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ABSTRACT 

Context: Adverse drug events cause substantial morbidity and mortality and are often 

discovered after a drug comes to market.
1
  In the US alone, adverse drug events cause thousands 

of deaths annually and their associated medical treatment costs billions of dollars.
2,3

 

 

Objective: Given that a significant use of the Internet is for health searches,
4
 we hypothesized 

that Internet users may provide early clues about adverse drug events via their online 

information-seeking activities. 

 

Design: We conducted a large-scale study of Web search log data gathered during 2010. We pay 

particular attention to the specific drug pairing of paroxetine and pravastatin, whose interaction 

to cause hyperglycemia was reported after the time period of the online logs used in the analysis. 

We also examine sets of drug pairs known to be associated with hyperglycemia and those that 

have not been associated with hyperglycemia. 

 

Results: Our study shows that signals concerning drug interactions can be mined directly from 

search logs and confirms the findings of laboratory studies as well as prior known associations. 

 

Conclusions: This is the first study to extract evidence of drug interactions from search log data. 

Compared to analysis of other sources such as electronic health records (EHR), logs are 

inexpensive to collect and mine, are not dependent on healthcare utilization, and are not subject 

to the same latencies. The results demonstrate that logged search activities by populations of 

computer users captured by Internet services can contribute to drug safety surveillance. 

  



BODY 

Background 

The Food and Drug Administration (FDA) and other organizations collect reports on drug side 

effects from physicians, pharmacists, patients, and drug companies. These reports provide 

valuable clues about drug-related adverse events, but are incomplete and biased.
5,6,7

  As a result, 

adverse event alerts for single drugs are often delayed as evidence accumulates.
8,9

  These 

challenges are compounded in the setting of adverse events resulting from multiple drugs that 

interact in unexpected ways. 

 

Previous research on tracking seasonal influenza has demonstrated that search logs can form an 

implicit sensor network for health monitoring.
10,11

  In that work, search logs accurately estimated 

the weekly levels of influenza activity in different regions of the United States, with a reporting 

delay of approximately one day.  The authors showed that health-seeking activity captured in 

queries to online Web search services mirrors trends in data gathered by traditional surveillance 

systems based on virological and clinical data.  

 

We employ search log data for a different purpose: we seek to harness people’s online health-

seeking search activity in the aggregate to identify adverse drug events associated with drug 

interactions. Patients may seek information on the Web about the drugs prescribed to them or to 

close family members, and to explore the potential explanations of new symptoms.
12

 We 

consider as a test case an interaction between paroxetine (an antidepressant) and pravastatin (a 

cholesterol-lowering drug) which was recently reported to create hyperglycemia.
13,14

 This 

association was extracted from the FDA Adverse Event Reporting System (AERS) using a data-

mining algorithm that aggregates reports to identify drug-drug interactions.
13

  The finding was 

confirmed in a retrospective analysis of the electronic health records of three regionally distinct 

medical institutions and confirmed in a mouse model.
14

 We hypothesize that patients taking these 

two drugs might experience symptoms of hyperglycemia and may have conducted Internet 

searches on these symptoms and concerns related to hyperglycemia before the association was 

reported in 2011. 

 

  



Method 

We analyzed the search logs of millions of consenting Web users who opted to share search 

activities with Microsoft via the installation of a browser add-on, spanning a 12-month period of 

all of 2010 and comprising searches on Google, Bing, and Yahoo!. An anonymous identifier tied 

to the instance of the browser add-on was used to track the drugs and symptom queries that each 

user performed over time (note that we were unable to distinguish between multiple users of the 

same machine). Searches for information on prescription drugs are common. We found that over 

1 in 250 of people (0.43%) pursued information on at least one of the top-100 best-selling drugs 

in the United States, including paroxetine and pravastatin, the medications that we focus on 

here.
15 

 

By examining words used in user queries, we sought evidence that searches from people 

exploring pravastatin and paroxetine over time (using logs from 2010) would have a higher rate 

of including hyperglycemia-associated words than people searching for only one of the drugs. 

The list of hyperglycemia-related terminology that was used is included in the supplementary 

materials (Table S1). We generated the list based on a review of medical literature. The list is 

broad to ensure that we covered a majority of related symptoms. Although there are many 

possible causes for the symptoms listed, each can be associated with hyperglycemia. We seek to 

detect increases in the use of terms from the list in exploratory Web searches by holding the list 

constant and noting the presence or absence in user logs of queries for the medications which 

have been found to cause hyperglycemia when taken together.  

