. Avg.

9 21 8 41 12 273 18 30

Table 4: Median and average time between alerts based

on inferred probabilities of outcome and target events in

the world (days).

that come at a future time within a storyline predicted at
different times between the alert and the occurrence of the
deaths. A more detailed view of the timing of alerts at two
and fifteen days before the event are displayed in Figure 5.
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predicted as a function of alert time (days before event).
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Figure 5: Number of times deaths of any number were

predicted as a function of alert time (days before event).

3.4 Event Chain Extraction Evaluation
To evaluate the quality of the extracted event chains, we

performed experiments on the TDT4 corpus4, filtering only
NYT articles. This corpus contains about 280,000 docu-
ments from the dates 04/01/2003–09/30/2003. Human an-
notation for labeling storylines was performed by the orga-
nizers of the TDT challenge. For each chain, we calculate the
average precision—the percentage of articles we extracted as
being in a chain that were indeed part of the storyline. We
also compute the average recall, the number of articles actu-
ally in the chain that the system retrieved. We compared the
event chain extractor using the entity entropy measure with

4
http://www.nist.gov/TDT



General Predictions Death Disease Outbreak Riots
Prec. Recall Prec. Recall Prec. Recall Prec. Recall

Full model 24% 100% 83% 81% 61% 33% 91% 51%
Frequency <1% 100% 59% <1% 13% 3% 50% 1%

Co-occurrence 7% 100 46% 61% 40% <1% 61% 14%

Table 1: Precision and recall of predictions for several domains.

General Predictions Death Disease Riots
Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

News alone 19% 100% 80% 59% 44% 34% 88% 38%
News + factual features 19% 100% 81% 62% 52% 31% 87% 42%
News + generalization 21% 100% 81% 67% 53% 28% 88% 42%

Full model 24% 100% 83% 81% 61% 33% 91% 51%

Table 3: Precision and recall for different algorithm configurations.

the extractor working without the entropy measure. The
results are summarized in Table 5. The results show that,
while the recall of text clustering is very high (by 10%), the
precision is significantly lower than the methods we have pre-
sented (by 30%). We therefore prefer the second method, as
it provides more flexibility in training predictive models in a
more precise way, with influence on the number of examples
used for training the learner.

Precision Recall

Text Clustering 34% 80%
Text Clustering + Entity Entropy 70% 63%

Table 5: Precision and recall for chain extraction pro-

cedure.

3.5 Sample Likelihoods and Storylines
The learning and inference methodology we have described

can be used to output the probabilities of key transitions of
interest from sequences of observations. The system contin-
ues to refine its learning with updates of news and related
data on the Web. As we mentioned, the system can pro-
vide real-time alerting from news stories on sets of specific
outcomes that it is monitoring. Examples of statistics of
representative learned transition probabilities are displayed
in Figure 6. These transition probabilities and mean times
to transition highlight the ability of the methods to provide
inferences about a variety of levels of abstraction.

We now present details on several additional storylines,
along with inferences and timing. Consider the example
displayed graphically in Figure 1. On January 26th, 2007,
the New York Times published an article about storms and
floods in Africa. News of a cholera epidemic were reported
four days later. In response to this stream of news, the
methodology we describe yields two alerts, one when observ-
ing the drought reports in Angola at the beginning of 2006,
and another one after news of the reported storms. The sys-
tem learned from numerous similar incidents in its training
set that the likelihood of a cholera outbreak is higher after
droughts, specifically as reports on observations of drought
are linked to increases in the probability of later reports
of water-related disasters, which, in turn, are linked to in-
creases in the likelihood of reports of waterborne diseases.
Examples of such transitions and likelihoods include a set
of Bangladesh droughts analyzed by the system. 19 signifi-
cant cases of drought were reported in Bangladesh between
1960–1991 [19]. We observed that in the story lines describ-

ing those droughts, a cholera outbreak was reported later in
the storyline in 84% of cases. After the 1973 drought, which
was responsible for the famine in 1974, the NYT reported on
October 13, 1975: “cholera epidemic hits Bangladesh; may
prove worse than one that set record in ’74...”. On March
13 1983, a year after the 1982 drought that “caused a loss of
rice production of about 53000 tons while in the same year,
flood damaged 36000 tons ...”, the NYT published an article
entitled, “Bangladesh cholera deaths.” Several months later,
an article appeared entitled “cholera reportedly kills 500 in
3 outbreaks in Bangladesh”. Based on these past story lines
the system infers the outbreak of cholera at the end of Jan-
uary in 2007.

