
c� Copyright 1994

Hugues Hoppe

Surface Reconstruction from Unorganized Points

by

Hugues Hoppe

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Washington

1994

Approved by

(Chairperson of Supervisory Committee)

Program Authorized

to Offer Degree

Date

In presenting this dissertation in partial fulfillment of the requirements for the Doctoral

degree at the University of Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that extensive copying of this dissertation is

allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.

Copyright Law. Requests for copying or reproduction of this dissertation may be referred

to University Microfilms, 1490 Eisenhower Place, P.O. Box 975, Ann Arbor, MI 48106, to

whom the author has granted “the right to reproduce and sell (a) copies of the manuscript

in microform and/or (b) printed copies of the manuscript made from microform.”

Signature

Date

University of Washington

Abstract

Surface Reconstruction from Unorganized Points

by Hugues Hoppe

Chairperson of Supervisory Committee: Professor Tony DeRose

Department of
Computer Science and Engineering

This thesis describes a general method for automatic reconstruction of accurate, concise,

piecewise smooth surfaces from unorganized 3D points. Instances of surface reconstruction

arise in numerous scientific and engineering applications, including reverse-engineering—

the automatic generation of CAD models from physical objects.

Previous surface reconstruction methods have typically required additional knowledge,

such as structure in the data, known surface genus, or orientation information. In contrast,

the method outlined in this thesis requires only the 3D coordinates of the data points.

From the data, the method is able to automatically infer the topological type of the surface,

its geometry, and the presence and location of features such as boundaries, creases, and

corners.

The reconstruction method has three major phases: 1) initial surface estimation, 2)

mesh optimization, and 3) piecewise smooth surface optimization. A key ingredient in

phase 3, and another principal contribution of this thesis, is the introduction of a new

class of piecewise smooth representations based on subdivision. The effectiveness of the

three-phase reconstruction method is demonstrated on a number of examples using both

simulated and real data.

Phases 2 and 3 of the surface reconstruction method can also be used to approximate

existing surface models. By casting surface approximation as a global optimization problem

with an energy function that directly measures deviation of the approximation from the

original surface, models are obtained that exhibit excellent accuracy to conciseness trade-

offs. Examples of piecewise linear and piecewise smooth approximations are generated for

various surfaces, including meshes, NURBS surfaces, CSG models, and implicit surfaces.

TABLE OF CONTENTS

List of Figures iv

List of Tables vii

Chapter 1: Introduction 1

1.1 Problem statement � 1

1.2 Motivating applications � 2

1.2.1 3D scanning � 2

1.2.2 Contour data � 5

1.2.3 Surface sketching � 6

1.3 Previous work � 6

1.3.1 Algorithms assuming fixed topological type � � � � � � � � � � � � 6

1.3.2 Algorithms exploiting structure information � � � � � � � � � � � � 8

1.3.3 Algorithms exploiting orientation information � � � � � � � � � � � 8

1.3.4 Algorithms for triangulating noise-free data � � � � � � � � � � � � 9

1.3.5 Implicit surface fitting algorithms � � � � � � � � � � � � � � � � � 10

1.4 Overview of the surface reconstruction method � � � � � � � � � � � � � � 11

1.5 Contributions � 14

1.6 Overview of thesis � 15

1.7 Terminology and notation � 15

1.7.1 Mesh representation � 16

1.7.2 Neighborhoods on meshes � 17

Chapter 2: Phase 1: Initial surface estimation 19

2.1 Introduction � 19

2.2 Description of the algorithm � 22

2.2.1 Overview of the algorithm � 22

2.2.2 Tangent plane estimation � 23

2.2.3 Consistent tangent plane orientation � � � � � � � � � � � � � � � � 24

2.2.4 Signed distance function � 27

2.2.5 Contour tracing � 29

2.3 Results � 30

2.4 Discussion � 37

Chapter 3: Phase 2: Mesh optimization 40

3.1 Introduction � 40

3.2 Definition of the energy function � 43

3.3 Minimization of the energy function � 45

3.3.1 Optimization over V for fixed K � � � � � � � � � � � � � � � � � � 47

3.3.2 Optimization over K � 50

3.3.3 Strategy for selecting legal moves � � � � � � � � � � � � � � � � � 51

3.3.4 Exploiting locality � 52

3.3.5 Setting of the spring constant � � � � � � � � � � � � � � � � � � � 53

3.4 Results � 55

3.5 Discussion � 59

Chapter 4: Phase 3: Piecewise smooth subdivision surface optimization 61

4.1 Introduction � 61

4.2 Background on subdivision surfaces � 65

4.2.1 Loop’s subdivision surface scheme � � � � � � � � � � � � � � � � 65

4.2.2 Computing surface points and tangent vectors � � � � � � � � � � � 67

4.3 Piecewise smooth subdivision surfaces � � � � � � � � � � � � � � � � � � 69

4.3.1 Subdivision rules � 70

4.3.2 Computing surface points and tangent vectors � � � � � � � � � � � 73

4.4 Definition of the energy function � 76

4.5 Minimization of the energy function � 77

4.5.1 Optimization over V for fixed (K� L) � � � � � � � � � � � � � � � � 77

4.5.2 Optimization over (K� L) � 78

4.5.3 Implementation issues � 80

4.6 Results � 81

ii

4.7 Discussion � 85

Chapter 5: Surface Approximation 88

5.1 Introduction � 88

5.2 Mesh simplification � 89

5.2.1 Previous work � 90

5.2.2 Mesh simplification using mesh optimization � � � � � � � � � � � 91

5.2.3 Data dependent triangulations � � � � � � � � � � � � � � � � � � � 92

5.3 Piecewise linear approximation � 94

5.4 Piecewise smooth approximation � 97

5.5 Discussion � 99

Chapter 6: Summary and future work 101

6.1 Analysis of the reconstruction method � � � � � � � � � � � � � � � � � � � 102

6.2 Specialization to curve reconstruction � � � � � � � � � � � � � � � � � � � 103

6.3 Future work on surface reconstruction � � � � � � � � � � � � � � � � � � � 105

6.4 Future work on reconstruction of more general manifolds � � � � � � � � � 108

6.5 Future work related to 3D scanning � 109

Bibliography 111

iii

LIST OF FIGURES

1.1 Example of surface reconstruction. � 1

1.2 Problem with fitting an algebraic surface. � � � � � � � � � � � � � � � � � 10

1.3 The three phases of our surface reconstruction method. � � � � � � � � � � 12

1.4 Example of the three phases of the surface reconstruction method. � � � � 13

1.5 Mesh representation: an example of a mesh consisting of a single face. � � 16

1.6 Simplices and their corresponding simplicial neighborhoods. � � � � � � � 18

2.1 Phase 1: estimation of an initial mesh from a set of points. � � � � � � � � 19

2.2 Assumption on the size of features in U. � � � � � � � � � � � � � � � � � � 21

2.3 Illustration of the two stages in the phase 1 algorithm. � � � � � � � � � � � 23

2.4 Estimated tangent planes and Riemannian Graph. � � � � � � � � � � � � � 24

2.5 Importance of careful propagation of surface orientation. � � � � � � � � � 26

2.6 Orientation propagation path (minimal spanning tree). � � � � � � � � � � � 27

2.7 Signed distance from a point p to the nearest tangent plane. � � � � � � � � 28

2.8 Contour tracing of Z(�dU). � 30

2.9 Comparison of the original surface U with the result of phase 1. � � � � � � 31

2.10 Phase 1 of surface reconstruction on contour data. � � � � � � � � � � � � � 31

2.11 Results of phase 1 (initial surface estimation). � � � � � � � � � � � � � � � 34

2.12 Sensitivity of the phase 1 reconstruction to the parameter � + �. � � � � � � 36

3.1 Phase 2: optimization of the phase 1 mesh to fit the points X. � � � � � � � 40

3.2 Trade-off between accuracy and conciseness in phase 2. � � � � � � � � � � 42

3.3 Three optimized meshes obtained with different values of crep. � � � � � � 43

3.4 Minimization of E for fixed K without and with spring energy. � � � � � � 44

3.5 An idealized pseudo-code version of the mesh optimization algorithm. � � 46

3.6 Distance of a point xi from the mesh. � � � � � � � � � � � � � � � � � � � 47

3.7 The three elementary mesh transformations defined in phase 2. � � � � � � 50

3.8 Two local optimizations to evaluate an edge swap mesh transformation. � � 53

iv

3.9 Successive minimizations of E with decreasing spring constant � schedule. 54

3.10 Results of phase 2 (mesh optimization). � � � � � � � � � � � � � � � � � � 56

3.11 Segmentation of the optimized mesh into smooth components and shaded

rendering of the segmented surface. � 58

4.1 Phase 3: from a piecewise linear to a piecewise smooth representation. � � 61

4.2 Poor geometric fit when using an everywhere smooth surface. � � � � � � � 62

4.3 Example of subdivision surface optimization. � � � � � � � � � � � � � � � 63

4.4 Trade-off between accuracy and conciseness in phase 3. � � � � � � � � � � 64

4.5 Example of Loop’s subdivision surface scheme. � � � � � � � � � � � � � � 66

4.6 The neighborhood around a vertex vr of valence n. � � � � � � � � � � � � 67

4.7 Vertex and edge subdivision masks for Loop’s subdivision surface scheme. 67

4.8 Position and tangent masks for Loop’s subdivision scheme. � � � � � � � � 68

4.9 Result of optimizing an everywhere smooth subdivision surface. � � � � � 69

4.10 Example of our piecewise smooth subdivision surface scheme. � � � � � � 71

4.11 Vertex and edge subdivision masks for our piecewise smooth scheme. � � 72

4.12 Position and tangent masks for crease vertices. � � � � � � � � � � � � � � 74

4.13 The four elementary mesh transformations defined in phase 3. � � � � � � 79

4.14 Set of control vertices V�
T � K� over which to optimize for each elementary

mesh transformation T . � 80

4.15 Results of phase 3 (subdivision surface optimization). � � � � � � � � � � � 82

4.16 Partial segmentation of a surface into smooth patches for NURBS fitting. � 86

5.1 Approximation of a NURBS surface by concise piecewise linear and piece-

wise smooth surfaces. � 88

5.2 Example of mesh simplification using mesh optimization. � � � � � � � � � 91

5.3 Result of mesh optimization on a dense grid of elevation data. � � � � � � � 93

5.4 Comparison of shaded original and optimized meshes. � � � � � � � � � � 93

5.5 Piecewise linear approximation. � 94

5.6 Results of piecewise linear approximation. � � � � � � � � � � � � � � � � 96

5.7 Piecewise smooth approximation. � 97

5.8 Results of piecewise smooth approximation. � � � � � � � � � � � � � � � � 98

v

6.1 Example summarizing the 3 phases of surface reconstruction. � � � � � � � 101

6.2 Two examples of curve reconstruction from points in R2. � � � � � � � � � 104

vi

LIST OF TABLES

1.1 Modeling of physical forms. � 3

2.1 Phase 1 sampling parameters and execution times. � � � � � � � � � � � � � 33

3.1 Phase 2 parameter settings and optimization results. � � � � � � � � � � � � 58

4.1 Assignment of sharp edge subdivision masks as a function of the types of

the two incident vertices. � 72

4.2 Validation results for phase 3. � 84

4.3 Phase 3 parameter settings and optimization results. � � � � � � � � � � � � 84

4.4 Comparison of traditional NURBS fitting methods with the phase 3 approach. 85

6.1 Comparison of accuracy and conciseness of the surfaces after each phase. 102

6.2 Validation results: Edist to another point set sampled on U. � � � � � � � � 102

vii

ACKNOWLEDGMENTS

I wish to express sincere appreciation to my advisor Tony DeRose, Statistics

professors Werner Stuetzle and John McDonald, and Mathematics professor Tom

Duchamp for their help and guidance in pursuing this research. The multidisci-

plinary nature of the research group was a tremendous benefit both to me and to the

outcome of the research, as each discipline contributed crucial ideas to this thesis.

In particular, I want to thank Tony for much needed encouragement over the last

four years, and for his admirable integrity.

I wish to thank Steve Mann for introducing me to computer graphics and geomet-

ric modeling, for many exciting discussions, and for several entertaining graphics

projects outside my thesis work.

I want to thank Michael Lounsbery, Jean Schweitzer, and the other graphics

students in the U.W. Computer Science & Engineering Department for making my

graduate student experience very pleasurable.

My research was funded in part by the National Science Foundation and by

an IBM Graduate Fellowship. I would also like to thank Technical Arts Co. and

especially Ken Birdwell for providing several sets of real data for my experiments.

viii

Chapter 1

INTRODUCTION

(a) Unknown surface U (b) Sampled points X (c) Reconstructed surface S

Figure 1.1: Example of surface reconstruction.

1.1 Problem statement

Computer-aided geometric design and computer-aided manufacturing systems are used in

numerous industries to design and create physical objects from digital models. However,

the reverse problem, that of inferring a digital description from an existing physical object,

has received much less attention. We refer to this problem as reverse-engineering or, more

specifically, 3D scanning. There are various properties of a 3D object that one may be

interested in recovering, including its shape, its color, and its material properties. This

thesis addresses the problem of recovering 3D shape, also called surface reconstruction.

The goal of surface reconstruction can be stated as follows: Given a set of sample points

X assumed to lie on or near an unknown surface U, create a surface model S approximating

U (see Figure 1.1).

2

As we shall see shortly, previous reconstruction methods have usually been crafted to

exploit characteristics of specific problem instances.

In contrast, this thesis examines the surface reconstruction problem in a general form

that makes few assumptions about the sample X and the unknown surface U. In the general

surface reconstruction problem we consider, the points X may be noisy, and no structure

or other information is assumed within them. The surface U (assumed to be a manifold1)

may have arbitrary topological type2, including boundaries, and may contain sharp features

such the creases and corners present in the surface of Figure 1.1a. Since the points X

may be a noisy sampling, we do not attempt to interpolate them, but will instead find an

approximating surface.

Of course, a surface reconstruction procedure cannot guarantee recovering U exactly,

since it is only given information about U through a finite set of sample points. The

reconstructed surface S should have the same topological type as U, and be everywhere

close to U. In this thesis we will evaluate the reconstruction method by considering

examples where the true underlying surface U is known and can be compared visually and

quantitatively to the reconstruction.

1.2 Motivating applications

We were led to consider the general surface reconstruction problem stated above by a

number of application areas in science and engineering, including 3D scanning, surface

reconstruction from contours, and surface sketching. The next three sections discuss each

of these application areas in more detail.

1.2.1 3D scanning

One of the most important applications of surface reconstruction is 3D scanning—the

measurement and modeling of shape and other visual properties.

As shown in Table 1.1, many other physical forms such as images, movies, and sound,

can be measured using common consumer devices like document scanners, videocameras,

1 Intuitively speaking, a manifold is a surface that does not intersect itself. More precisely, a manifold
(possibly with boundary) embedded in R3 is a set everywhere locally homeomorphic to either a disk or a

half-disk, where a homeomorphism is a continuous invertible map whose inverse is also continuous [47].

2 The topological type of a surface refers to its genus, the presence of boundaries, etc. (cf. [47]).

3

and microphones. These multimedia devices have had an enormous impact because the

models they generate can be used in many ways that physical forms cannot. For example,

such models can be transmitted digitally, stored in databases, edited and analyzed with

software, and used as templates for making digital or physical copies. Another set of

technologies also allows for the re-instantiation of these same physical forms, using devices

such as printers, televisions, and speakers.

Table 1.1: Modeling of physical forms.

physical acquisition representation instantiation

form

image document scanner TIFF image, printer

postscript

movies videocamera videotape, television

laserdisc

sound microphone compact disc, speaker

digital audio tape

shape 3D scanner + concise NC milling,

surface reconstruction representation stereo lithography

Our vision is to put shape on an equal footing with these other media. We would like to

acquire, represent, analyze, and recreate 3D shapes with ease.

3D scanning technology There are numerous methods for acquiring shape information.

For instance, in computer vision, registration of landmarks in multiple views is used to

infer object shape. In a different technique called shape from shading, the intensity of light

reflected from the object’s surface provides knowledge of surface orientation, and with

further processing, the global shape of the object.