 

We first mined the 12 months of search logs to identify users who had searched for 

hyperglycemia-related symptoms or terms. We then identified users in each of the following 

groups: (i) Both (paroxetine & pravastatin) searchers, comprising those who searched on 

paroxetine (or one of its trade name variants: Aropax, Paxil, Seroxat, and Sereupin) and 

pravastatin (or its trade name Pravachol); (ii) Pravastatin, independent of paroxetine, searchers, 

comprising those users who searched for pravastatin regardless of whether they also searched for 

paroxetine; and (iii) Paroxetine, independent of pravastatin, searchers, comprising those users 

who searched for paroxetine irrespective of whether they also searched for pravastatin. 



We count the number of users in each of the three user groups, and the number of users in each 

group who searched for at least one of the terms associated with hyperglycemia (i.e., the 

intersection with the set of hyperglycemia searchers). These populations can be visualized with a 

Venn diagram, as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Venn diagram showing the different user groups in our analysis (not drawn to scale).  

Letters denote different subsets of searchers, with a referring to those who search on both 

paroxetine and pravastatin and also search on hyperglycemia-related terminology, and b to those 

who search on both drugs.  Subsets d1 and d2 refer to those who search on pravastatin and on 

paroxetine, respectively. Subset c1 denotes those who search for pravastatin and hyperglycemia-

related terms and c2 those who search o paroxetine and hyperglycemia-related terms.  We 

perform two disproportionality analyses, with expected (background) based on pravastatin using 

c1 and d1 and with expected based on paroxetine using c2 and d2.  

 

We use disproportionality analysis
6
 to assess the increased chance of a user searching for 

hyperglycemia-related terms given that they search for both pravastatin and paroxetine. 

Reporting ratios (RR) are computed based on observed versus expected adverse reports.
16

  Given 

the broad spectrum of information goals on the Web, for the search logs, we use a conditional 

disproportionality analysis that introduces a contextual focus to minimize false positives. In this 

case, we seek evidence for increased searches for hyperglycemia related terms within the specific 

context of searches on a drug or drugs of interest. In exploring the potential influence of the two 
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drugs together, we consider people who have searched for each of the drugs individually over the 

same period as controls.   

 

Given the subsets of users defined above, disproportionality analysis was used to identify drug 

pairs that occur at higher than expected frequencies with hyperglycemia related terms. RR is 

defined as observed/expected or (a/b)/(c/d). Observed is defined as the fraction of users who 

search for both pravastatin and paroxetine (b) who also query for hyperglycemia symptoms (a), 

and expected is defined as the fraction of users who search for pravastatin (d1) who also search 

for hyperglycemia symptoms (c1), or (symmetrically) the fraction of users who search for 

paroxetine (d2) who also search for hyperglycemia symptoms (c2).  

 

When RR is based on expected for pravastatin as background and search logs, a = number of 

users in the paroxetine & pravastatin set who searched for hyperglycemia-related terminology; b 

= number of users in the paroxetine & pravastatin set; c1 = number of users in the pravastatin-

only set who searched for hyperglycemia-related terminology, and d1 = number of users in the 

pravastatin-only set. Figure 1 shows how each of these variables (a-d) relates to the three user 

groups defined earlier and their intersection with each other and all hyperglycemia searchers. We 

similarly compute RR with expected conditioned on paroxetine as background. 

 

Findings 

User Groups and Prevalence 

To perform the analysis described in the remainder of this article, we analyzed 82 million drug, 

symptom, and condition queries from 6 million Web searchers. To ensure coverage, we looked 

for co-occurrences of the two medications for each user within the 12-month timeframe. For the 

group of users showing these co-occurrences, paroxetine and pravastatin did not co-occur within 

the same query; 29.61% of the observed drug pairs occurred in searches within the same day, 

41.90% within the same week, and 60.89% within the same month. Figure 2 shows the fraction 

of users in each of the groups who query for any of the hyperglycemia-related terms in Table S1. 