The prediction method learns that not all droughts are
associated with jumps in the likelihood of such outbreaks
of disease. Specific sets of preconditions influence the like-
lihood of seeing a transition from a report of drought to a
report of cholera outbreak. The method was able to rec-
ognize that the drought experienced in New York City on
March 1989, published in the NYT under the title: “Emer-
gency is declared over drought”would not be associated with
a disease outbreak. The only consequence was that New
York City declared water curbs, which ended on May 16th of
that year. The system estimates that, for droughts to cause
cholera with high probability, the drought needs to happen
in dense populations (such as the refugee camps in Angola
and Bangladesh) located in underdeveloped countries that
are proximal to bodies of water.

As an additional example of predictions, we focus on the
case of the 1991 cholera epidemic in Bangladesh. This cholera
outbreak is estimated to have included 210,000 cases of cholera
with more than 8,000 deaths [16]. In our experiments, we
found that the running prediction system would have pro-
duced an alert four days before the beginning of the cholera
outbreak, following observation of the major floods. In Fig-
ure 6, we display graphically the storyline detected. The
system identifies that reports of major floods with high prob-
ability will be followed by reports of significant disease out-
break in Bangladesh. The inferences of the system are sup-
ported by a large study of cholera epidemics in Bangladesh
[16], based on analyses of government figures, as well as data
collected independently in 400 rural areas in Bangladesh be-
tween the years 1985Ñ1991. The analysis shows that the
number of cholera cases and deaths in 1987 and 1988 is sig-
nificantly higher than in other years (300,000-1,000,000 cases
vs. 50,000 cases in other years). In 1987 and 1988, severe
floods occurred in Bangladesh. The study concludes that



Cause Effect Probability
Drought Flood 18%
Flood cholera 1%

Flood in Rwanda cholera in Rwanda 67%
Flood in Lima cholera in Lima 33%

Flood in Country with water coverage > 5% cholera in Country 14%
Flood in Country with water coverage > 5%,

population density > 100 cholera in Country 16%

Table 6: Probability transitions for several examples.

May 1st,  
1991 

May 4,  
1991 

Bangladesh Cyclone  
Kills 1,000 And  
Millions Are Left  
Homeless 

May 7,  
1991 

Aid to 
Bangladesh  
is still hampered 

May 8,  
1991 

May 16,  
1991 

U.S. cyclone relief 
forces reach 
Bangladesh port 

Official Toll  
Reaches 92,000  
in Bangladesh Cyclone 

“the world has failed to  
mount an adequate relief  
effort to help survivors of last week's 
deadly cyclone in Bangladesh” 

…Disease Threatens Many 
“a cholera epidemic threatened eight 
 million people” 

Figure 6: Example of cholera alert following storms

in Bangladesh. Triangular alert icons represent infer-

ences of significant upswings in likelihood of forthcoming

cholera outbreak.

access to medical care was one of the main reasons for high
death rates in many non-rural areas. In areas where appro-
priate interventions were made at early stages, the death
rates were significantly smaller.

We also study examples of prior deaths and riots. In Fig-
ure 7, we present a partial storyline and the alerts inferred
for the Dialo case of 1999. One of the storylines is pre-
sented in detail in Table 7 (Top). The system identified in
an automated manner that for locations with large immi-
grant populations (e.g., Ohio and New York), the shooting
of an unarmed person by the police can cause protests. Ad-
ditional events in the news, such as reports of the funeral
of the people who have been killed in similar way, of the
beginning of the trial of the policemen who performed the
shooting, of support for the policemen, and of the end of
the trial are all associated with increases in the likelihood of
later reports of protests. A sample storyline at the basis of
the inferred probabilities is presented in Table 7 (Bottom).

4. RELATED WORK
Prior related research includes efforts in political science

on forecasting forthcoming international political crises from
coded event data, including event data extracted from news
stories [23]. Research in this realm includes the applica-
tion of HMMs to identify similarities among attributes that
appear to be linked to the development of international
crises [22]. Relevant research has also explored predicting
riots [13] and the sales of movie tickets [5, 12, 18] from sig-
nals derived from social media such as Twitter. Other in-
vestigations have leveraged information in text of news and
book corpora to qualitatively estimate how multiple aspects