In the manufacturing industries, mechanical touch probes mounted on coordinate mea-

suring machines are used to record points on surfaces such as car bodies and airplane

wings. The resulting measurements are very accurate, but the technique is extremely slow

and limited to materials that can withstand mechanical contact. Cheaper, less accurate

hand-held 3D digitizing probes determine position using magnetic fields (Polhemus Corp.)

4

or ultrasound (Science Accessories Corp.). However, this type of “digitization” requires

significant human intervention.

Recently, mechanical probes are being replaced by laser range scanners. Laser range

scanners illuminate the object with a laser beam, and measure distance using either triangu-

lation, interference, or time-of-flight principles (for an extensive survey of range imaging

sensors, see Besl [4]). Laser range scanners are promising because they can provide dense,

accurate range data at high bandwidths.

Range scanning systems typically produce range images—rectangular grids of distances

from the sensor to the object being scanned. If the sensor and object are fixed, only objects

that are “point viewable” can be fully digitized. More sophisticated systems, such as those

produced by Cyberware Laboratory, Inc., are capable of digitizing cylindrical objects by

rotating either the sensor or the object. To adequately scan objects of more complicated

topological type, such as the object depicted in Figure 1.1a (a surface of genus 3), multiple

range images must be generated. Although the resulting data contains structure within each

range image, merging the data to reconstruct a useful surface representation is a non-trivial

task [38, 72].

3D scanning applications The development of fast, inexpensive 3D scanning systems

opens up a vast range of applications, including:

Reverse engineering: Computer-aided designs often begin with a physical object. Many

industries have a large catalog of traditional parts, created without CAD tools, for

which there may not even be paper engineering drawings, and which must be incor-

porated or modified into new designs.

Industrial design: Current CAD systems are far from providing the tactile and visual

advantages of traditional media such as wood and clay. CAD systems are used to

design three-dimensional shapes, but, with few exceptions, only two dimensional

input and output devices are used. Certain subtle but important features—such as the

facial features in Figure 4.15f—can be difficult to achieve. 3D scanning allows the

transfer of manually sculptured shapes into CAD systems.

Analysis and simulation: Digital descriptions can be analyzed and used in computer sim-

ulations. It then becomes possible, for example, to calculate the drag coefficient of a

car body sculpted in clay by the designer.

5

Populating virtual environments: Creating virtual environments simulating the physical

world around us requires models for the objects populating this world. Current virtual

realities tend to have a cartoon-like character partly due to lack of realistic models of

everyday things. 3D scanning can be used to efficiently obtain such models.

3D faxing: The emerging technologies of solid free-form fabrication (SFF), which allow

the quick prototyping of 3D objects, together with 3D scanners and efficient surface

reconstruction algorithms, may allow “3D faxing”—the scanning, transmission, and

re-instantiation of 3D shape.

To fully realize the potential of 3D scanning, it is essential to develop general, automatic,

efficient, and robust surface reconstruction algorithms for converting the data points that

3D scanners produce into useful models.

1.2.2 Contour data

Another application area involves the reconstruction of surfaces from contours. In many

medical studies it is common to slice biological specimens into thin layers with a microtome.

The outlines of the structures of interest are then digitized to create a stack of contours. In

manufacturing, similar stacks of contours are also produced by cross-section CAT scans

of mechanical parts. The surfaces from contours problem attempts to recover the three-

dimensional structures from the stacks of parallel two-dimensional contours. Although the

problem has received a good deal of attention [8, 39, 40], there remain severe limitations with

current methods. Perhaps foremost among these is the difficulty of automatically dealing

with branching structures. While algorithms addressing the general surface reconstruction

problem may not be as successful as methods specialized for contour data, they need not

consider such special cases.

In a related problem, ultrasound sensing is used to study the shape of the heart [28].

Contour images of the heart are obtained after insertion of a probe into the esophagus.

Unlike the microtome data, the ultrasound contours are not parallel. Moreover, the probe is

able to generate many sets of contours from different directions and from different positions.

Algorithms for solving the surfaces from contours problem cannot be easily applied to this

type of data.

6

1.2.3 Surface sketching

A number of researchers, including Schneider [59] and Eisenman [19], have investigated

the creation of curves inR2 by tracing the path of a stylus or mouse as the user sketches the

desired shape. Sachs et al. [54] describe a system, called 3-Draw, that permits the creation

of free-form curves in R3 by recording the motion of a stylus fitted with a Polhemus

sensor. This can be extended to the design of free-form surfaces by ignoring the order in

which positions are recorded, allowing the user to move the stylus arbitrarily back and forth

over the surface. The problem is then to construct a surface representation faithful to the

unordered collection of points.

1.3 Previous work

Previous surface reconstruction algorithms addressing these application areas have typically

been crafted on a case by case basis to exploit additional knowledge such as topological

type of the surface, structure in the data, orientation information, or absence of noise.

1.3.1 Algorithms assuming fixed topological type

A common restriction of surface reconstruction methods is that they assume that the topo-

logical type of the surface is known a priori.

Parametric reconstruction methods Parametric methods represent the reconstructed

surface as an embedding f (�) � R3 of a 2-dimensional parameter domain �. Previous

work has concentrated on domain spaces with simple topological type, i.e. the plane and

the sphere. Hastie and Stuetzle [27], and Bolle and Vemuri [7] discuss reconstruction

of surfaces by a topological embedding f (�) of a planar region � into R3. Brinkley [9]

considers the reconstruction of surfaces that are slightly deformed spheres, and thus chooses

� to be an approximation to a sphere. Schmitt et al. [57, 58] fit embeddings of cylinders.

Goshtasby [25] works with embeddings of cylinders and tori.

Since the domain � and the surface f (�) are homeomorphic, parametric reconstruction

methods inherently require knowledge of the topological type of the surface. Moreover, to

converge correctly, they also require an initial embedding f0(�) that is “sufficiently close”

to U. Equivalently, they assume a “good” initial parameterization of the points X in �. This

presents a problem since such an initial parameterization may be difficult to construct.

7

There is also extensive literature on smooth interpolation of triangulated data of arbitrary

topological type using parametric surface patches; see Lounsbery et al. [36] for a survey.

These schemes are designed to interpolate sparse data, rather than to fit dense, noisy

point sets of the type obtained from range scanners. Some more recent examples include

Veltkamp [73] and Szeliski et al. [67].

Function reconstruction Terms like “surface fitting” appear in reference to two distinct

classes of problems: surface reconstruction and function reconstruction. The goal of

surface reconstruction was stated earlier. The goal of function reconstruction may be stated

as follows: Given a surface D, a set fxi � Dg, and a set fyi � Rg, determine a function

f : D � R, such that f (xi) � yi.

The domain surface D is most commonly a plane, in which case the problem is a standard

one considered in approximation theory. The case where D is a sphere has also been treated

extensively . Foley [22] defines radial basis functions centered on points scattered over a

sphere. Schudy and Ballard [61, 62] use spherical harmonics to fit a surface as a function

over a spherical domain. Sclaroff and Pentland [65] describe a hybrid implicit/parametric

surface fitting method that involves fitting a function over a deformed superquadric. Some

recent work under the title surfaces on surfaces addresses the case when D is a general

curved surface such as the skin of an airplane [2, 46].

Function reconstruction methods can be used for surface reconstruction in simple,

special cases, where the surface to be reconstructed is, roughly speaking, the graph of

a function over a known surface D. It is important to recognize just how limited these

special cases are—for example, not every surface homeomorphic to a sphere is the graph

of a function over the sphere. The point is that function reconstruction must not be

misconstrued to solve the general surface reconstruction problem.

Constriction methods Constriction methods attempt to find a mesh interpolating a set

of data points. They first construct a 3-dimensional triangulation T0 of the points (T0 is

often chosen to be the Delaunay Triangulation).3 The boundary B(T0) of the triangulation

is a mesh that corresponds to the convex hull of the points. Since many surfaces are not

convex, B(T0) in general only interpolates a subset of the points. Therefore, they apply

an iterative constriction technique that, from a triangulation Ti, creates a new triangulation

3 Intuitively, a 3-dimensional triangulation consists of a set of tetrahedra pasted together along their faces.

8

Ti+1 by removing a tetrahedron adjacent to B(Ti). As T progressively shrinks, the boundary

mesh B(T) interpolates an increasing number of data points. In deciding which tetrahedron

to remove next from Ti, O’Rourke [48] uses a criterion based on minimal area of B(Ti+1),

and Veltkamp [73] uses a criterion based on maximal interior angle of B(Ti). However,

these methods are restricted in that they always produce a closed surface of genus zero.

1.3.2 Algorithms exploiting structure information

Many surface reconstruction algorithms exploit structure in the data. For instance, algo-

rithms solving the surfaces from contours problem (Section 1.2.2) make heavy use of the

fact that the data points are organized into contours, and that the contours lie in parallel

planes.

Similarly, algorithms to reconstruct surfaces from multiple range images typically ex-

ploit the adjacency relationship of the data within each range image. Merriam [38] suggests

two methods for merging range images: a virtual milling technique that intersects polyhedra

constructed from the different range images, and a pruning technique that first constructs

the 3D Delaunay Triangulation of the points and then prunes away tetrahedra “exposed”

in the various range images. Turk and Levoy [72] describe a mesh zippering approach, in

which overlapping surfaces (the range images) are “stitched” together.

These approaches have the drawback that they must deal with special cases using ad

hoc techniques. It is therefore difficult to apply them to similar but different problems.

For instance, methods solving the surfaces from contours problem cannot be used when

presented with several sets of intersecting contours.

1.3.3 Algorithms exploiting orientation information

Knowledge of the orientation of the surface at each data point is extremely valuable in

surface reconstruction. In fact, automatically determining such orientation is one of the main

challenges in our method, as we shall see in Section 2.2.3. Many previous reconstruction

methods assume that such orientation information is supplied with the data.

When the data points X are obtained from volumetric data, the gradient of this data can

provide orientation information that helps guide the reconstruction. For instance, Moore

and Warren [42] fit a piecewise polynomial implicit surface to a set of points, and make

use of auxiliary volumetric samples (off the surface) to assign correct orientations to the

surface pieces and to prevent spurious surface sheets. Likewise, Miller et al. [41] describe a

9

procedure for fitting meshes to isosurfaces of volumetric data, and make use of volumetric

information.

Other reconstruction procedures assume that each data point xi is also provided with

a normal vector �ni. For example, algorithms for reconstructing surfaces from range data

typically exploit the fact that each surface point xi is known to be visible from the sensor,

and make use of these direction vectors in orienting the surface. Szeliski and Tonnesen [68]

reconstruct a surface using an optimization problem involving oriented particles. By lo-

cal interaction, these particles align themselves on a 2-dimensional manifold. The initial

orientations of the particles is crucial to the success of their method, and must be spec-

ified as input. Muraki [43] fits an implicit function f that is a linear combination of

three-dimensional Gaussian kernels with different means and spreads. His goodness-of-fit

function measures how close the values of f at the data points are to zero, and how well the

direction of the gradient of f matches normals �ni estimated from the data.

1.3.4 Algorithms for triangulating noise-free data

Some recent computational geometry methods come close to addressing the general surface

reconstruction problem. They find meshes of arbitrary topological type that interpolate sets

of unorganized points. Since they interpolate the data, their main limitation is that they

require the data to be noise-free.

Edelsbrunner and Mücke [18] generalize the notion of convex hull to that of alpha

hull (�-hull). The convex hull of a set X can be thought of as the complement of the

union of all half-spaces not containing X. The �-hull is defined to be the complement of

the union of all �-spheres (spheres of radius �) not containing X. Thus, the convex hull

equals the �-hull with � = �. Edelsbrunner and Mücke also introduce the alpha shape

(�-shape), obtained by substituting simplicial elements (segments and triangles) for the

curved boundary elements of the �-hull. More recently, Edelsbrunner [17] has extended

this notion to weighted alpha shapes, in which the data points can be assigned scalar weights

to cope with non-uniform samplings.

The �-shape approach has great potential in addressing the general surface reconstruc-

tion problem. However, if the sample X is noisy, or if the underlying surface U is not

sufficiently smooth, the �-shape of X will in general have finite thickness, and not be, as

one would desire, a 2-dimensional manifold. It may be possible, as a post-process, to

“flatten” such an �-shape into a surface.

10

Favardin [21] presents a modified “gift-wrapping” algorithm for triangulating a set of

points. Gift-wrapping is a standard algorithm from computational geometry for computing

the convex hull of a set of points. It creates a triangulation by successively pivoting

planes about boundary edges of the triangulation until these plane encounter other points.

Favardin modifies the standard procedure to allow the creation of non-convex surfaces

by only considering points in a local neighborhood of the pivoting edge. Favardin also

describes a heuristic for detecting and dealing with surface boundaries.

There appears to be a close connection between the two previous methods. By appro-

priately defining the local neighborhood of Favardin’s modified gift-wrapping algorithm,

we conjecture that it can in fact generate the boundary of the �-shape. Specifically, the

neighborhood should be defined as the union of all �-spheres incident to both vertices of

the edge.

1.3.5 Implicit surface fitting algorithms

Several methods fit algebraic implicit surfaces (zero sets of polynomial functions) to sets

of points [50, 69]. However, the intent of these methods is not to reconstruct surfaces but

to either recognize objects or infer their orientations in a scene. These fitting methods

cannot be used directly for surface reconstruction because the topological type of algebraic

surfaces is highly unpredictable; in most cases, fitting an algebraic surface to a set of points

results in numerous surface sheets that happen to pass near the data but only connect up far

away (e.g. Figure 1.2).

Figure 1.2: Problem with fitting an algebraic surface.

One approach to controlling the topological type of an implicit surface is to triangulate

space and define a piecewise algebraic function of low degree over the resulting simplices.

11

Moore and Warren [42] use a piecewise polynomial function of degree 3. By keeping the

degree low and using additional volumetric samples (Section 1.3.3), they are able to avoid

extraneous surface sheets when the data is dense and nearly linear within each simplex.

Taubin and Ronfard [70] use a piecewise linear function in their implicit simplicial model

representation. The topological type of their surface is easy to predict, since the degree

1 algebraic surface can have at most one surface sheet within each simplex. Using this

representation, they have designed a curve reconstruction method that should in principle

generalize to surface reconstruction. A unique aspect of their method is that they infer both

the topological type of the curve and its geometry in a single process. Also, the use of an

implicit representation guarantees that the curves they generate never intersect themselves.

1.4 Overview of the surface reconstruction method

As seen in the previous section, surface reconstruction algorithms have typically been

designed to exploit additional knowledge in specific problem instances.

In contrast, our approach is to pose a unifying general problem. This approach has both

theoretical and practical merit. On the theoretical side, abstracting to a general problem

often sheds light on the truly critical aspects of the problem. On the practical side, a

single algorithm that solves the general problem can be used to solve any specific problem

instance.

We have developed a method for automatically reconstructing an accurate, concise

piecewise smooth surface S from a set of of points X, where

� X is an unorganized, noisy sample of an unknown surface U;

� the unknown surface U can have arbitrary topological type (including boundaries),

and may contain tangent plane discontinuities such as creases and corners;

� no other information, such as structure in the data or orientation information, is

provided.

A major difficulty in this general surface reconstruction problem is that the topological

type of U is not known a priori and must be inferred from the points. To tackle this difficulty,

we have partitioned the reconstruction problem: we first robustly determine the topological

type of the surface, and only then concern ourselves with the accuracy and conciseness of

12

the model. Our reconstruction method consists of three successive phases, as illustrated in

Figures 1.3 and 1.4.

phase 1

initial mesh

phase 2

phase 3

optimized mesh

optimized piecewise smooth surface

points

Figure 1.3: The three phases of our surface reconstruction method.

Phase 1: initial surface estimation (Chapter 2 and [4]): From an unorganized set of

points (Figure 1.4a), phase 1 constructs an initial dense mesh (Figure 1.4b). The goal

of this phase is to determine the topological type of the surface, and to produce an

initial estimate of its geometry.

Phase 2: mesh optimization (Chapter 3 and [3, 2]): Starting with the dense mesh created

in phase 1, phase 2 reduces the number of faces and improves the fit to the data

points (Figure 1.4c). We cast this problem as optimization of an energy function

that explicitly models the trade-off between the competing goals of accuracy and

conciseness. The free variables in the optimization are the number of vertices in the

mesh, their connectivity, and their positions.