The value for Background in the figure is the fraction of all users who query for the 

hyperglycemia-linked terms independent of the presence of pravastatin and paroxetine in any of 



their queries. The figure shows that people who search for both paroxetine and pravastatin over 

the 12-month period are more likely to perform searches on the terms associated with 

hyperglycemia (around 10% of users who search for the drug pair) than those who search on 

only one of the drugs (around 5% of paroxetine users, around 4% of pravastatin users). Around 

0.3% of all users search for one or more terms from the list (shown as Background in the figure). 

The figure also shows that the difference between the groups is consistent over the 12-month 

period and that there are no temporal variations such as seasonal affects. 

  

Fig. 2.  Percentage of users in each of the three user groups searching for hyperglycemia-related 

terms. Percentage is computed per week over 12 months of search log data.  Background refers 

to the fraction of all searchers who search for hyperglycemia-related symptoms or terminology 

independent of the presence of the drugs in the users’ search histories. 

 

Disproportionality Analysis 

Table 1 shows the results of the conditional disproportionality analysis for RR computed using 

expected for pravastatin and expected for paroxetine. 
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Table 1. Results of disproportionality analysis for Expected (pravastatin), Expected (paroxetine). 

 a b c d RR  
95% CI 

(Lower, Upper) 

p-value 

(one-tailed) 

Expected (pravastatin) 342 2716 2581 56302 2.747 2.438, 3.094 < 0.0001 

Expected (paroxetine) 342 2716 3645 71243 2.461 2.189, 2.767 < 0.0001 

 

The results in Table 1 show that searching with terms that capture hyperglycemia 

symptomatology is observed more frequently in users searching for both drugs than in those 

searching for each drug separately. This result based on data from a non-clinical source resonates 

with findings from AERS and laboratory analysis described earlier.13,15 As we know the date that 

the discovery of the interaction was made public, we can examine prior log data prior with 

confidence that the logged activities are not influenced by information about known interactions 

published later. However, since this is only a single drug pair, it is possible that the results are 

explained by an un-modeled mechanism or by chance.  

 

Disproportionality Analysis for Known Drug-Drug Interactions 

To address the concern associated with focusing on a single pair, we tested 31 other drug pairs 

that are known to interact and cause hyperglycemia (true positives, TP). Known drug-drug 

interactions are extracted (and manually validated) from textual monographs in DrugBank and 

the Medi-Span drug therapy monitoring system®. These sources are highly technical in nature or 

require paid access, making it less likely that ordinary health consumers would visit them and 

have the information bias their searches. Note that this is a less strict criterion than the 

pravastatin-paroxetine interaction, where we can guarantee that knowledge had not been 

available before the public release of the information. In order to compile a set of drug-pairs that 

are not associated with hyperglycemia, we create a negative set of 31 other drug pairs (TN) by 

associating drug-pairs with a randomly chosen adverse event, and removing any drug-drug-event 

pairings that are known to be associated based on external knowledge (DrugBank, Medi-Span, 

Drugs.com, UMLS or SIDER). We mapped the generic names for the drugs to their brand 

names, as we did with paroxetine and pravastatin, and searched for the presence of both drugs in 

the log data described above. We then performed the same type of log-based disproportionality 

analysis, including computing RR based on the expected counts from each drug in the pair. 

 



Table S2 presents the results of this additional disproportionality analysis. The drug pairs are 

ranked in descending order by the average RR for the pair. We preserve the TP/TN label to show 

where in the list the TPs appear. If the log-based method performed perfectly, then all TPs would 

be ranked above all TNs. The results show that the majority of the drug-pairs identified as having 

a strong relationship with hyperglycemia are TP (i.e., 74% of the top half of the table is TP; two 

proportion Z-test (Z=-2.086, p=0.019)) and consequentially, the TN are least strongly related to 

hyperglycemia. In addition, if we assume that the pairings where the average RR values > 2 

predict a TP (an RR value of two has been shown to be a meaningful threshold in previous work 

17,18
), we estimate a false positive rate of 12.5% from the 62 pairings we examined. To further 

study performance across the range of threshold values, we construct a receiver operating 

characteristic (ROC) curve, shown in Figure 3. The area under the curve (AUCAll) is 0.8189, 

signifying strong performance in distinguishing TP from TN using the log data. 