Feb 5,  
1999 

Feb 8, 
1999 

Officers in 
Bronx  
Fire 41 Shots, 
And  
an Unarmed  
Man Is Killed 

Feb 15, 
1999 

1,000 Rally to 
Condemn Shooting of 
Unarmed Man by 
Police 

Feb 16, 
1999 

May 23,  
1991 

8 Arrested Near 
City Hall In 
Protest on Police 
Shooting 

Parents Fly  
Back to  
Africa  
With Body  
of Son  
Killed by  
Police 

Prayer in New  
York, Protest in 
Washington 

Grand Jury  
Begins  
Weighing  
Diallo  
Shooting 

Feb 17, 
1999 

Giuliani  
Softens His  
Tone But  
Still Defends  
the Police 

March 24,  
1991 

Protests in  
Police Killing  
of Diallo Grow  
Larger, and  
More Diverse 

March25,  
1991 

4 officers 
in  
Diallo  
shooting  
are  
acquitted  
of all  
charges 

Feb 26,  
2000 

Feb 27,  
2000 

Marchers 
Protest Diallo 
Verdict,  
Taunting Police 
Along the Way 

Figure 7: Example of alerts on the likelihood of forth-

coming riots after shooting of unarmed minority. Trian-

gular alert icons represent inferences of significant up-

swings in likelihood of a forthcoming riot.

of human culture evolve [25, 25, 17]. Other relevant work in
search and retrieval has focused correlating logs of queries
input to search engines with future events in both traditional
media [20] and blogs [1]. Ginsberg et al. [10] used queries
for predicting H1N1 influenza outbreaks. Other research has
sought to predict how Web content changes. Kleinberg [14,
15] developed general techniques for summarizing the tem-
poral dynamics of textual content and for identifying bursts
of terms within content. Similarly, other works [4] build
time-series models over publication dates of documents rel-
evant to a query in order to predict future bursts. In other
related work, Radinsky et al. [21] extracted generalized tem-
plates in the form of “x causes y” from past news. The tem-
plates were applied on a present news title, generating a
plausible future news title.

In this work, we take a probabilistic approach and perform
more general-purpose predictions without relying on tem-
plates. We also combine heterogeneous online sources, lever-
aging world knowledge mined from more than 90 sources on
the Web, to enrich and generalize historical events for the
purpose of predicting future news.

5. CONCLUSIONS
We presented methods for mining chains of events from

22 years of news archives to provide a methodology that
provides real-time predictions about the likelihoods of fu-
ture world events of interest. The system harnesses multiple
Web resources to generalize the events that it learns about
and predicts. We discussed how we can learn patterns from
large amounts of data, monitor large quantities of informa-
tion sources, and continue to learn new probabilistic asso-



Date Title
Jan 16, 1992 Jury in Shooting by Officer Hears Conflicting Accounts
Feb 11, 1992 Closing Arguments Conflict on Killing by Teaneck Officer
Feb 12, 1992 [Past Event] Officer Acquitted in Teaneck Killing
Feb 13, 1992 Acquitted Officer Expresses Only Relief, Not Joy
Feb 16, 1992 [Past Riot] 250 March in Rain to Protest Teaneck Verdict

Feb 24, 2000 Diallo Jurors Begin Deliberating In Murder Trial of Four Officers
Feb 26, 2000 [Riot Alert] 4 officers in Diallo shooting are acquitted of all charges
Feb 26, 2000 Rage Boils Over, and Some Shout ’Murderers’ at Police
Feb 26, 2000 Civil Rights Prosecution Is Considered
Feb 27, 2000 [Riot Event] Marchers Protest Diallo Verdict...
Feb 27, 2000 2 jurors defend Diallo acquittal

Table 7: Top table: Partial sample of a historical storyline used to infer probabilities. Bottom table: Partial storyline

with an alert.

ciations. To demonstrate the approach, we presented the
results of several evaluations and representative examples
of sequences of events and proactive alerts. We considered
as sample inferences predictions about disease outbreaks,
riots, and deaths. We believe that the methods highlight di-
rections in building real-time alerting services that predict
significant increases in global events of interest. Beyond
knowledge that is easily discovered in studies or available
from experts, new relationships and context-sensitive prob-
abilities of outcomes can be discovered with such automated
analyses. Systems employing the methods would have fast
and comprehensive access to news stories, including stories
that might seem insignificant but that can provide valuable
evidence about the evolution of larger, more important sto-
ries. We hope that this work will stimulate additional re-
search on leveraging past experiences and human knowledge
to provide valuable predictions about future events and in-
terventions of importance.
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