Phase 3: piecewise smooth surface optimization (Chapter 4 and [1]): In phase 3, the

surface representation is changed from a piecewise linear one (meshes) to a piecewise

smooth one. We introduce of a new piecewise smooth representation based on

subdivision. These surfaces are ideal for surface reconstruction, as they are simple

to implement, can model sharp features concisely, and can be fit using an extension

of the phase 2 optimization algorithm.

13

(a) Unorganized points X (b) Result of phase 1: initial dense mesh

(c) Result of phase 2: optimized mesh (d) Result of phase 3: piecewise smooth
surface

Figure 1.4: Example of the three phases of the surface reconstruction method.

14

Starting with the optimized mesh produced in phase 2, phase 3 fits an accurate,

concise piecewise smooth subdivision surface (Figure 1.4d), again by optimizing

an energy function that trades off accuracy and conciseness. In addition to varying

the geometry and size of the surface representation, phase 3 also optimizes over the

number and locations of sharp features. The automatic detection and recovery of

sharp features in the surface is an essential part of phase 3.

Phase 2 could in principle be eliminated, but has proven useful for two reasons: first,

it is computationally more efficient to optimize over a piecewise linear surface in the early

stages of optimization, and second, initial estimates of sharp features are much more robust

when obtained from the phase 2 mesh.

1.5 Contributions

The principal contributions of this thesis are:

� It presents a robust algorithm (phase 1) for reconstructing surfaces of arbitrary topo-

logical type from unorganized points. From the data points, the algorithm automat-

ically infers the topological type of the surface (including the presence of boundary

curves).

� It presents an algorithm (phase 2, mesh optimization) for fitting a mesh of arbitrary

topological type to a set of data points. The fitting problem is cast as an energy

minimization problem over all meshes of a given topological type, with an energy

function that directly represents the trade-off of accuracy and conciseness.

� It introduces a new representation for piecewise smooth surfaces of arbitrary topo-

logical type. The new surface representation generalizes Loop’s subdivision surface

scheme [33] by introducing additional subdivision rules that allow the modeling of

sharp surface features such as creases and corners.

� It presents an algorithm (phase 3) for fitting piecewise smooth surfaces to sets of

points. The algorithm is a generalization of mesh optimization to piecewise smooth

subdivision surfaces, with the addition of a new set of free variables, the set of sharp

surface features. By casting the fitting problem as an optimization over all piecewise

15

smooth subdivision surfaces of a given topological type, the algorithm is able to find

accurate, concise piecewise smooth surfaces wherein sharp features are recovered

automatically.

� It demonstrates how the optimization algorithms of phases 2 and 3 can be used ef-

fectively for the approximation of surfaces by piecewise linear and piecewise smooth

models (Chapter 5). By casting surface approximation as a global optimization prob-

lem with an energy function that directly measures deviation of the approximation

from the original surface, we obtain models with excellent accuracy to conciseness

trade-offs. One commonly encountered instance of surface approximation is the

problem of mesh simplification—the accurate approximation of a dense mesh by a

more concise one.

1.6 Overview of thesis

The three phases of the surface reconstruction method are discussed and demonstrated in

Chapters 2, 3, and 4, respectively. The application of this work to the related problem of

surface approximation is presented in Chapter 5. Finally we analyze the shortcomings of

the surface reconstruction method as a whole and highlight directions for future work in

Chapter 6.

1.7 Terminology and notation

By a surface we mean a “compact, connected, orientable two-dimensional manifold, pos-

sibly with boundary, embedded in R3” (cf. O’Neill [47]). A surface without boundary will

be called a closed surface. If we want to emphasize that a surface possesses a non-empty

boundary, we will call it a bordered surface. Similarly, a curve will refer to a “compact,

connected one-dimensional manifold, possibly with boundary, embedded in Rd”. We use

kxk to denote the Euclidean length of a vector x, and we use d(X� Y) to denote the Hausdorff

distance between the sets of points X and Y (the Hausdorff distance is simply the Euclidean

distance between the two closest points of X and Y).

16

1.7.1 Mesh representation

Intuitively, a mesh is a piecewise linear surface, consisting of triangular faces pasted together

along their edges. For our purposes it is important to maintain the distinction between the

connectivity of the mesh and its geometry. Formally, a mesh M is a pair (K�V), where: K

is a simplicial complex representing the connectivity of the vertices, edges, and faces, thus

determining the topological type of the mesh; V = fv1� � � � �vmg, vi � R3 is a set of vertex

positions defining the shape of the mesh in R3 (its geometric realization).

Simplicial complex K

1{ } 2{ } 3{ }, ,
1 2,{ } 2 3,{ } 1 3,{ }, ,
1 2 3, ,{ }

vertices:
edges:
faces:

Topological realization K

e1

e2
e3

Rm

v1

v3

v2
π

R3

Geometric realization

b

z

x

y

p

π
V

K()

Figure 1.5: Mesh representation: an example of a mesh consisting of a single face.

A simplicial complex K consists of a set of simplices f1g� � � � � fmg, called vertices,

together with a set of simplices formed by unions of these vertices, such that every non-

empty subset of a simplex in K is again a simplex in K (cf. Spanier [66]). The 1-simplices

fi� jg � K are called edges, and the 2-simplices fi� j� kg � K are called faces.

A geometric realization of a mesh as a surface in R3 can be obtained as follows. For

a given simplicial complex K, form its topological realization jKj in Rm by identifying

the vertices ff1g� � � � � fmgg with the standard basis vectors fe1� � � � � emg of Rm. For each

simplex s � K let jsj denote the convex hull of its vertices in Rm, and let jKj = �s�K jsj.
Let � : Rm � R3 be the linear map that sends the i-th standard basis vector ei � Rm to

vi � R3 (see Figure 1.5).

The geometric realization of M is the image �V(jKj), where we write the map as �V to

emphasize that it is fully specified by the set of vertex positions V = fv1� � � � �vmg. The

17

map �V is called an embedding if it is 1-1, that is if �V(jKj) is not self-intersecting. Only a

restricted set of vertex positions V result in �V being an embedding.

If �V is an embedding, any pointp � �V(jKj) can be parameterized by finding its unique

pre-image on jKj. The vector b � jKj with p = �V(b) is called the barycentric coordinate

vector of p (with respect to the simplicial complex K). Note that barycentric coordinate

vectors are convex combinations of standard basis vectors ei � Rm corresponding to the

vertices of a face of K. Any barycentric coordinate vector has at most three non-zero

entries; it has only two non-zero entries if it lies on an edge of jKj, and only one if it is a

vertex.

Our implementation represents the simplicial complex using a half-edge data structure

(cf. Weiler [75]). Points stored at vertices of this data structure determine the geometric

realization of the mesh.

1.7.2 Neighborhoods on meshes

It is also useful to define neighborhoods on a simplicial complex. For this purpose, we

define a face of a simplex s to be any subset of s, and define the simplicial neighborhood of

a set of simplices J � K as the set of all simplices s such that s is a face of a simplex s� � K

that has a face s�� in J:

nbhd(J; K) = fs � K : �s�� � J� s� � K such that s�� � s � s�g�

Figure 1.6 shows examples of nbhd(J; K) where J consists of a single simplex. Finally, we

inductively define nbhdk(J; K) = nbhd(nbhdk�1(J; K)), k � 1.

18

i{ } K∈

i j,{ } K∈

i j k, ,{ } K∈

nbhd i j,{ } K;()

nbhd i j k, ,{ } K;()

nbhd i{ } K;()

Figure 1.6: Simplices and their corresponding simplicial neighborhoods.

Chapter 2

PHASE 1: INITIAL SURFACE ESTIMATION

points X � initial mesh M0

Figure 2.1: Phase 1: estimation of an initial mesh from a set of points.

2.1 Introduction

Phase 1 of the surface reconstruction procedure constructs an initial estimate for the surface.

From an unorganized set of points X = fx1� � � � �xng sampled from some unknown surface

U, phase 1 creates a mesh M0 that approximates U. A major difficulty is that the topological

type of U is unknown and must be inferred from the points. The goal of phase 1 is to provide a

robust method for correctly inferring this topological type. At the same time, phase 1 creates

a geometric approximation to the surface, albeit a crude one. In the example of Figure 2.1,

from a set of 4,102 points, phase 1 creates an initial mesh of the correct topological type

(closed surface of genus 3). As is evident in the example, the approximating mesh M0

typically has an excessive number of faces and is a poor fit to the data. Phases 2 and 3 are

responsible for improving the accuracy and the conciseness of the surface.

In contrast to previous surface reconstructions schemes (Section 1.3), the phase 1

reconstruction algorithm makes relatively few assumptions about the set of points X and

the underlying surface U from which these were sampled:

20

� the points may be noisy;

� no structure is assumed in the points;

� no information is required at each point beyond its (x,y,z) coordinates;

� the surface U may have arbitrary topological type (including boundaries);

� this topological type is not known a priori;

� the surface U is not assumed to be smooth.

We do require U to be a manifold (a non-intersecting surface), and at present require

it to be orientable. These are not severe restrictions in practice since surfaces that are

boundaries of physical objects satisfy these requirements.

Of course, if the only knowledge of U the algorithm is given is the finite set of sam-

ple points X, a correct surface reconstruction cannot generally be guaranteed, since the

topological type of U cannot be deduced. Additional assumptions must therefore be made

concerning the relationship between the surface U and the process that created the sample

X. To be practically useful, these assumptions must be sufficiently general to be widely

applicable, but sufficiently concrete to allow the algorithm to use them effectively. We

make two main assumptions: one concerns the sampling process, and the other concerns

the size of features in U.

Assumptions on the sampling process To capture the error in most sampling processes,

each of the points xi � X is assumed to be of the form xi = yi + ei, where yi � U is a

point on the unknown surface U and ei � R3 is an error vector. Such a sample X is called

�-noisy if keik 	 � for all i. Of course, it is impossible to recover features of U in regions

where insufficient sampling has occurred. In particular, if U is a bordered surface, such

as a sphere with a disc removed, it is impossible to distinguish holes in the sample from

holes in the surface. To capture the intuitive notion of sampling density we need to make

another definition: Let Y = fy1� � � � �yng � U be a (noiseless) sample of a surface U. The

sample Y is said to be �-dense if any sphere with radius � and center in U contains at least

one sample point in Y . A �-noisy sample fx1� � � � �xng � R3 of a surface U is said to be

21

�-dense if there exists a noiseless �-dense sample fy1� � � � �yng � U such that xi = yi + ei,

keik 	 �, i = 1� � � � � n.

With these definitions, let us consider when, given the set of sample points X, an

arbitrary point p � R3 could be a point of U. If there is no noise, we can deduce that pwith

d(p�X) � � cannot be a point of U since that would violate X being �-dense. Intuitively,

the sample points do not leave holes of radius larger than �. If the sample is �-noisy, the

radius of the holes may increase, but by no more than �. We therefore conclude that, given

a �-dense, �-noisy sample X of U, a point p cannot be a point of U if d(p�X) � � + �.

Assumptions on the size of features in U Features of U that are small compared to

either � or � are obviously not recoverable. While it may be acceptable to leave out small

details of U from the reconstruction, it is critical that the topological type of U be inferred

correctly. To realize this, we assume that no two “sheets” of U come “too close together”

(Figure 2.2). Specifically we assume that points sampled from two different sheets of

surface are separated by a distance of at least � + �. Otherwise there would be no way

to resolve the underlying topological type of U. Taking sampling noise into account, an

equivalent condition is that no two sheets of U may come within distance � + 3� of each

other.

ρ 3δ+

U

Figure 2.2: Assumption on the size of features in U.

An approximation of � + � is provided to the algorithm as a user-specified parameter.

A value for the noise magnitude � can be estimated in most applications (e.g., the accuracy

of the laser scanner). Similarly, analysis of the scanning procedure can also provide an

estimate for the sampling density �.

22

2.2 Description of the algorithm

2.2.1 Overview of the algorithm

From a set of data points X = fx1� � � � �xng assumed to be on or near an unknown surface

U, the phase 1 algorithm generates a mesh approximating U.

The key idea in phase 1 is to estimate from X the signed distance to U. The signed

distance from an arbitrary point p � R3 to a known closed surface U is defined as

dU(p) = s(p)
 d(p�U), where s(p) = �1, depending on which side of the surface p lies.

If U is a bordered surface, a continuous signed distance can be defined if one stays within

a tubular neighborhood D of the surface1. For our purposes, it is important to note that

knowing the signed distance function dU is equivalent to knowing the surface U; an implicit

representation for U is given by the zero set Z(dU) = fp : dU(p) = 0g. Although we know

neither U nor dU, our strategy will be to first estimate dU from the data points and then

extract an approximation of its zero set.

More concretely, the phase 1 algorithm consists of two stages (Figure 2.3). The first

stage defines a function �dU : D � R, where D � R3 is a region near the data points, such

that �dU estimates the signed distance dU. To handle bordered surfaces, the algorithm leaves
�dU(p) undefined when p �� D. Since �dU estimates dU, its zero set Z(�dU) = fp : �dU(p) = 0g
is our estimate for U. In the second stage we use a contouring algorithm to extract an

approximation to Z(�dU) in the form of a mesh.

Although the unsigned distance function jdUj would be easier to estimate, zero is not

a regular value of jdUj. Zero is, however, a regular value of dU, and the implicit function

theorem thus guarantees that the set Z(dU) is a manifold.

The key ingredient to estimating the signed distance function is to associate an oriented

plane with each of the data points. These estimated tangent planes serve as local linear

approximations to the surface. Although the construction of the tangent planes is relatively

simple, the selection of their orientations so as to define a globally consistent orientation

for the surface is one of the major obstacles facing the algorithm. These oriented tangent

planes, shown in Figure 2.4a, are then used to define the signed distance function to the

surface. An example of the mesh obtained by contouring the zero set of the signed distance

function is shown in Figure 2.1. The next several sections develop in more detail the

successive steps of the algorithm.

1 Informally, the tubular neighborhood of a surface S is the set of points p such that d(p� S) is small.

23

–

– –
–
–

–
–
–

+

+
+
+

+

+

+

++
++

+
+ +

+
+

+ + +

?d̃U

Z d̃U()

1. Estimate from data points:dU

2. Use contour tracing:

?d̃U

Figure 2.3: Illustration of the two stages in the phase 1 algorithm.

2.2.2 Tangent plane estimation

The first step toward estimating a signed distance function is to compute an oriented

tangent plane for each data point (Figure 2.4a). The tangent plane Tp(xi) associated with

the data point xi is represented as a point oi, called the center, together with a unit normal

vector �ni. The signed distance of an arbitrary point p � R3 to Tp(xi) is defined to be

disti(p) = (p � oi)
 �ni. The center and normal for Tp(xi) are determined by gathering

together the group of points of X within distance � + � of xi (where � and � are parameters

estimating the sampling density and noise); this set is denoted by Nbhd (xi) and is called

the neighborhood of xi. The center and unit normal are computed so that the plane

fdisti(p) = 0g is the least squares best fitting plane to Nbhd (xi). That is, the center oi

is taken to be the centroid of Nbhd (xi), and the normal �ni is determined using principal

component analysis. To compute �ni, the covariance matrix of Nbhd (xi) is formed. This is

the symmetric 3
 3 positive semi-definite matrix

CVi =
X

y�Nbhd (xi)

(y � oi)� (y � oi)

where� denotes the outer product vector operator.2 If 	1
i � 	2

i � 	3
i denote the eigenvalues

of CVi associated with unit eigenvectors v1
i �v

2
i �v

3
i , respectively, �ni is chosen to be either

2 If a and b have components ai and bj respectively, then the matrix a� b has aibj as its ij-th entry.

24

v3
i or �v3

i . The selection determines the orientation of the tangent plane, and it must be

done so that nearby planes are “consistently oriented”.

(a) Estimated tangent planes Tp(xi) (b) Riemannian Graph on oi

Figure 2.4: Estimated tangent planes and Riemannian Graph.

2.2.3 Consistent tangent plane orientation

Suppose two data points xi�xj � X are geometrically close. Ideally, when the data is

dense and the surface is smooth, the corresponding tangent planes Tp(xi) = (oi� �ni) and

Tp(xj) = (oj� �nj) are nearly parallel, i.e. �ni
 �nj � �1. If the planes are consistently

oriented, then �ni
 �nj � +1; otherwise, either �ni or �nj should be flipped. The difficulty in

finding a consistent global orientation is that this condition should hold between all pairs

of “sufficiently close” data points.