 

 

Fig 3. ROC curve for the identification of drug pairs known to be associated with hyperglycemia 

using search log data. Red (dashed) line denotes the performance when using all hyperglycemia-

related terminology in our set. Yellow (solid) line denotes the performance a more narrowly 

focused set of symptoms strongly connected to hyperglycemia. 

  

As the behavioral data for a large population used in the analyses are noisy we sought in our first 

phase of study to be inclusive with the use of a broad term list.  We probed the sensitivity of the 
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results to reducing the set of terms to a more focused subset of terms restricted to synonyms of 

hyperglycemia and three primary hyperglycemic symptoms: polyphagia, polydipsia, and 

polyuria (and their related synonyms). The focused list appears in Table S3. The ROC curve for 

the more focused subset is shown in Figure 3. The value of AUCFocused is 0.7429, showing good 

performance in distinguishing TP from TN (i.e., 71% of the top-half of the ranking is TP; two 

proportion Z-test (Z=-1.815, p=0.035)). The performance with the focused subset of terms is 

lower than for the full set of hyperglycemia-related terminology, but not significantly so 

(Z=0.914, p=0.180)
19

.  

 

To understand which of the terms yielded the most benefit, we performed an ablation analysis of 

the symptoms/conditions. We iterate through sets of terms for each of the conditions/symptoms 

considered, starting with all terms, and remove successively sets of terms whose deletion leads to 

the largest decrement in the area under the ROC curve. Figure 4 shows the list of symptoms and 

conditions and the influence on AUC of removing each of them with this greedy procedure. 

 

Fig 4. Influence of removing symptoms and conditions on the classification performance as 

measured by change in AUCAll.  
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Figure 4 shows that hyperglycemia (and its synonyms such as “high blood sugar”) has the largest 

effect on AUCAll, followed by each of the three core hyperglycemic symptoms in the order 

polyuria, polydipsia, and polyphagia. The AUC remains high even when direct references to 

hyperglycemia (first bar in Figure 4) are removed (AUCAllHyperglycemia = 0.7097), illustrating the 

value of employing the pooled related symptoms and conditions for this classification task.  The 

most influential additional terms outside of the core hyperglycemic symptoms (diabetes, dry 

mouth, etc.) are also known to be related to hyperglycemia. The terms become less strongly 

related as we move down the list. Note that removing “trouble breathing” and “coma” improves 

performance, signaling that these terms may add noise to the classifier. 

 

Discussion and Conclusions 

Overall, these findings demonstrate the potential value of the log analysis for identifying drug 

pairs linked to hyperglycemia and illustrates the generalizability of the method beyond just the 

pravastatin-paroxetine pairing. Given that the majority of the TPs can be identified from logs of 

search activity also provides validation for the set of terms used to identify hyperglycemia 

related searches (Table S1). Given the many pairs with little or no effect from the interaction also 

shows that the act of searching for multiple drugs is insufficient on its own to explain the 

heightened interest in hyperglycemia-related material. 

 

The prolific use of Web search to pursue information can be likened to a large-scale distributed 

network of sensors for identifying potential side effects of drugs.  There is a potential public 

health benefit in listening to such signals, and integrating them with other sources of information.  

We see a potentially valuable signal even though search logs are unstructured, not necessarily 

related to health, and can include any words entered by users.  More in-depth analysis is needed 

to better understand biases and sources of noise in Web search logs.  We particularly seek to 

understand potential non-pharmacological explanations for the trends observed in the log data. 

For example, confounding or hidden variables may play a role in boosting searches for terms 

associated with symptoms of hyperglycemia for the joint cohort.  For example, demographic 

factors such as age and gender (not directly observable via log data) may contribute to the 

observed interactions.  Psychological influences on health-seeking behavior may also play a role.  

For example, people prescribed paroxetine for anxiety may be more likely to focus on and 



inquire about their symptomatology online than others, and this anxiety may rise more than 

others with the growing list of prescribed medications.  We note that the data does not support 

this potential explanation; Figure 2 shows that there is less of an effect for those who search for 

paroxetine alone. 

 

The pravastatin-paroxetine interaction was not known at the time the logs gathered (in 2010). 

Thus, the analysis we performed was similar to a prediction task.  While further work is needed 

to explore the predictive value of signals from search logs, the methods and findings highlight 

the potential value of harnessing anonymized search logs captured by Internet services as 

complements to other signals for pharmacovigilance.
20

  We believe that patient search behavior 

directly captures aspects of patients’ concerns about sensed symptomatology and can 

complement more traditional sources of data for pharmacovigilance, including AERS and EHR 

data. We anticipate more sophisticated log-based detection of adverse events associated with 

medications, and that these will contribute to the faster identification of drug safety information. 
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Table S1. List of hyperglycemia symptoms and conditions used in automated analysis. 

appetite increase 

blood glucose high 

blood sugar high 

blood sugar increase 

blurred vision 

blurry vision 

breathing difficulty 

breathing trouble 

breathless 

breathlessness 

coma 

confused 

confusion 

decreased libido 

decreased sex drive 

decreased sexual desire 

dehydrated 

dehydration 

diabetes 

diabetic 

difficulty breathing 

dizziness 

dizzy 

drowsiness 

drowsy 

dry mouth 

dry skin 

erectile dysfunction 

fatigue 

fatigued 

feet tingling 

frequent urinating 

frequent urination 

glucose high 

heel tingling 

high glucose 

high blood glucose 

high blood sugar 

hunger 

hungry 

hyperglycemia 

hyperglycaemia 

impotence 

impotent 

increase blood sugar 

increased appetite 

increased urination 

itchy skin 

labored breathing 

light headed 

lightheaded 

light-headed 

lightheadedness 

loss in weight 

loss of weight 

low sex drive 

polydipsia 

polyphagia 

polyuria 

poor healing 

poor wound healing 

short of breath 

shortness of breath 

skin tingling 

sleepiness 

sleepy 

slow healing 

slow wound healing 

thirst 

thirstiness 

thirsty 

tingling feet 

tingling heel 

tingling skin 

tired 

tiredness 

trouble breathing 

xerostomia 
 

 

 

 

 

 

 

 

 



Table S2. Disproportionality analysis of true positive (TP) and true negative (TN) drug pairs with known association or dissociation 

with hyperglycemia. We include the analysis using both Expected (Drug 1) and Expected (Drug 2). The pairs are ranked in 

descending order by the Average RR for Drug 1 and Drug 2. Statistical significance for a one-tailed test performed using a Taylor 

series is denoted as: *** p < 0.001, ** p < 0.01, * p < 0.05. Column headers a-d have the same meaning as elsewhere in the article.  

 

Label Drug 1 Drug 2 a b 
Expected (Drug 1) Expected (Drug 2) Avg. 

RR c d RR 95% CI c d RR 95% CI 

TP dobutamine hydrocortisone 43 150 645 5646 2.509*** 1.755, 3.534 2595 36420 4.026*** 2.836, 5.628 3.266 

TP dobutamine triamcinolone 39 207 645 5646 1.649** 1.148, 2.325 3111 62047 3.758*** 2.634, 5.256 2.703 

TP dobutamine prednisolone 29 132 645 5646 1.923** 1.257, 2.868 1494 23115 3.399*** 2.232, 5.044 2.661 

TP betamethasone dobutamine 31 156 1515 26607 3.490*** 2.332, 5.096 645 5646 1.739** 1.257, 2.868 2.615 

TP glipizide phenytoin 273 1559 4817 25935 0.943 0.825, 1.075 6993 155357 3.890*** 3.413, 4.434 2.417 

TP dobutamine methylprednisolone 61 323 645 5646 1.653*** 1.234, 2.188 3553 55652 2.958*** 2.230, 3.876 2.306 

TP prednisolone salmeterol 40 210 1494 23115 2.947*** 2.070, 4.115 550 4656 1.612** 1.125, 2.269 2.280 

TP salmeterol triamcinolone 69 437 550 4656 1.337* 1.016, 1.741 3111 62047 3.149*** 2.421, 4.049 2.243 

TP betamethasone terbutaline 58 328 1515 26607 3.106*** 2.321, 4.101 721 5468 1.341* 0.997, 1.782 2.223 

TP dexamethasone dobutamine 88 418 3424 42216 2.596*** 2.048, 3.263 645 5646 1.843*** 1.438, 2.344 2.219 

TP betamethasone salmeterol 36 213 1515 26607 2.968*** 2.908, 4.662 550 4656 1.431*** 1.387, 2.272 2.200 