We can model this problem as graph optimization. Let the undirected graph G = (V�E)

contain a vertex i � V for each tangent plane Tp(xi), and edges (i� j) � E connecting

two tangent planes if their centers oi and oj are sufficiently close. Two tangent planes are

deemed sufficiently close if the corresponding data points lie in each other’s neighborhood,

or equivalently, if kxi � xjk
 � + �. This graph G (Figure 2.4b), which we call the

Riemannian Graph, is thus constructed to encode geometric proximity of the tangent plane

centers. (The graph may consist of more than one connected component if the underlying

25

surface U is not connected, in which case the following algorithm is applied to each

connected component of the graph.)

In the graph optimization problem, the cost on an edge e = (i� j) encodes the degree to

which Tp(xi) and Tp(xj) are consistently oriented, and is taken to be w(e) = �ni
 �nj. The

problem is then to make a binary choice bi � f�1� 1g for each vertex i, selecting tangent

plane orientation bi�ni, so as to maximize the cost metric

X
(i�j)�E

bibjw(i� j) �

Unfortunately, this combinatorial optimization problem is NP-hard, as shown via a

reduction from the NP-complete MAXCUT [23] decision problem.

Proof:

MAXCUT problem: Given graph G = (V�E), weights w(e) � Z+ for each e � E, and

positive integer K, is there a partition of V into disjoint sets V1 and V2 such that the sum of

the weights of the edges from E that have one endpoint in V1 and one endpoint in V2 is at

least K?

ORIENTATION problem: Given graph G = (V�E) with weight w(e) � R for each

e � E, determine an assignment b(v) � f�1� +1g for each v � V that maximizes

Cw(b) =
X

e=(v1�v2)�E

b(v1)b(v2)w(e) �

To solve MAXCUT(G�w�K) using ORIENTATION, let w� = �w (negate the weights on

all edges), and call ORIENTATION(G�w�) to obtain assignments b that maximize Cw� (b).

Partition V into two sets V� and V+ according to these assignments b(v). Let W�
��, W �

++,

and W �
�+ represent the sum of the weights of edges with endpoints completely in V�,

completely in V+, and in both, respectively. Note that the total weight of edges in the graph,

T = W�
��+W �

+++W �
�+, is independent of assignments b, and that Cw�(b) = W�

��+W �
++�W �

�+.

Thus, Cw� (b) = T � 2W�
�+, and maximizing Cw�(b) is equivalent to minimizing W �

�+.

Moreover, since the weights have been negated, W�+ = �W �
�+ and maximizing Cw� (b) is

equivalent to maximizing W�+, the sum of the weights—in the MAXCUT problem—of

edges with one endpoint in V� and one endpoint in V+. Since ORIENTATION provides a

solution to this maximization problem, we can then trivially decide if there exists a partition

of V with W�+ � K. Q.E.D.

26

Since our graph optimization problem is NP-hard, no solution method can guarantee

finding its exact solution in reasonable time. One approach to approximating the solution

is to use a simulated annealing method. For instance, Taubin and Ronfard [70] encounter

a similar graph problem when determining signs in their implicit curve reconstruction

method. They discover that this discrete optimization problem has a physically-based

counterpart, the Ising model of large populations of particles with spin, for which simulated

annealing schemes are well documented. Our approach is instead to use an efficient, greedy

approximation algorithm. Although this greedy algorithm is not likely to perform well on

arbitrary graphs, it has been successful on the Riemannian Graphs we have encountered.

A relatively simple-minded greedy algorithm to orient the tangent planes would be

to arbitrarily choose an orientation for some plane, then “propagate” the orientation to

neighboring planes in the graph. In practice, we have found that the order in which

orientation is propagated is important. Figure 2.5c shows what may result when propagating

orientation solely on the basis of geometric proximity; a correct reconstruction from the

points in Figure 2.5b is shown in Figure 2.11l.

(a) Original mesh (U) (b) Sampled points X (c) Incorrect reconstruction re-
sulting from naive orientation
propagation

Figure 2.5: Importance of careful propagation of surface orientation.

Intuitively, we would like to choose an order of propagation that favors propagation

from Tp(xi) to Tp(xj) if the unoriented planes are nearly parallel. This can be accom-

plished by assigning to each edge (i� j) in the Riemannian Graph the cost 1 � j�ni
 �njj. In

addition to being non-negative, this assignment has the property that a cost is small if the

27

unoriented tangent planes are nearly parallel. A favorable propagation order can therefore

be achieved by traversing the minimal spanning tree (MST) of the resulting graph (shown

in Figure 2.6). This order is advantageous because it tends to propagate orientation along

directions of low curvature in the data, thereby largely avoiding ambiguous situations en-

countered when trying to propagate orientation across sharp edges (as at the tip of the cat’s

ears in Figure 2.5a).

Figure 2.6: Orientation propagation path (minimal spanning tree).

To assign orientation to an initial plane, the unit normal of the tangent plane whose

center has the largest z coordinate is made to point toward the +z axis. This assignment is

not critical but is convenient in obtaining predictable surface orientations. Then, rooting

the minimal spanning tree at this initial node, the tree is traversed in depth-first order, each

tangent plane being assigned an orientation consistent with that of its parent. That is, if

during traversal, the current tangent plane Tp(xi) has been assigned the orientation �ni and

Tp(xj) is the next tangent plane to be visited, then �nj is replaced with ��nj if �ni
 �nj
 0.

The orientation algorithm described above has been used in all the examples and has

produced correct orientations in all the cases we have run.

2.2.4 Signed distance function

The signed distance dU(p) from an arbitrary point p � R3 to a known closed surface U is

the distance between p and the closest point z � U, multiplied by�1, depending on which

side of the surface p lies. In reality U is not known, but we can mimic this procedure using

28

the oriented tangent planes as follows. First, we find the tangent plane Tp(xi) whose center

oi is closest to p. This tangent plane is a local linear approximation to U, so we take the

estimated signed distance �dU(p) to U to be the signed distance between p and its projection

z onto Tp(xi) (Figure 2.7); that is,

�dU(p) = disti(p) = (p� oi)
 �ni �

oi

n̂i

p

z

Figure 2.7: Signed distance from a point p to the nearest tangent plane.

If U is known to be a closed surface, this simple rule works well. However, the rule

must be extended to accommodate surfaces that might have boundaries. As discussed in

Section 2.1, because X is assumed to be a �-noisy, �-dense sampling of U, the points do

not leave unsampled holes of radius larger than � + �. Therefore if the projection z of p

onto the closest tangent plane has d(z�X) � � + �, z cannot be a point of U, and we take
�dU(p) to be undefined. Undefined values are used by the contouring algorithm (described

in Section 2.2.5) to identify boundaries.

Stated procedurally, the signed distance function is defined as:

i � index of tangent plane whose center is closest to p

f Compute z as the projection of p onto Tp(xi) g
z� oi � �(p� oi)
 �ni� �ni

if d(z�X)
 � + � then
�dU(p) � (p� oi)
 �ni f= �kp� zkg

else
�dU(p) � undefined

endif

29

The simple approach outlined above creates a signed distance function �dU whose zero

set Z(�dU) is piecewise linear but contains discontinuities. The discontinuities result from

the implicit partitioning of space into regions within which a single tangent plane is used

to define �dU. (These regions are in fact the Voronoi regions associated with the centers

oi.) Fortunately, the discontinuities do not adversely affect the algorithm. The contouring

algorithm discussed in the next section discretely samples the function �dU over a por-

tion of a 3-dimensional grid near the data and reconstructs a continuous piecewise linear

approximation to Z(�dU).

2.2.5 Contour tracing

Contour tracing, the extraction of an isosurface from a scalar function, is a well-studied

problem [1, 13, 76]. Most contour tracing algorithms partition space into cubes or simplices

(tetrahedra), evaluate the scalar function at the vertices of these volume elements, and for

each element, from the values at its vertices, infer a linear approximation to the surface.

Phase 1 currently uses the algorithm of Wyvill et al. [76], because it is simple to implement

and, unlike the standard “marching cubes” algorithm [34], does not suffer from ambiguous

configurations. Also, it produces sparser representations (for a given accuracy) than the

method of Allgower and Schmidt [1] which uses tetrahedral decompositions of cubes.

(A disadvantage of the method of Wyvill et al. is that it does not generalize to higher

dimensions.)

In our implementation of the algorithm of Wyvill et al., we handle degenerate zero

evaluations (�dU(p) = 0) by arbitrarily perturbing them to a small positive value, in order

to guarantee that the output is a surface. The algorithm only visits cubes that intersect the

zero set by pushing onto a queue only the appropriate neighboring cubes (Figure 2.8a).

No intersection is reported within a cube if the signed distance function is undefined at

any vertex of the cube, thereby giving rise to surface boundaries. As a result, the signed

distance function �dU is evaluated only near the data. In Figure 2.8b, evaluation of the signed

distance function is shown graphically as line segments between the query points p (at the

cube vertices) and their projections z onto the nearest tangent plane.

To accurately estimate the surface and to properly infer its topological type, the cube size

should be set so that cube edges are of length 	 � + �. In practice it has been convenient

to simply let the cube size equal � + �, to free the user from having to specify another

parameter.

30

(a) Cubes visited by marching cubes (b) Estimated signed distance (shown as
p� z)

Figure 2.8: Contour tracing of Z(�dU).

The result of phase 1 is a mesh approximating Z(�dU). Drawn as a wireframe (Figure 2.1),

the mesh is seen to be very dense (it has numerous vertices, edges, and faces). The mesh

has the same topological type as the original surface U shown in Figure 2.9a, but as is

evident in the shaded version of Figure 2.9b, the result of phase 1 is far from faithful to the

geometry of the original model. This deficiency will be addressed in the next two chapters.

2.3 Results

We have experimented with data sets obtained from several different sources. In all cases,

any structure (such as ordering) that might have been present in the point sets was discarded.

Simulated range data : To simulate laser range imaging from multiple view points, Con-

structive Solid Geometry (CSG) models were ray traced from multiple eye points.

The ray tracer recorded the point of first intersection along each ray. Eight eye points

(the vertices of a large cube enclosing the object) were used to generate the 4,102

points shown in Figure 2.1. This is the point set used in Section 2.2 to illustrate the

steps of the algorithm.

31

(c) Original surface U (d) Shaded phase 1 mesh

Figure 2.9: Comparison of the original surface U with the result of phase 1.

(a) Contour data from a CT scan (b) Phase 1 reconstruction

Figure 2.10: Phase 1 of surface reconstruction on contour data.

32

Contours : Points from 39 planar slices of the CT scan of a femur (Figure 2.10a) were

combined to reconstruct the surface of Figure 2.10b. Note how the branching problem

(where a single contour forks into two contours) was handled correctly without any

special code.

Figure 2.11a shows 30,937 points on 794 cross-sections of an oil pump (courtesy of

Ford Motor Company). The surface reconstructed in phase 1 is shown in Figure 2.11b.

Real range data : Points were sampled from two physical objects by Technical Arts Co.

(Redmond, WA) using a laser scanning head mounted on a coordinate measuring

machine: 12,745 points from a Nissan distributor cap (Figure 2.11c) and 12,772

points from a mannequin head (Figure 2.11e). The phase 1 reconstructions are

shown in Figures 2.11d and 2.11f. The holes present in the surface of Figure 2.11d

are artifacts of the data, as self-shadowing prevented some regions of the surface from

being scanned. Adaptive selection of scanning paths preventing such shadowing is

an interesting area of future research. In this case, we manually closed the holes

by introducing vertices at their centroids and adding new faces. (We did leave one

boundary at the bottom of the distributor cap.)

Existing surfaces : By sampling points from a variety of existing surface models, we were

able to compare results with known references.

The 10,000 points shown in Figure 2.11g were sampled from a swept surface (knot

courtesy of Rob Scharein), and were used to reconstruct the surface in Figure 2.11h.

This surface is an example of a surface with simple topological type (that of a torus)

but a complex geometric embedding.

The 26,103 points in Figure 2.11i were sampled from the Utah teapot, defined as a

set of NURBS patches. Since in the NURBS definition, the patches intersect each

other (for instance, the spout penetrates inside the body), we had to filter the sample

points to make them lie on a manifold. Phase 1 of surface reconstruction yields the

single genus 1 surface (with one boundary at the spout) shown in Figure 2.11j.

A piecewise linear surface, the mesh of Figure 2.5a, was randomly sampled to yield

the sparse set of 1,000 points shown in Figure 2.11k. From these points, the surface

in Figure 2.11l was reconstructed. This particular case illustrates the behavior of the

33

method on a bordered surface (the cat has no base and is thus homeomorphic to a

disc).

Table 2.1: Phase 1 sampling parameters and execution times.

Figure Object # points Parameter Time

n � + � (seconds)

2.1b mechpart 4,102 .035 14

2.10b femur 18,224 .06 190

2.11b oilpmp 30,937 .011 104

2.11d distcap 12,745 .02 40

2.11f mannequin 12,772 .015 52

2.11h knot 10,000 .025 75

2.11j teapot 26,103 .02 133

2.11l cat 1,000 .08 4

6.2a curve1 200 .05 .6

6.2b curve2 200 .08 .6

Table 2.1 lists the sampling parameter used in each example, expressed as a fraction of

the object’s size, and execution times obtained on an SGI Indigo workstation.

As shown in Figure 2.12, the method is not overly sensitive to the value of the parameter

� + �. However, for parameter values that are too low, holes appear in the surface; and, for

parameter values that are too high, the genus of the surface is not inferred correctly.

34

(a) Cross-section data (b) Phase 1 reconstruction

(c) Laser range data (d) Phase 1 reconstruction

(e) Laser range data (f) Phase 1 reconstruction

Figure 2.11: Results of phase 1 (initial surface estimation).

35

(g) Points from a swept surface (h) Phase 1 reconstruction

(i) Points from a set of NURBS patches (j) Phase 1 reconstruction

(k) Points from a mesh (l) Phase 1 reconstruction

Figure 2.11: (continued)

36

(a) � + � = �020 (b) � + � = �025 (c) � + � = �030

(d) � + � = �035 (e) � + � = �040 (f) � + � = �045

Figure 2.12: Sensitivity of the phase 1 reconstruction to the parameter � + �.

37

2.4 Discussion

Parameter setting Because the assumptions on the sampling and the surface are in-

terlinked (Section 2.1), the single parameter � + � is used for several purposes in phase

1:

� It determines the neighborhoodsNbhd (xi) of points used in estimating tangent planes

to the surface;

� It determines geometric proximity of the tangent planes Tp(xi) (connectivity in the

Riemannian Graph);

� It determines if, in the evaluation of the estimated signed distance�dU(p), the projection

of p onto the nearest tangent plane lies beyond a boundary of the surface;

� It is used to set the resolution of the contour tracing algorithm.

When scanning multiple objects with a scanner of a given technology, the parameter

� + � can likely be set to a common value. Specifying a global value for � + � works well

for data sets with uniform sampling density, uniform noise, and uniform surface features.

But ideally this parameter should be adapted locally to variations in sampling, and should

be inferred from the points themselves.

One possible scheme for automatically adapting the sampling density parameter is

to examine the shape of the neighborhoods Nbhd (xi) as points are added in order of

increasing distance. The “shape” of a neighborhood can be described by the principal frame

(o�
p
	1v1�

p
	2v2�

p
	3v3) obtained from principal component analysis (Section 2.2.2).

For small sets of points, data noise tends to dominate, the eigenvalues 	� are similar, and

the eigenvectors v� may not reveal the surface’s true tangent plane. At the other extreme,

as number of points grows larger, the neighborhoods become less localized and the surface

curvature tends to increase the “thickness” 	3 of the neighborhood. Another possible

criterion is to compare 	3 to some local or global estimate of data noise. Although we

have done some initial experimentation in this direction, we have not yet fully examined

these options. One difficulty is that some structured data sets (such as the contour data in

Figure 2.10a) have anisotropic sampling density.