TN celecoxib salmeterol 63 377 3943 69221 2.934*** 2.227, 3.817 550 4656 1.415** 1.061, 1.864 2.174 

TP brimonidine methylprednisolone 85 543 645 7496 1.819*** 1.421, 2.309 3553 55652 2.452*** 1.946, 3.089 2.136 

TP dobutamine prednisone 103 497 645 5646 1.814*** 1.440, 2.271 16191 191622 2.453*** 1.975, 3.024 2.133 

TN heparin lamivudine 45 195 4143 33666 1.875*** 1.341, 2.579 229 2180 2.197*** 1.533, 3.104 2.036 

TP hydrocortisone salmeterol 44 244 2595 36420 2.531*** 1.813, 3.471 550 4656 1.527** 1.084, 2.114 2.029 

TN ampicillin tazobactam 20 105 923 12092 2.495*** 1.504, 3.982 138 1088 1.501 0.883, 2.468 1.999 

TP prednisone terbutaline 108 589 14191 191622 2.476*** 2.015, 3.042 721 5468 1.391** 1.113, 1.727 1.933 

TN clopidogrel famotidine 232 3974 71083 3653912 3.001*** 2.628, 3.426 3431 48090 0.818 0.712, 0.937 1.910 

TN meropenem methylprednisolone 37 276 274 3496 1.710** 1.174, 2.442 3553 55652 2.100*** 1.469, 2.936 1.905 

TP formoterol methylprednisolone 70 503 578 6372 1.534** 1.171, 1.989 3553 55652 2.180*** 1.683, 2.791 1.857 

TP glucosamine metformin 335 2378 4287 71126 2.337*** 2.076, 2.631 14819 143737 1.366*** 1.216, 1.348 1.852 

TP formoterol triamcinolone 61 512 578 6372 1.313* 0.987, 1.726 3111 62047 2.376*** 1.804, 3.087 1.845 

↓ 



TN donepezil sodium bicarbonate 58 429 3105 42237 1.839*** 1.384, 2.410 1817 24120 1.795*** 1.348, 2.356 1.817 

TP dexamethasone salmeterol 72 419 3424 42216 2.119*** 1.636, 2.714 550 4656 1.455** 1.110, 1.888 1.787 

TP methylprednisolone salmeterol 59 413 3553 55652 2.238*** 1.687, 2.927 550 4656 1.209 0.902, 1.602 1.723 

TN amitriptyline bacitracin 68 576 4863 68827 1.671*** 1.297, 2.152 776 11630 1.769*** 1.362, 2.298 1.720 

TP brimonidine dexamethasone 78 546 645 7496 1.660*** 1.286, 2.124 3424 42216 1.761*** 1.378, 2.228 1.711 

TP budesonide dobutamine 26 147 1107 11609 1.855** 1.196, 2.792 645 5646 1.548* 0.995, 2.339 1.702 

TN oxcarbazepine trimethoprim 34 331 1423 20977 1.514* 1.045, 2.140 919 16427 1.836** 1.264, 2.601 1.675 

TP prednisone salmeterol 114 757 14191 191622 2.033*** 1.669, 2.478 550 4656 1.275* 1.024, 1.578 1.654 

TP methylprednisolone terbutaline 46 331 3553 55652 2.177*** 1.58, 2.945 721 5468 1.054 0.760, 1.438 1.615 

TN metoprolol piperacillin 39 266 7492 103085 2.017*** 1.424, 2.800 222 1832 1.210 0.832, 1.728 1.614 

TN sulfamethoxazole valproic acid 56 547 1202 21967 1.871*** 1.413, 2.478 3673 47637 1.328* 0.998, 1.740 1.599 

TP brimonidine prednisone 116 858 645 7496 1.571*** 1.274, 1.938 16191 191622 1.600*** 1.317, 1.944 1.586 

TN ketorolac sucralfate 118 1084 2689 42126 1.705*** 1.405, 2.070 1961 25530 1.417*** 1.161, 1.718 1.561 

TP glucosamine pioglitazone 107 876 4287 71126 2.027*** 1.654, 2.483 5036 44450 1.078 0.877, 1.316 1.552 

TN metronidazole ranitidine 319 3358 5886 103201 1.666*** 1.481, 1.874 5076 74550 1.395*** 1.240, 1.570 1.530 

TN clindamycin diltiazem 224 1978 5028 70841 1.596*** 1.386, 1.837 3677 43125 1.328*** 1.150, 1.432 1.462 

TP formoterol prednisone 104 826 578 6372 1.388** 1.109, 1.726 16191 191622 1.490*** 1.209, 1.822 1.439 

TP epinephrine prednisone 250 1739 3628 27910 1.106 0.963, 1.267 16191 191622 1.701*** 1.489, 1.944 1.404 

TN dipyridamole prednisone 83 661 622 6198 1.251* 0.977, 1.589 16191 191622 1.486*** 1.176, 1.860 1.369 

TP budesonide salmeterol 45 331 1107 11609 1.426* 1.028, 1.943 550 4656 1.151 0.825, 1.579 1.288 

TN hydrochlorothiazide tazobactam 20 139 6254 60533 1.393 0.850, 2.189 138 1088 1.134 0.672, 1.846 1.264 

TN clindamycin montelukast 141 1560 5028 70841 1.273** 1.066, 1.512 3729 50425 1.222* 1.022, 1.453 1.248 

TN lamotrigine nystatin 116 1167 4523 58207 1.279** 1.050, 1.547 3257 36945 1.128 0.925, 1.365 1.203 

TN methylprednisolone rosuvastatin 158 1774 3553 55652 1.395*** 1.181, 1.647 6559 68810 0.934 0.790, 1.099 1.165 

TP budesonide formoterol 115 1072 1107 11609 1.125 0.916, 1.373 578 6372 1.183 0.952, 1.456 1.154 

TN loratadine nystatin 156 1635 7929 99985 1.203* 1.016, 1.417 3257 36945 1.082 0.912, 1.277 1.143 

TN hydroxychloroquine prochlorperazine 86 743 2435 23664 1.125 0.892, 1.406 2028 19705 1.125 0.891, 1.406 1.125 

TN labetalol sertraline 150 1429 1153 11795 1.074 0.896, 1.281 14153 157269 1.166* 0.982, 1.378 1.120 

TN ciprofloxacin vecuronium 17 147 12497 126896 1.174 0.670, 1.900 187 1708 1.056 0.608, 1.752 1.115 



TN asparaginase promethazine 7 61 110 911 0.950 0.392, 2.040 7386 77771 1.208 0.509, 2.520 1.079 

TN doxycycline lovastatin 112 1375 7748 104419 1.098 0.901, 1.328 1903 24672 1.056 0.863, 1.283 1.077 

TN bumetanide ondansetron 113 1023 944 9304 1.089 0.883, 1.333 5932 56427 1.051 0.860, 1.274 1.070 

TN amlodipine amoxicillin 347 4261 9219 121885 1.077 0.963, 1.204 9062 117320 1.054 0.943, 1.179 1.065 

TN dextromethorphan diazepam 49 564 1100 12943 1.022 0.752, 1.367 7589 96112 1.100 0.813, 1.463 1.061 

TN ibuprofen ketamine 76 1055 16324 246924 1.090 0.858, 1.369 1801 25574 1.023 0.802, 1.291 1.056 

TN pantoprazole promethazine 361 3838 5358 62571 1.098 0.983, 1.228 7386 77771 0.990 0.886, 1.105 1.044 

TN promethazine sertraline 411 4751 6886 77771 0.977 0.880, 1.083 14153 157269 0.961 0.870, 1.064 0.969 

TN sitagliptin tazobactam 17 103 5172 30603 0.977 0.568, 1.602 188 1088 0.955 0.544, 1.605 0.966 

TP budesonide epinephrine 39 369 1107 11609 1.108 0.783, 1.536 3628 27910 0.813 0.576, 1.122 0.961 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3. Focused list hyperglycemia symptoms and conditions used in automated analysis 

polydipsia 

thirst 

thirstiness 

thirsty 

polyphagia 

appetite increase 

increased appetite 

hunger 

hungry 

polyuria 

frequent urinating 

frequent urination 

increased urination 

hyperglycemia 

hyperglycaemia 

high glucose 

glucose high 

high blood glucose 

blood glucose high 

high blood sugar 

blood sugar high 

increase blood sugar 

blood sugar increase 

 

 

 

 