38

Complexity analysis It is difficult to analyze the asymptotic complexity of the phase 1

algorithm as a function of the number n of points, because the value of the parameter � + �

greatly affects the complexity of several subproblems. However, empirical observation

reveals the following:

� the size of the neighborhoodsNbhd (xi) tends to remain constant as n increases, since

the parameter � + � is adjusted to a smaller value;

� therefore the Riemannian Graph has size O(n);

� therefore the computation of the MST on the Riemannian Graph requires O(n log n)

time.

The most expensive subproblems then become:

1. For each point xi, determining the neighborhoodNbhd (xi), i.e. the O(1) set of points

within distance �+ �. As there are n such neighborhoods, this problem would require

O(n2) time overall if done by brute force.

2. For each point p � R3 at which �dU(p) is evaluated, finding the nearest tangent plane

origin oi. The number of such evaluations is proportional to n. To see this, note

that the contour tracing cube size is set equal to � + �, and is thus proportional to the

average spacing between the points. Therefore the number of contour tracing cubes

occupied by the n data points is proportional to n. Thus this problem would also

require O(n2) if implemented by brute force.

Hierarchical spatial partitioning schemes such as octrees [55] and k-D trees [3] can

greatly speed up these spatial searching problems. As we assume uniform sampling density

in our data, a simpler scheme, based on uniform cubic partitioning, has worked effectively.

The axis-aligned bounding box of the points is partitioned by a cubical grid. Points are

entered into sets corresponding to the cube to which they belong, and these sets are accessed

through a hash table indexed by the cube indices (a similar scheme is described in Wyvill

et al. [76]). It is difficult to analyze the resulting improvements analytically, but empirically,

the time complexity of the above problems is effectively reduced from O(n2) to O(n).

39

Specialization to range data If the data points are obtained from range images, there

exists some knowledge of surface orientation at each data point. Indeed, each data point is

known to be visible from at least one viewing direction3, so that, unless the surface grazing

angle is large, a point’s tangent plane orientation can usually be inferred from the viewing

direction. The current algorithm can exploit this additional information in the tangent

plane orientation step (Section 2.2.3). Let the Riemannian Graph be augmented with one

additional vertex � and n additional edges from � to each tangent plane vertex i. Assign

to each new edge (�� i) the cost 1 � j�ni
 �vij where �ni is the normal of Tp(xi) and �vi is

the viewing direction at point xi. Then compute the MST of this new graph and propagate

orientation as before. This strategy was implemented but never used, as we were always

able to correctly infer orientation without resorting to it.

Culling of outliers Another possible use for the principal component analysis of the

neighborhoods Nbhd (xi) is the culling of outlier data points. If the principal frame is not

sufficiently “flat” (i.e. if 	3 is large) or if its origin oi is distant from xi (as measured in

principal frame coordinates), then Nbhd (xi) does not appear to lie on a 2-manifold and the

point xi should be removed. It may be safer to remove data points than to proceed with

uncertain tangent plane estimates. But fortunately we did not have to filter our data, as it

was free of such outliers.

3 In a ranger scanner based on triangulation, it is known that the surface point is visible from both the light
source and the camera.

Chapter 3

PHASE 2: MESH OPTIMIZATION

points X

initial mesh
M0

(phase 1)

Q
Q
Qs

�
�
��

optimized mesh

Figure 3.1: Phase 2: optimization of the phase 1 mesh to fit the points X.

3.1 Introduction

Phase 1, described in the previous chapter, creates an initial surface approximation from a

set of points X, in the form of a dense mesh. Phase 2, the topic of this chapter, seeks to

improve the accuracy and conciseness of this mesh. This is achieved by solving a mesh

optimization problem, stated roughly as follows: Given a collection of data points X in R3

and an initial mesh M0 near the data, find a mesh M of the same topological type as M0 that

both fits the data well and has a small number of vertices. A “perfect” fit to the data would

involve interpolating the points. However, since X may be a noisy sampling, we do not

seek an interpolating surface, as such a surface would contain many unwanted folds and

undulations.

41

In the example of Figure 3.1, from the set of 4,102 points and the initial mesh created

in phase 1, mesh optimization creates a new, more concise, more accurate mesh. Notice

that the sharp edges and corners indicated by the data points have been faithfully recovered

and that the number of vertices has been significantly reduced (from 886 to 163).

To solve the mesh optimization problem we minimize an energy function that captures

the competing desires of tight geometric fit and compact representation. Using the input

mesh M0 as a starting point, an optimization algorithm minimizes this non-linear energy

function by varying the number of mesh vertices, their positions, and their connectivity

(under the constraint that the topological type be maintained). In essence, the search space

of the optimization consists of all meshes of the same topological type as M0. Although

we can give no guarantee of finding a global minimum, we have run the method on a wide

variety of data sets, and we have obtained good results in all cases, as demonstrated in

Section 3.4.

Most previous methods for surface fitting only consider surfaces of simple topological

type (e.g. rectangular or spherical domains), as described in Section 1.3.1.

In contrast, the mesh optimization algorithm allows fitting of a parametric surface of

arbitrary topological type to a set of points. In addition to fitting the mesh, the optimization

also varies the number of vertices and their connectivity, thereby locally tailoring the degrees

of freedom in the representation to the geometry of the data points.

The principal contributions of phase 2 are:

� It presents an algorithm for fitting a mesh of arbitrary topological type to a set of data

points (as opposed to volume data, etc.).

� It casts mesh fitting as the minimization of an energy function that embodies the

competing goals of accuracy and conciseness.

� It defines a set of mesh transformations, and conditions under which they can be

applied, that allow consideration of all meshes of a given topological type.

� It shows that the resulting non-linear optimization problem can be made tractable

through the use of a nested optimization algorithm and a set of approximations.

� It demonstrates how the algorithm’s ability to recover sharp edges and corners can be

exploited to automatically segment the final mesh into smooth connected components.

42

Another application of mesh optimization, that of finding concise piecewise linear

approximations to existing surfaces, is discussed in Chapter 5.

accuracy

perfect

poor

conciseness
sparse dense
ideal

space of meshes
M1

M2a

M2b

M2c

(phase1)

Figure 3.2: Trade-off between accuracy and conciseness in phase 2.

Trade-off between accuracy and conciseness The two goals of mesh optimization, those

of accuracy and conciseness, are competing goals, as illustrated in the graph of Figure 3.2.

An ideal surface representation would lie in the lower left corner of this graph, as it would

both be concise and have perfect fit to the data. However, since we are only considering

piecewise linear surfaces (meshes), there is a bound on the accuracy that a representation

of a given size can achieve. The meshes M2a, M2b, and M2c, which lie on the boundary

of this “space of meshes”, are all in a sense optimal; they exhibit a trade-off between

accuracy and conciseness. In mesh optimization, this trade-off between geometric fit and

compact representation is controlled via a user-selectable parameter crep. A large value

of crep indicates that a coarse representation is to be strongly preferred over a dense one,

usually at the expense of degrading the fit.

As an example, Figure 3.3 shows three optimized meshes obtained with different values

of crep. At one extreme, the first mesh (obtained with a high value of crep) is concise but a

poor geometric fit; at the other extreme, the last mesh (obtained from a low value of crep) is

dense but much more accurate.

43

(a) M2a with crep = 10�3 (b) M2b with crep = 10�4 (c) M2c with crep = 10�6

Figure 3.3: Three optimized meshes obtained with different values of crep.

3.2 Definition of the energy function

In the following discussion, it may be useful to refer back to Section 1.7.1 for notation and

terminology.

Recall that the goal of mesh optimization is to obtain a mesh that both provides a good

fit to the point set X = fx1� � � � �xng and has a small number of vertices. We find a simplicial

complex K and a set of vertex positions V = fv1� � � � �vmg defining a mesh M = (K�V) that

minimizes an energy function carefully chosen to meet our two stated goals:

E(K�V) = Edist(K�V) + Erep(K) + Espring(K�V) �

The first two terms measure the accuracy and conciseness of the mesh; the third term is

motivated below.

The distance energy Edist is equal to the sum of squared distances from the points to the

mesh,

Edist(K�V) =
nX

i=1

d2(xi� �V(jKj)) �

The representation energy Erep penalizes meshes with a large number of vertices. It is

set to be proportional to the number m of vertices of K:

Erep(K) = crepm �

The optimization allows vertices to be both added to and removed from the mesh. When

a vertex is added, the distance energy Edist is likely to be reduced; the term Erep charges a

44

penalty to this operation so that vertices are not added indefinitely. Similarly, one wants

to remove vertices from a dense mesh even if Edist increases slightly; in this case Erep acts

to encourage the vertex removal. The user-specified parameter crep provides a controllable

trade-off between fidelity of geometric fit and parsimony of representation.

We discovered, as others have before us [37], that minimizing Edist + Erep alone does not

produce the desired results. As an illustration of what can go wrong, Figure 3.4a shows

the result of minimizing Edist alone. The estimated surface has several spikes in regions

where there is no data. These spikes are a manifestation of the fundamental problem that a

minimum of Edist + Erep may not exist. If, in the course of minimization, few points project

onto the neighborhood of a vertex, then the optimal position of this vertex may become

ill-defined, and the vertex may therefore wander arbitrarily far from the data.

(a) Minimizing E without Espring (b) Minimizing E with Espring

Figure 3.4: Minimization of E for fixed K without and with spring energy.

To guarantee the existence of a minimum [32], we add the third term, the spring energy

Espring. It places on each edge of the mesh a spring of rest length zero and spring constant

�:

Espring(K�V) =
X

fj�kg�K

�kvj � vkk2 �

Minimizing E with the spring energy term produces a much more stable result, as shown

in Figure 3.4b.

45

It is worthwhile emphasizing that the spring energy is not a smoothness penalty. Our

intent is not to penalize sharp dihedral angles in the mesh, since such features may be present

in the underlying surface and should be recovered. We view Espring as a regularizing term

that helps guide the optimization into a desirable local energy well. As the optimization

converges to the solution, the magnitude of Espring can be gradually reduced. We return to

this issue in Section 3.3.5.

For some applications, the procedure should be scale-invariant, equivalent to defining

a unitless energy function E. To achieve invariance under Euclidean motion and uniform

scaling, the points X and the initial mesh M0 are uniformly pre-scaled to fit in a unit cube.

After optimization, a post-processing step can undo this initial transformation.

The energy function E(K�V) depends on two parameters crep and �. The parameter

crep controls the trade-off between conciseness and fidelity to the data and should be set by

the user. The parameter �, on the other hand, is a regularizing parameter that is chosen

automatically. The method for setting � is described in Section 3.3.5.

3.3 Minimization of the energy function
Our goal is to minimize the energy function

E(K�V) = Edist(K�V) + Erep(K) + Espring(K�V)

over the set K of simplicial complexes K homeomorphic to the initial simplicial complex

K0, and the vertex positions V defining the embedding. Here is an outline of the optimization

algorithm, a pseudo-code version of which appears in Figure 3.5. The details are deferred

to the next two subsections.

To minimize E(K�V) over both K and V , the problem is partitioned into two nested

subproblems: an inner, continuous minimization over V for fixed simplicial complex K,

and an outer, discrete minimization over K.

Section 3.3.1 describes an algorithm that solves the inner minimization problem. Its

goal is to find E(K) = minV E(K�V), the energy of the best possible embedding of the fixed

simplicial complex K, and the corresponding vertex positions V , given an initial guess for

V . This corresponds to the procedure OptimizeVertexPositions in Figure 3.5.

Whereas the inner minimization is a continuous optimization problem, the outer min-

imization of E(K) over the simplicial complexes K � K (procedure OptimizeMesh) is a

discrete optimization problem. An algorithm for its solution is presented in Section 3.3.2.

46

OptimizeMesh(K0,V0) f
K := K0

V := OptimizeVertexPositions(K0,V0)

– Solve the outer minimization problem.
repeat f

(K�,V �) := GenerateLegalMove(K,V)
V � = OptimizeVertexPositions(K�,V �)
if E(K��V �)
 E(K�V) then

(K,V) := (K�,V �)
endif

g until convergence
return (K,V)

g
– Solve the inner optimization problem
– E(K) = minV E(K�V)
– for fixed simplicial complex K.

OptimizeVertexPositions(K,V) f
repeat f

– Compute barycentric coordinates by projection.
B := ProjectPoints(K,V)

– Minimize E(K�V�B) over V using conjugate gradients.
V := ImproveVertexPositions(K,B)

g until convergence
return V

g
GenerateLegalMove(K,V) f

Select a legal move K � K�.
Locally modify V to obtain V � appropriate for K�.
return (K�,V �)

g
Figure 3.5: An idealized pseudo-code version of the mesh optimization algorithm.

47

3.3.1 Optimization over V for fixed K
(Procedure OptimizeVertexPositions)

In this section, we consider the problem of finding a set of vertex positions V that minimizes

the energy function E(K�V) for a given simplicial complex K. As Erep(K) does not depend

on V , this amounts to minimizing Edist(K�V) + Espring(K�V).

To evaluate the distance energy Edist(K�V), it is necessary to compute the distance of

each data point xi to the surface �V(jKj). Each of these distances is itself the solution to the

minimization problem

d2(xi� �V(jKj)) = min
bi�jKj

kxi � �V(bi)k2 �

in which the unknown is the barycentric coordinate vector bi � jKj � Rm of the projection

of xi onto M (Figure 3.6). Thus, minimizing E(K�V) for fixed K is equivalent to minimizing

the new objective function

E(K�V�B) =
nX

i=1

kxi � �V(bi)k2 + Espring(K�V)

=
nX

i=1

kxi � �V(bi)k2 +
X

fj�kg�K

�kvj � vkk2

over the vertex positions V = fv1� � � � �vmg�vi � R3 and the barycentric coordinates

B = fb1� � � � �bng�bi � jKj � Rm.

π
V

bi()

xi

v1

v3

v2

Figure 3.6: Distance of a point xi from the mesh.

48

To solve this optimization problem (procedure OptimizeVertexPositions), the method

alternates between two subproblems:

1. For fixed vertex positions V , find optimal barycentric coordinate vectors B by pro-

jection (procedure ProjectPoints).

2. For fixed barycentric coordinate vectors B, find optimal vertex positions V by solving

a linear least squares problem (procedure ImproveVertexPositions).

Because we find optimal solutions to both of these subproblems, E(K�V�B) can never

increase, and since it is bounded from below, it must converge.1 In principle, one could

iterate until some formal convergence criterion is met. Instead, as is common, we perform

a fixed number of iterations. As an example, Figure 3.4b shows the result of optimizing

over the vertex positions while holding the simplicial complex fixed.

It is conceivable that procedure OptimizeVertexPositions returns a set V of vertices

for which the mesh is self-intersecting, i.e. �V is not an embedding. While it is possible

to check a posteriori whether �V is an embedding, constraining the optimization to always

produce an embedding appears to be difficult. This has not presented a problem in the

examples we have run.

3.3.1.1 Projection subproblem (Procedure ProjectPoints)

The problem of optimizing E(K�V�B) over the barycentric coordinate vectors B = fb1� � � � �bng
while holding the vertex positions V = fv1� � � � �vmg and the simplicial complex K constant,

decomposes into n separate optimization problems:

bi = argmin
b�jKj

kxi � �V(b)k �

In other words, bi is the barycentric coordinate vector corresponding to the point p �
�V(jKj) closest to xi.

A naive approach to computing bi is to project xi onto all faces of M, and then find the

projection with minimal distance. To speed up the projection, the faces of the mesh are first

entered into a spatial partitioning data structure (similar to the one used in Wyvill et al. [76]).

1 Although the energy E must converge, that is not necessarily true of the vertex positions V. Theoretically,

it is possible that the iterative procedure follow a cyclic path in the space of vertex positions, converging
over E while not converging over V. However, we have not encountered such behavior in practice.

49

Then for each point xi only a nearby subset of the faces needs to be considered, so that

the overall projection step takes expected time O(n). For additional speedup we exploit

coherence between iterations. A point’s projection is assumed to lie in a neighborhood of its

projection in the previous iteration. Specifically, the point is projected onto the simplicial

neighborhood nbhd(f ; K) of the face f onto which it previously projected. Although this is

a heuristic that can fail, it has performed well in practice.

3.3.1.2 Linear least squares subproblem (Procedure ImproveVertexPositions)

Minimizing E(K�V�B) over the vertex positions V while holding B and K fixed is a linear

least squares problem. It decomposes into three independent subproblems, one for each of

the three coordinates of the vertex positions. We will write down the problem for the first

coordinate.

Let e be the number of edges (1-simplices) in K; note that e is O(m). We can express the

least squares problem for the first coordinate as minimizing a linear system kAv1 � d1k2

over v1, where the design matrix A is an (n + e)
 m matrix and d1 is an (n + e)-vector.

The first n rows of the least squares problem correspond to Edist(K�V), so that row i of A

is bi and row i of d1 is xi�1. The last e rows correspond to the springs of Espring(K�V), so

that each of these rows of A contains two non-zero entries with values
p
� and �p� in the

columns corresponding to the indices of the edge’s vertices, and these rows of d1 contain

zero. An important feature of the matrix A is that it contains at most 3 non-zero entries in

each row, for a total of O(n + m) non-zero entries.

The least squares problem is solved using the conjugate gradient method (cf. Golub and

Van Loan [24]). This is an iterative method guaranteed to find the exact solution in as many

iterations as there are distinct singular values of A, i.e. in at most m iterations. Usually far

fewer iterations are required to get a result with acceptable precision. For example, we find

that for m as large as 104, as few as 200 iterations are sufficient.

The two time-consuming operations in each iteration of the conjugate gradient algorithm

are the multiplication of A by an (n + e)-vector and the multiplication of AT by an m-

vector. Because A is sparse, these two operations can be executed in O(n + m) time.

Thus, an acceptable solution to the least squares problem is obtained in O(n + m) time

(with a constant number of conjugate gradient iterations). In contrast, a typical noniterative

method for solving dense least squares problems, such as QR decomposition, would require

O((n + m)m2) time to find an exact solution.

50

3.3.2 Optimization over K
(Procedure OptimizeMesh)

To solve the outer minimization problem, minimizing E(K) over K, we define a set of three

elementary mesh transformations, edge collapse, edge split, and edge swap, that change a

simplicial complex K into another simplicial complex K� (see Figure 3.7).

edge collapse edge split edge swap

i

j

k
l

h

hk k kl l l

i i

j j

initial
configuration

Figure 3.7: The three elementary mesh transformations defined in phase 2.

We define a legal move to be the application of one of these elementary transformations

to an edge of K that leaves the topological type of K unchanged. The set of elementary

transformations is complete in the sense that any simplicial complex in K can be obtained

from K0 through a sequence of legal moves.2

Our goal then is to find such a sequence taking us from K0 to a minimum of E(K). We

do this using a variant of random descent: we randomly select a legal move, K � K�. If

E(K�)
 E(K), we accept the move, otherwise we select another move and repeat. We

use a slightly more sophisticated strategy for randomly selecting legal moves, described in

Section 3.3.3. More elaborate optimization schemes, such as steepest descent or simulated

annealing, are possible. We have obtained good results with the simple method of random

descent, so we have not yet implemented the other schemes.

2 In fact, Duchamp [32] shows that edge collapse and edge split are sufficient; we include edge swap to allow
the optimization procedure to “tunnel” through small hills in the energy function.

51

Identifying legal moves An edge split transformation is always a legal move, as it can

never change the topological type of K. The other two transformations, on the other hand,

can cause a change of topological type, so tests must be performed to determine if they are

legal moves.

We define an edge fi� jg � K to be a boundary edge if it is a subset of only one face

fi� j� kg � K, and a vertex fig to be a boundary vertex if there exists a boundary edge

fi� jg � K.

An edge collapse transformation K � K� that collapses the edge fi� jg � K is a

legal move if and only if the following conditions are satisfied (proven in joint work with

Duchamp [32]):

� For all vertices fkg adjacent to both fig and fjg (fi� kg � K and fj� kg � K), fi� j� kg
is a face of K.

� If fig and fjg are both boundary vertices, fi� jg is a boundary edge.

� K has more than 4 vertices if neither fig nor fjg are boundary vertices, or K has more

than 3 vertices if either fig or fjg are boundary vertices.

An edge swap transformation K � K� that replaces the edge fi� jg � K with fk� lg � K�

is a legal move if and only if fk� lg �� K.

3.3.3 Strategy for selecting legal moves
(Procedure GenerateLegalMove)

The simple strategy of randomly selecting legal moves described in Section 3.3.2 can be

improved by exploiting locality. Instead of selecting edges completely at random, edges

are selected at random from a candidate set. This candidate set consists of all edges that

may lead to beneficial moves, and initially contains all edges.

To generate a legal move, we randomly remove an edge from the candidate set. We first

consider collapsing the edge, accepting the move if it is legal and reduces the total energy.

If the edge collapse is not accepted, we then consider edge swap and edge split in that

order. If one of the transformations is accepted, we update the candidate set by adding all

neighboring edges. The candidate set becomes very useful toward the end of optimization,

when the fraction of beneficial moves diminishes. The candidate set also provides a simple

termination criterion: terminate when the candidate set becomes empty.

52

3.3.4 Exploiting locality

The idealized algorithm described so far is too inefficient to be of practical use. In this

section, we describe some heuristics that dramatically reduce the running time. These

heuristics capitalize on the observation that a local change in the structure of the mesh

leaves the optimal positions of distant vertices essentially unchanged.

Our discrete optimization procedure requires evaluation of E(K�) = minV� E(K��V �)

for a simplicial complex K� obtained from K through a legal move. Ideally, we would

use procedure OptimizeVertexPositions of Section 3.3.1 for this purpose, as indicated in

Figure 3.5. In practice, however, this is too slow. Instead, we use fast local heuristics to

estimate the effect of a legal move on the energy function.

Each of the heuristics is based on extracting a submesh in the neighborhood of the

transformation, along with the subset of the data points projecting onto the submesh. The

change in overall energy is estimated by considering only the contribution of the submesh

and the corresponding point set. This estimate is always pessimistic, as full optimization

would only further reduce the energy. Therefore, the heuristics never suggest changes that

would increase the true energy of the mesh.

Evaluation of edge collapse To evaluate a transformation K � K� collapsing an edge

fi� jg into a single vertex fhg (Figure 3.7), we take the submesh to be the simplicial

neighborhood nbhd(fhg; K�) (as defined in Section 1.7.2), and optimize over the single

vertex position vh while holding all other vertex positions constant.

Because we perform only a small number of iterations (for reasons of efficiency), the

initial choice of vh greatly influences the accuracy of the result. Therefore, we perform

three different optimizations, with vh starting at vi, vj, and 1
2(vi + vj), and use the one that

obtains the lowest energy.

The edge collapse should be allowed only if the new mesh does not intersect itself.

Checking for this would be costly; instead we settle for a less expensive heuristic check.

If, after the local optimization, the maximum dihedral angle of the edges in nbhd(fhg; K�)

is greater than some threshold, the edge collapse is rejected.

Evaluation of edge split The procedure is similar to that for edge collapse, with the

submesh defined to be the neighborhood nbhd(fhg; K�) about the new vertex fhg, and the

initial position of vh chosen to be 1
2(vi + vj).

53

Evaluation of edge swap To evaluate an edge swap transformation K � K� that replaces

an edge fi� jg � K with fk� lg � K�, we consider two local optimizations, one with submesh

nbhd(fkg; K�), varying vertex vk, and one with submesh nbhd(flg; K�), varying vertex vl

(Figure 3.8). The change in energy is taken to best of these.3 As is the case in evaluating an

edge collapse, we reject the transformation if the maximum dihedral angle after the local

optimization exceeds a threshold.

i

j

k
l

k

l

Figure 3.8: Two local optimizations to evaluate an edge swap mesh transformation.

3.3.5 Setting of the spring constant

We view the spring energy Espring as a regularizing term that helps guide the optimization

process to a good local minimum. The spring constant � determines the contribution of

this term to the total energy. We have obtained good results by making successive calls to

procedure OptimizeMesh, each with a different value of �, according to a schedule that

gradually decreases �.

As an example, to obtain the final mesh in Figure 3.9d starting from the phase 1 mesh

in Figure 3.1, we successively set � to 10�2� 10�3� 10�4, and 10�8 (see Figures 3.9a–3.9d).

This same schedule was used in all the examples.

3 An obvious alternative is to optimize simultaneously over both vk and vl, but this would slightly complicate
the implementation.

54

(a) Minimum of E with � = 10�2 (b) Minimum of E with � = 10�3

(c) Minimum of E with � = 10�4 (d) Minimum of E with � = 10�8

Figure 3.9: Successive minimizations of E with decreasing spring constant � schedule.

55

3.4 Results

From the point sets shown in Figure 2.11 and the initial meshes produced by phase 1 shown

in the left column of Figure 3.10, phase 2 produces the optimized meshes shown in the right

column of Figure 3.10.

As these examples reveal, by simply minimizing the energy function E, the density and

shapes of elements in the meshes adapts to the curvature of the underlying surface:

� Vertices are dense in regions of high Gaussian curvature, whereas a few large faces

span the flat regions.

� Long edges are aligned in directions of low curvature, and the aspect ratios of the

triangles adjust to local curvature.

� Edges and vertices are placed near sharp features of the underlying surface.

These effects are rather surprising, since the underlying surface is unknown and can

only be estimated from the discrete set of sample points. To re-emphasize, no heuristics are

introduced to reap these benefits; they are simply by-products of the energy minimization

process.

Parameter settings and quantitative results All examples use the spring constant sched-

ule of f10�2� 10�3� 10�4� 10�8g as described in Section 3.3.5. Table 3.1 shows the improve-

ments in conciseness and accuracy obtained from mesh optimization, and lists execution

times (on an SGI Indigo workstation).

Surface segmentation Mesh optimization allows the detection of sharp features in the

underlying surface. Using a simple thresholding method, the optimized mesh can be

segmented into smooth components. To this end, we build a graph in which the nodes

are the faces of mesh. Two nodes of this graph are connected if the two corresponding

faces are adjacent and their dihedral angle is smaller than a given threshold. The connected

components of this graph identify the desired smooth segments.

As an example, Figure 3.11a shows the segmentation of the optimized mesh into 11

components. After segmentation, a smoothly shaded surface can be created by estimating

vertex normals from neighboring faces within each component, as in Figure 3.11b. Note

56

(a) Phase 1 mesh (b) Phase 2 optimized mesh

(c) Phase 1 mesh (d) Phase 2 optimized mesh

(e) Phase 1 mesh (f) Phase 2 optimized mesh

Figure 3.10: Results of phase 2 (mesh optimization). The same point sets were used as in

phase 1 (Figure 2.11).

57

(g) Phase 1 mesh (h) Phase 2 optimized mesh

(i) Phase 1 mesh (j) Phase 2 optimized mesh

(k) Phase 1 mesh (l) Phase 2 optimized mesh

Figure 3.10: (continued)

58

Table 3.1: Phase 2 parameter settings and optimization results.

Fig. Object # pts Conciseness Accuracy Time

n crep m (# vertices) Edist min.

phase 1 phase 2 ph1
ph2 phase 1 phase 2 ph1

ph2

3.1 mechpart 4,102 10�5 886 163 5 1�72 10
�1 4�86 10

�4 354 12

3.10ab oilpmp 30,937 10�5 19,002 891 21 5�83 10
�2 4�93 10

�3 12 107

3.10cd distcap 12,745 10�5 6,253 685 9 1�30 10
�1 4�05 10

�3 32 40

3.10ef mannequin 12,772 10�5 7,834 689 11 4�74 10
�2 3�39 10

�3 14 36

3.10gh knot 10,000 10�5 2,689 975 3 1�52 10
�1 3�08 10

�3 49 25

3.10ij teapot 26,103 10�5 2,986 623 5 1�91 10
�1 3�17 10

�3 60 63

3.10kl cat 1,000 10�5 232 181 1.3 1�93 10
�1 1�09 10

�3 177 2

6.2ac curve1 200 10�3 75 13 6 8�61 10
�3 4�79 10

�3 1.8 .1

6.2bd curve2 200 10�2 62 9 7 1�12 10
�1 8�33 10

�2 1.3 .1

(a) Segmented mesh (11 components) (b) Shaded rendering

Figure 3.11: Segmentation of the optimized mesh into smooth components and shaded

rendering of the segmented surface.

59

how the silhouette of the rendered surface betrays that the surface is not smooth. The next

chapter presents a method for reconstructing a piecewise smooth surface from the points.

3.5 Discussion

Alternate solution to non-linear least squares problem In Section 3.3.1 we described

how to solve the continuous non-linear least squares problem using an algorithm that

alternates between projection of the points and linear least squares (LLS). Another common

approach to solving such a problem is to use conjugate gradients, such as the Polak-Ribiere

algorithm [51]. Comparing the two, we observed that the conjugate gradient approach has

a slightly better convergence rate, but that our alternating projection/LLS method reduces

E much more quickly in the first few iterations.

In our procedure, the non-linear least squares problem appears twice:

1. In the initial global fitting of mesh mesh (the call to OptimizeVertexPositions on

(K0,V0) in the pseudo-code of Figure 3.5).

2. In the evaluation of the local heuristics described in Section 3.3.4.

Since evaluating the local heuristics requires a quick estimate for E(K�), we have found

the alternating projection/LLS method to be better suited.

On the other hand, the initial global fitting of the mesh is only done once, so for it we

can afford to perform a greater number of optimization iterations. We therefore favor the

faster convergence rate of the conjugate gradient method, which we will now discuss.

The conjugate gradient method is straightforward once we derive evaluation functions

for the energy function E(V) and its gradient,

rE(V) =

�
�E
�v1

� � � � �
�E
�vm

�
�

60

To compute rE(V) at a given set of vertex positions V , we project the data points xi

onto the mesh (Section 3.3.1.1) to obtain the barycentric coordinates bi of their closest

points on the mesh. By symbolic differentiation, we then obtain:

�E
�vj

�����
V

=
�Edist

�vj

�����
V

+
�Espring

�vj

�����
V

=
nX

i=1

�2bi�j(xi � �V(bi)) +
X

fj�kg�K

�2�(vk � vj) �

Since the vectors b1� � � � �bm are sparse, and since the number of edges in K is O(m), both

E(V) and rE(V) can be computed in O(n + m) time given a fast projection method.

It is interesting to note that E(V) is continuous but not differentiable. Indeed, it may

happen that some points do not project uniquely onto the mesh, in which case rE(V) will

be undefined. However, this seldom occurs, and if it does, our projection procedure makes

an arbitrary choice which leads to one of several “possible” values for rE(V).

Chapter 4

PHASE 3:
PIECEWISE SMOOTH

SUBDIVISION SURFACE OPTIMIZATION

points X

optimized mesh
(phase 2)

�
��R

�
���

piecewise smooth
surface

Figure 4.1: Phase 3: from a piecewise linear to a piecewise smooth representation.

4.1 Introduction

As detailed in the previous two chapters, phases 1 and 2 of the surface reconstruction

procedure create an accurate, concise piecewise linear surface approximation to a set of

points. Phase 3, described in this chapter, finds an even more accurate and more concise

piecewise smooth surface (Figure 4.1). A key ingredient in phase 3, and a principal

contribution of this thesis, is the introduction of a new class of piecewise smooth surfaces

based on subdivision.

62

The generalization to smooth surfaces in phase 3 is a natural and necessary extension

of phase 2. Many objects of interest are piecewise smooth; that is, their surfaces consist of

smoothly curved regions that meet along sharp curves and at sharp corners. Modeling such

objects as piecewise linear surfaces typically requires a large number of triangles, whereas

curved surface models can provide both a more accurate and a more concise representation

of the true surface. It is critical, however, to use a surface representation capable of

explicitly modeling sharp features. Using an everywhere smooth surface representation

to model sharp features typically results in a greater number of surface elements, poor

geometric fit, and unwanted surface artifacts, as illustrated in Figure 4.2. Additionally, the

surface representation should be capable of modeling surfaces of arbitrary topological type.

Figure 4.2: Poor geometric fit when using an everywhere smooth surface. (Edist is 6 times

larger than in Figure 4.3b.)

The most popular smooth surface representations are tensor product NURBS. However,

NURBS can only represent surfaces of arbitrary topological type by partitioning the model

into a collection of individual NURBS patches. Adjacent patches must then be explicitly

stitched together using geometric continuity conditions [20]. A large number of parameters

(the B-spline coefficients) are therefore introduced, most of which are constrained by the

continuity conditions. As a consequence, fitting NURBS surfaces in general requires

high-dimensional constrained optimization.

Subdivision surfaces, first introduced by Doo/Sabin [14] and Catmull/Clark [11], offer

a promising alternative. As will be detailed in Section 4.2, a subdivision surface S(M)

63

is defined as the limit of a subdivision process applied to a control mesh M, as indicated

in Figures 4.5a–4.5d. Subdivision surfaces are capable of modeling everywhere smooth

surfaces of arbitrary topological type using a small number of unconstrained parameters.

Our new surface representation is a generalization of the subdivision surface scheme

introduced by Loop [33]. Loop’s scheme, like all subdivision schemes to date, produces

tangent plane continuous surfaces of arbitrary topological type. A principal contribution of

our work is to show that it is possible to locally modify Loop’s subdivision rules to model

sharp features such as creases and corners. Our piecewise smooth subdivision scheme also

models boundary curves, as shown for instance in the spout of the Utah teapot (Figure 4.15j).

We can now rephrase the goal of phase 3 as: Starting with the optimized mesh (piecewise

linear surface) produced by phase 2, find a concise control mesh M (Figure 4.3a), of the

same topological type as the phase 2 mesh, defining a piecewise smooth subdivision surface

S(M) (Figure 4.3b) that accurately fits the points.

(a) Tagged control mesh M (b) Subdivision surface S(M)

Figure 4.3: Example of subdivision surface optimization.

As in phase 2, we set up an energy minimization problem that trades off conciseness

and fit to the data. Both the energy function and the optimization algorithm of phase 3 are

64

similar to those of phase 2, but with two major differences:

� The distance energy Edist measures distance of the points not to the piecewise linear

control mesh M, but to the piecewise smooth subdivision surface S(M) defined by M.

� In addition to varying the number of vertices in the control mesh, their connectivity,

and their positions, the phase 3 optimization algorithm also varies the number and

locations of sharp features. The automatic detection and recovery of sharp features

in the surface is an essential part of phase 3.

The search space of the subdivision surface optimization consists of all piecewise

smooth subdivision surfaces of a given topological type. As illustrated in Figure 4.4, this

search space is a superset of the space of meshes considered in phase 2.

accuracy

perfect

poor

conciseness
sparse dense
ideal

space of meshes

phase 1

phase 2

phase 3 space of piecewise
smooth surfaces

Figure 4.4: Trade-off between accuracy and conciseness in phase 3.

We introduce subdivision surfaces and review some of their properties in Section 4.2.

Our piecewise smooth subdivision surface scheme is presented in Section 4.3. The phase 3

optimization problem and algorithm are described in Sections 4.4 and 4.5.

65

4.2 Background on subdivision surfaces

A subdivision surface is defined by repeatedly refining a control mesh as indicated in

Figures 4.5a–4.5d. The first and most popular subdivision surface schemes, introduced by

Doo/Sabin [14] and Catmull/Clark [11], are based on quadrilateral meshes, and generalize

biquadratic and bicubic tensor product B-splines, respectively. A subdivision scheme based

on triangles is most convenient for our purposes. We use a generalization of the triangular

scheme introduced by Loop [33], as it is the simplest known scheme leading to tangent

plane smooth surfaces.

4.2.1 Loop’s subdivision surface scheme

Loop’s subdivision scheme is a generalization of C2 quartic triangular B-splines. As

illustrated in Figure 4.5, the subdivision surface S(M) associated with a control mesh

M = (K�V) is defined as the limit of a refinement process applied to M:

M� M1 = R(M)� M2 = R(R(M))� � � � �

The refinement procedure R proceeds by splitting each triangular face into four subfaces.

The vertices of the refined mesh are then positioned using weighted averages of the vertices

in the unrefined mesh. Formally, starting with the initial control mesh M = M0, each

subdivision step carries a mesh Mr = (Kr�Vr) into a refined mesh Mr+1 = (Kr+1�Vr+1) where

the vertices Vr+1 are computed as affine combinations of the vertices of Vr. Some of the

vertices of Vr+1 naturally correspond to vertices of Vr—these are called vertex points; the

remaining vertices in Vr+1 correspond to edges of the mesh Mr—these are called edge

points. Let vr denote a vertex of Vr having neighbors vr
1� ����v

r
n as shown in Figure 4.6.

Such a vertex is said to have valence n. Let vr+1
i denote the edge point of Vr+1 corresponding

to the edge vrvr
i , and let vr+1 be the vertex point of Vr+1 associated with vr. The positions

of vr+1 and vr+1
i are computed according to the subdivision rules

vr+1 =
�(n)vr + vr

1 +

 + vr
n

�(n) + n

vr+1
i =

3vr + 3vr
i + vr

i�1 + vr
i+1

8
� i = 1� ���� n

(4.1)

where subscripts are taken modulo n, and where�(n) = n(1�a(n))
a(n) with a(n) = 5

8� (3+2 cos(2��n))2

64 .

Affine combinations such as those in Equation 4.1 can be nicely visualized by diagrams

66

(a) Control mesh M (b) Mesh M1 = R(M)

(c) Mesh M2 = R(R(M)) (d) Limit surface S(M) = R�(M)

Figure 4.5: Example of Loop’s subdivision surface scheme.

67

vr

vr 1+

Mr

Mr 1+
v3

r

v2
r

v1
r

vn
r

v1
r 1+ v2

r 1+

v3
r 1+

vn
r 1+

Figure 4.6: The neighborhood around a vertex vr of valence n.

called masks, as shown in Figure 4.7.

1

α n()
11

1 1

3

3

1 1

Figure 4.7: Vertex and edge subdivision masks for Loop’s subdivision surface scheme.

4.2.2 Computing surface points and tangent vectors

Loop’s surfaces in particular, and subdivision surfaces in general, are defined only as the

limit of an infinite refinement process. In most cases closed form expressions for the

limit surfaces are not known, but somewhat surprisingly, various properties of subdivision

surfaces, such as exact points on the surface and exact tangent planes, can nonetheless be

computed [26].

To study the properties of subdivision surfaces, it is convenient to write Equation 4.1 in

matrix form as

(vr+1�vr+1
1 � ����vr+1

n)T = Sn(vr�vr
1� ����v

r
n)T

= Sr+1
n (v0�v0

1� ����v
0
n)T (4.2)

68

where superscript T denotes matrix transpose [14]. For Loop’s subdivision scheme, the

matrix Sn, called the local subdivision matrix, has the form

SLoop
n =

1
8

�
BBBBBBBBB�

8� 8a(n) 8a(n)
n

8a(n)
n

8a(n)
n

8a(n)
n

 8a(n)

n

3 3 1 0 0

 1

3 1 3 1 0

 0
...

. . .
...

3 1 0 0

 1 3

�
CCCCCCCCCA

�

As r ��, each point vr approaches a point on the limit surface. Equation 4.2 suggests

that the limit point can be obtained by analyzing the eigenstructure of the local subdivision

matrix. Indeed, the limit point can be expressed as an affine combination of the initial

vertex positions [26]:

v� =

0v

0 +
1v
0
1 +

nv

0
n

0 +
1 +

n

where (
0� ����
n) is the dominant left eigenvector of Sn. For Loop’s surfaces this affine

combination can be expressed as the position mask shown in Figure 4.8a [33].

ω n()
11

1 1

1

0
c2c4

cn c1

c3

0
c3c5

c1 c2

c4

(b) tangent masks(a) position mask

Figure 4.8: Position and tangent masks for Loop’s subdivision scheme, where �(n) = 3n
8a(n) ,

and where ci = cos(2�i�n).

Eigenanalysis of the local subdivision matrix can also be used to establish smoothness.

It can be shown, for instance, that Loop’s surfaces are indeed tangent plane continuous [33,

52]. Moreover, Halstead et al. [26] show that the tangent vectors to the limit surface at v�

can be computed using the two left eigenvectors of Sn corresponding to the second largest

eigenvalue (this eigenvalue has multiplicity 2). For Loop’s surfaces the vectors

u1 = c1v
0
1 + c2v

0
2 +

 + cnv

0
n

u2 = c2v
0
1 + c3v

0
2 +

 + c1v

0
n�

(4.3)

69

with ci = cos(2�i�n) span the tangent plane of the limit surface. Their cross product

therefore gives an exact normal vector to the surface which is useful, for example, to

create Phong-shaded renderings such as those shown in Figure 4.15. The formulas given

in Equation 4.3 can be visualized as the tangent masks shown in Figures 4.8b.

Eigenanalysis will again be used in Section 4.3.2 to study the properties of piecewise

smooth subdivision surfaces.

4.3 Piecewise smooth subdivision surfaces

Attempting to fit smooth surfaces to non-smooth objects often produces unacceptable

results. As an example, fitting an everywhere smooth subdivision surface to the points of

the mechanical part produces the surface shown in Figure 4.9b. The control mesh for this

surface, shown in Figure 4.9a, is rather unwieldy.

(a) Control mesh (b) Subdivision surface

Figure 4.9: Result of optimizing an everywhere smooth subdivision surface.

To accurately model objects with tangent discontinuities, we develop new subdivision

rules that introduce a set of commonly occurring sharp features that we call creases, corners,

and darts, as illustrated in Figure 4.10. A crease is a curve along which the surface is C0

but not C1; a corner is a point where three or more creases meet; finally, a dart is a point on

the interior of a surface where a crease terminates. Although this list of sharp features is

70

not exhaustive (for instance, we cannot model a cone or two coincident darts), it has proven

sufficient for the examples we have encountered.

Subdivision surfaces produced by the new rules are tangent plane smooth everywhere

except along creases and at corners. A detailed theoretical analysis of the behavior along

creases and at corners is beyond the scope of this thesis and will be presented by Schweitzer

and Duchamp [64]. In Section 4.3.2 we summarize the relevant results of the analysis.

4.3.1 Subdivision rules

To model creases, corners, and darts using subdivision surfaces, a subset L of edges in the

simplicial complex K is tagged as sharp. We refer to the pair (K� L) as a tagged simplicial

complex. The subdivision masks are modified so that tangent plane continuity across sharp

edges is relaxed. Boundary curves are produced by tagging all boundary edges of the mesh

as sharp.1 In the subdivision process, edges created through refinement of a sharp edge are

tagged as sharp.

Subdivision rules at crease vertices must be chosen carefully in order for the surface to

have a well-defined tangent plane on each side of the crease. Similar considerations apply

to corners and darts. It should be noted that the specific subdivision masks we use are by

no means unique. Indeed, there is considerable flexibility in selecting them. The masks we

present here are simple and have worked well in practice, but further research should be

done to explore other alternatives.

We classify vertices into five different types based on the number and arrangement of

incident edges. A smooth vertex is one where the number of incident sharp edges s is zero;

a dart vertex has s = 1; a crease vertex has s = 2; and a corner vertex has s � 2. Crease

vertices are further classified as regular and non-regular depending on the arrangement of

smooth edges. A crease vertex is regular if and only if there are exactly 2 smooth edges on

each side of the crease (or on the one side if on a boundary).

Figure 4.11 shows our vertex and edge subdivision masks. As indicated in the figure,

vertex subdivision masks are chosen based on the type of the vertex. We use three different

types of edge subdivision masks. A smooth edge (one not tagged as sharp) is subdivided

using the smooth edge subdivision mask. The mask used to subdivide a sharp edge depends

on the types of the incident vertices as shown in Table 4.1. When applying the non-

1 In related work, Nasri [44, 45] developed a method to model boundary curves in a Doo-Sabin subdivision
procedure by augmenting the control mesh rather than by modifying the subdivision masks.

71

(a) Tagged control mesh (b) Mesh after one refinement step

(c) Mesh after two refinement steps (d) Piecewise smooth limit surface

Figure 4.10: Example of our piecewise smooth subdivision surface scheme. Sharp edges

L � K are drawn as bold line segments.

72

symmetric edge subdivision mask 3, the regular crease vertex incident to the edge receives

the weight 5.

0

0 0

0

0

0

0

0

1

regular or non-regular corner vertex

0

0

crease vertex

0

1

1

6α n()
11

1 1

1

smooth or
dart vertex

3

3

1 1

1

1

0 0

5

3

0 0

(1) smooth edge (2) regular
crease edge

(3) non-regular
crease edge

Figure 4.11: Vertex and edge subdivision masks for our piecewise smooth scheme. Bold

lines denote sharp edges.

Table 4.1: Assignment of sharp edge subdivision masks as a function of the types of the

two incident vertices. Masks are numbered as shown in Figure 4.11.

dart reg. non-reg. corner

crease crease

dart 1 1 1 1

regular crease 1 2 3 3

non-regular crease 1 3 2 2

corner 1 3 2 2

Those familiar with B-spline curve subdivision may recognize that the crease subdivi-

sion masks have been designed so that the sharp edges converge to uniform cubic B-splines

73

except near non-regular crease and corner vertices. The zeros in these crease subdivision

masks completely decouple the behavior of the surface on one side of the crease from the

behavior on the other side.

Since all subdivision masks are convex combinations (i.e. their entries are non-negative),

the piecewise smooth subdivision surface retains the convex hull property—meaning that

the surface is contained within the convex hull of its control vertices. This property, shared

by other surface representations like tensor product B-splines, is useful for algorithms that

use a divide-and-conquer strategy.

4.3.2 Computing surface points and tangent vectors

As explained in Section 4.2.2, limiting points and tangent planes can be computed using

masks. These masks are determined by the eigenstructure of local subdivision matrices,

which depend on the type of the vertex (smooth, dart, regular and non-regular crease, and

corner).

Smooth and dart vertices: At smooth and dart vertices, our local subdivision matrix is

identical to Loop’s subdivision matrix. The position and tangent masks are therefore

as in Figure 4.8.

Crease vertices: Since the zeros in the crease subdivision masks (Figure 4.11) decouple the

behavior of the surface on one side of the crease from the behavior on the other side,

we can decouple the analysis, focusing on a local subdivision matrix that describes

the behavior on one side of the crease. As indicated earlier, boundary curves are

modeled as one-sided creases.

In the following, we assume that the vertices v0
1� ����v

0
n surrounding one side of a

crease vertex v0 are indexed as shown in Figure 4.12d. We also assume that no

two non-regular crease vertices are adjacent to each other; this assumption always

holds after one iteration of subdivision, since all newly introduced vertices are either

smooth or regular crease vertices.

74

1

1

0

0

4

regular crease

0

0

non-regular crease
(b)(a)

0

0 0

0

0

1

1

3

position masks tangent masks

(c) (d)
along crease across crease

0

0

0

1−

1

0

w4

w2

w3

wn

w1

w0

Figure 4.12: Position and tangent masks for crease vertices.

At a regular crease vertex, the valence is 4 and the local subdivision matrix is

Sreg crease =
1
8

�
BBBBBBBBB�

6 1 0 0 1

4 4 0 0 0

3 1 3 1 0

3 0 1 3 1

4 0 0 0 4

�
CCCCCCCCCA

�

The dominant left eigenvector of this matrix yields the position mask (4� 1� 0� 0� 1)

shown in Figure 4.12a, meaning that

v� =
1
6

(4v0 + v0
1 + v0

n)

is a point on the limit crease.2

Similarly, when the crease vertex is non-regular, the local subdivision matrix has the

form

Snon-reg crease
n =

1
8

�
BBBBBBBBBBBB�

6 1 0 0 0 0

 1

3 5 0 0 0 0

 0

3 1 3 1 0 0

 0

3 0 1 3 1 0

 0
...

. . .
...

3 0 0 0 0 0

 5

�
CCCCCCCCCCCCA

�

2 This equation is consistent with the observation that, away from non-regular crease vertices, the crease is
a uniform cubic B-spline curve.

75

and we obtain the position mask shown in Figure 4.12b.

For crease vertices of valence 4 or higher, the subdivision rules described in the previ-

ous section give rise to well-defined tangent planes on both sides of the crease [64].3

As for smooth vertices, tangent masks are again determined by the two left eigen-

vectors corresponding to the 2nd and 3rd largest eigenvalues. For both regular and

non-regular crease vertices, a tangent along the crease is obtained by the tangent

mask shown in Figure 4.12c. To compute a tangent vector transverse to the crease,

we use the tangent mask shown in Figure 4.12d, where the weights are defined as

follows [64]. At a regular crease vertex, the valence is 4 and the mask is given

by (w0� ����w4) = (�2��1� 2� 2��1). At a non-regular crease vertex, for n � 4,

w0 = 0, w1 = wn = sin �, and wi = (2 cos � � 2)(sin(i � 1)�) for i = 2� � � � � (n � 1)

where � = ��(n � 1); for n = 3, (w0� ����w3) = (�1� 0� 1� 0); finally, for n = 2,

(w0�w1�w2) = (�2� 1� 1).

Corner vertices: The subdivision masks at a corner vertex are much like those at a crease

vertex. If the corner vertex has s sharp edges, the local subdivision matrix decouples

into s separate matrices (or s � 1 matrices if the corner vertex lies on a boundary),

each describing a smooth region of the surface. After the first subdivision step, since

the crease vertices adjacent to a corner vertex are always regular crease vertices, each

such matrix has the form

Scorner
n =

1
8

�
BBBBBBBBBBBB�

8 0 0 0 0 0

 0

3 5 0 0 0 0

 0

3 1 3 1 0 0

 0

3 0 1 3 1 0

 0
...

. . .
...

3 0 0 0 0 0

 5

�
CCCCCCCCCCCCA

�

Since the corner vertex is stationary during subdivision, it is itself a point on the

surface; equivalently, (1� 0� ���� 0) is the dominant left eigenvector of Scorner
n . The sec-

ond largest eigenvalue has multiplicity 2 and the two corresponding left eigenvectors

define the tangent masks (1��1� 0� ���� 0) and (1� 0� 0� �����1).

3 The techniques used to prove smoothness do not apply to vertices of valence 2 and 3, although numerical
experiments suggest that tangent planes are well-defined in these cases too.

76

4.4 Definition of the energy function

As outlined in Section 4.1, the input to phase 3 is an unstructured collection X = fx1� � � � �xng
of data points together with the mesh obtained from phase 2. Phase 3 seeks to find a concise

tagged mesh M = (K� L�V) defining a piecewise smooth subdivision surface S(M) that

accurately fits X. We use the mesh produced by phase 2 as the initial estimate (K0�V0),

and let the initial set L0 of sharp edges contain the edges whose dihedral angles are above

a threshold (e.g. 40 degrees).

Note that the goals of phase 3 are the same as those of phase 2: to find a surface that

both provides a good fit to a set of points and has concise representation. As in phase 2

(Section 3.2), we cast the problem as one of minimizing an energy function that captures

the competing goals of conciseness and accuracy.

The energy function is given by

E(K� L�V) = Edist(K� L�V) + crepm + csharpe

where

� Edist is the total squared distance from the points to the subdivision surface;

� crepm is a penalty on the number m of vertices;

� csharpe is a penalty on the number e of sharp edges.

As in phase 2, the parameter crep controls the trade-off between conciseness and fidelity

to the data and should be set by the user. The parameter csharp controls the trade-off between

smoothness of the surface and fidelity to the data. Setting csharp = crep�5 has worked well

in all our examples.

We minimize the energy function over the space M of tagged meshes M = (K� L�V)

where K is of the same topological type as the phase 2 mesh, and L is the subset of sharp

edges of K. The goal is to find the tagged mesh inM that minimizes E.

Note the absence of a “spring energy” term, which was introduced in phase 2 to guide

the mesh optimization algorithm into a good local energy well. For the type of data we

have used, such an energy term has been unnecessary in phase 3.

77

4.5 Minimization of the energy function

The energy minimization algorithm closely parallels the one used in phase 2 (Section 3.3).

We decompose the problem into two nested subproblems: an inner, continuous optimization

over the control vertex positions V for fixed (K� L), and an outer, discrete optimization over

(K� L).

4.5.1 Optimization over V for fixed (K� L)

In the inner minimization, we hold the tagged simplicial complex (K� L) fixed and consider

the continuous non-linear optimization over V . We want to determine

E(K� L) = min
V

Edist(K� L�V) + crepm + csharpe �

the minimum energy for fixed (K� L). Since m and e are fixed, this is equivalent to

minimizing the distance energy over the vertex positions V . In the following, V is treated

as an m
 3 matrix whose rows contain the (x� y� z) coordinates of the vertices.

Computing the distance energy Edist involves projecting the data points xi onto the

subdivision surface S(M). This is not feasible in practice as the surface is defined only as

the limit of an infinite process. Instead, we project onto a piecewise linear approximation
�Mr to S(M) obtained by subdividing the original mesh r times to produce a refined mesh

Mr = Rr(M), and then pushing all the vertices of Mr to their limit positions using the

position masks. (Typically we use r = 2.) Since each of the vertices of Mr can be written

as an affine combination of the vertices V of M (using the subdivision rules), and since

the position masks are affine, by composition each of the vertices of �Mr can be written

as an affine combination of the vertices V . That is, each vertex �vr of �Mr can be written

as �vr = yV , where the entries of the row vector y can be computed by composing the

effects of r-fold subdivision followed by application of a position mask. Moreover, since
�Mr is piecewise linear, every point on �Mr—not just the vertices—can be written as an affine

combination of the vertices V .

For each data point xi, let zi be the closest point on �Mr. As argued above, zi can be

written as yiV , meaning that Edist can be expressed as

Edist =
nX

i=1

kxi � yi Vk2 �

78

This expression for Edist is quadratic in V . Hence, for fixed yi, optimizing over V is a linear

least squares problem. Moreover, the vectors yi are sparse since the subdivision rules are

local.

This suggests an iterative minimization scheme alternating between the following steps:

1. For fixed V , compute the projections yiV of the data points xi onto �Mr.

2. For fixed y1�

 �yn, optimize Edist over V .

Step 2, which is a sparse linear least squares problem, can be solved using a sparse,

iterative conjugate gradient method, as described in Section 3.3.1. Since the rows of the

design matrix (the yi’s) have approximately 12 non-zero entries on average (vs. 3 in phase

2), the sparse conjugate gradient solution is more expensive than that in phase 2, but only

by a constant factor.

4.5.2 Optimization over (K� L)

Our algorithm for solving the outer minimization problem, minimizing E(K� L), again

closely parallels the phase 2 algorithm of Section 3.3.2.

We define a set of four elementary mesh transformations,edge collapse, edge swap, edge

split, and edge tag, taking a tagged simplicial complex (K� L) to another tagged simplicial

complex (K�� L�), as shown in Figure 4.13. The first three transformations were discussed

in Section 3.3.2. The fourth transformation, edge tag, is a toggle that either adds an edge to

the set L of sharp edges, or removes one from it. As in phase 2, these four transformations

are complete in the sense that they form a transitive set of transformations on the set of

tagged simplicial complexes (of a given topological type).

A legal move is the application of one of these elementary transformations to an edge of

K that leaves the topological type of K unchanged. The criterion for determining whether

a move is legal was given in Section 3.3.2. Our goal is to find a sequence of legal moves

taking us from an initial tagged simplicial complex (K0� L0) to one for which a minimum

of E is achieved.

As in phase 2, this is accomplished via a variant of random descent: We form a

candidate set, initially consisting of all edges of K0. We randomly select an edge from the

candidate set and try the four elementary transformations in turn until we find a legal move

(K� L) � (K�� L�) with E(K�� L�)
 E(K� L). If none is found, we remove the edge from

79

edge collapse edge split edge swap edge tag

initial configuration

Figure 4.13: The four elementary mesh transformations defined in phase 3.

the candidate set; otherwise, we accept the move and expand the candidate set to include

edges whose vertices were affected by the transformation. The process is repeated until the

candidate set is empty.

Due to the expense of computing E(K�� L�) for each speculative move, the idealized

algorithm just described is too inefficient to be of practical use. We therefore replace the

exact computation of E(K�� L�) by an approximate one.

4.5.2.1 Approximate evaluation of E(K�� L�)

Our approximate computation of E(K�� L�) is similar to that used in phase 2 (Section 3.3.4).

It is based on the observation that applying a local change to the control mesh (K� L�V)

leaves the optimal positions of distant control vertices essentially unchanged. Thus, when

speculating upon an elementary transformation, we only optimize over the positions of

control vertices in a neighborhood of the affected edge, and recompute projections of

data points originally projecting onto the neighborhood of �Mr supported by these control

vertices.

More precisely, when speculating upon an elementary transformation T : (K� L) �
(K�� L�), we optimize over the set of local vertices V�

T indicated in Figure 4.14. Our choice

of V �
T is based on experience; other choices are certainly possible.

Varying V �
T changes �Mr only in the simplicial neighborhood N�

T = nbhd2(V �
T ; K�) (as

defined in Section 1.7.2), with diminishing effect near the boundary of N�
T . Consequently,

80

collapse split swap tag

Kneighborhood of

V′
T

K′⊂

Figure 4.14: Set of control vertices V�
T � K� over which to optimize for each elementary

mesh transformation T .

to evaluate the change to Edist when varying V �
T , we need only consider the data points

originally projecting onto NT . Let XT � X denote this set.

We approximate E(K�� L�) by iterating over the two steps of (1) recomputing projections

for points XT onto N�
T , and (2) optimizing over the control vertex positions V �

T .

4.5.3 Implementation issues

As mentioned in Section 4.5.1, to project onto the subdivision surface S(M), we use a

piecewise linear approximation, namely the mesh �Mr obtained after r subdivisions with its

vertices pushed to their limit positions.

If the tagged simplicial complex (K� L) is held fixed, each vertex �vr
j of �Mr is an affine

combinationyjV of the vertices V of M, where the combinationyj is obtained by composing

r applications of the subdivision masks and the position mask. Since each yj is sparse, it

can be precomputed and stored at the vertex �vr
j as a hash table indexed by vertices of V .

Thus, each iteration of the alternating procedure summarized in Section 4.5.1 involves

projecting the data points onto �Mr, computing new vertex positions V by solving a linear

system, and updating the vertex positions �vr
j by re-evaluating the affine combinations yjV .

On the other hand, the approximate evaluation of E(K�� L�) used when speculating a

mesh transformation T is more involved since, as (K� L) is modified, any precomputed

affine combinations in the neighborhood of T become invalid. Moreover, those affine

combinations are precisely the ones needed to carry out the local optimization over control

81

vertices V �
T . Therefore, a new piecewise linear approximation (�Mr�

) to the subdivision

surface must be computed for the neighborhood of T . Our approach is as follows:

1. Make a copy of the neighborhood nbhd3(VT ; K) of M;

2. Apply the transformation T to that neighborhood;

3. Subdivide that neighborhood r times and push its vertices to their limit positions.

The position of each vertex in the subdivided mesh can be represented as an affine

combination of vertices in nbhd3(V �
T ; K�). Note that many vertices in these affine

combinations are constant, since we will only vary vertices V�
T . We can therefore

apply constant-folding to simplify the combinations.

4. Trim the resulting subdivided mesh to nbhd2(V �
T ; K�). (In Step 1 we extracted the

larger neighborhood to correctly compute the boundary of nbhd2(V �
T ; K�).)

4.6 Results

From the point sets in Figure 2.11 and the phase 2 meshes shown in Figure 3.10, phase 3

produces the surfaces shown in Figure 4.15. The left columns show the optimized tagged

control meshes, where the sharp edges L are drawn as bold line segments; the right columns

show the piecewise smooth subdivision surfaces associated with these control meshes.

Modeling surfaces such as the one shown in Figure 4.15b using NURBS would be cum-

bersome and would likely require significant user intervention. In contrast, our subdivision

surface approach is both simple and automatic. Also note how the teapot (Figure 4.15j)

is modeled as a single subdivision surface of genus 1 (the handle of the teapot makes it

homeomorphic to a torus), without resort to explicit continuity constraints or trimming

curves. We further develop this comparison in Section 4.7.

Another advantage of optimization using a piecewise smooth model is that the resulting

surface not only fits the data more accurately than a piecewise linear model, it is also a

better predictor of the true underlying surface. As a validation test, we sampled a different

set of 10,000 points from the swept surface (knot) used to generate Figure 4.15h. As shown

in Table 4.2, even though the subdivision control mesh (Figure 4.15g) has a fifth as many

vertices as the mesh from phase 2 (Figure 3.10h), the subdivision surface fits the new set of

points with about one fourth the distance energy.

82

(a) Phase 3 tagged control mesh (b) Phase 3 subdivision surface

(c) Phase 3 tagged control mesh (d) Phase 3 subdivision surface

(e) Phase 3 tagged control mesh (f) Phase 3 subdivision surface

Figure 4.15: Results of phase 3 (subdivision surface optimization), using the point sets in

Figure 2.11 and the phase 2 meshes in Figure 3.10.

83

(g) Phase 3 tagged control mesh (h) Phase 3 subdivision surface

(i) Phase 3 tagged control mesh (j) Phase 3 subdivision surface

(k) Phase 3 tagged control mesh (l) Phase 3 subdivision surface

Figure 4.15: (continued)

84

Table 4.2: Validation results for phase 3.

crep m Edist

vertices original points new points

phase 2 10�5 975 .00308 .00934

phase 3 10�5 363 .00042 .00054

10�4 205 .00232 .00264

Table 4.3: Phase 3 parameter settings and optimization results.

Fig. Object n crep m (#vertices) Edist Time

ph2 ph3 ph2 ph3 ph2
ph3 phase 2 phase 3 ph2

ph3 hrs

4.3a mechpart 4,102 10�5 10�5 163 112 1.5 4�86 10
�4 1�53 10

�4 3.2 1.3

4.15ab oilpmp 30,937 10�5 10�5 891 656 1.4 4�93 10
�3 4�14 10

�3 1.2 10.5

4.15cd distcap 12,745 10�5 10�5 685 507 1.4 4�05 10
�3 3�85 10

�3 1.1 5.2

4.15ef mannequin 12,772 10�5 10�5 689 430 1.6 3�39 10
�3 1�64 10

�3 2.1 5.6

4.15gh knot 10,000 10�5 10�4 975 205 4.8 3�08 10
�3 2�32 10

�3 1.3 2.7

4.15ij teapot 26,103 10�5 10�4 623 152 4.1 3�17 10
�3 2�62 10

�3 1.2 7.4

4.15kl cat 1,000 10�5 10�5 181 153 1.2 1�09 10
�3 8�17 10

�4 1.3 0.8

Parameter settings and quantitative results In most examples, the representation con-

stant crep was set to 10�5, the same value that was used in phase 2. As indicated in Table 4.3,

the control meshes obtained from phase 3 are more concise than those of phase 2, and at the

same time, the subdivision surfaces fit the points more accurately than the meshes of phase

2. Because the point sets used for Figures 4.15gh and 4.15ij are sampled without error from

piecewise smooth surfaces, we could afford to increase crep to produce very concise control

meshes, while still reducing Edist.

The phase 3 execution times were obtained on an SGI Indigo workstation. In all

test cases we set csharp = crep�5 and the number of subdivision iterations (referred to in

Section 4.5.1) r = 2.

85

4.7 Discussion

Comparison with NURBS fitting For the application of surface reconstruction, the

phase 3 optimization method offers several advantages over traditional NURBS fitting

techniques. These advantages are summarized in Table 4.4. Although one could imagine

using a NURBS representation in a general optimization setting like ours, several difficulties

would arise, as discussed below.

Table 4.4: Comparison of traditional NURBS fitting methods with the phase 3 approach.

traditional piecewise smooth
NURBS fitting subdiv. surface optimization

network set of 4-sided patches one connected mesh

trimming curves required none

continuity C0 and G1 constraints continuity built-in

optimization constrained, high-dim. unconstrained, low-dim.

degrees of freedom fixed patch network local adaptation

sharp features fixed manually inferred automatically

As an example, let us consider how a NURBS fitting approach would reconstruct the

piecewise smooth surface shown in Figure 4.3b. To fit models with sharp features such as

the creases and corners of that surface, current parametric patch fitting schemes require the

user to first specify a network of 4-sided faces, each corresponding to a parametric tensor

product Bézier or NURBS surface patch. Often, to accommodate the intricate geometry of

creases and boundaries, trimming curves are introduced that selectively remove regions of

the patches. Figure 4.16 shows an example of such a patch network, where the different

patches have been pulled apart for clarity. Note how trimming curves would have to be

used to introduce holes in the faces of the cube.

Because the surface is defined as a network of patches, continuity constraints must

be introduced to make the pieces fit together continuously (C0) and often smoothly (G1).

Although general G1 smoothness constraints are non-linear, sufficient conditions can often

be expressed as linear constraints. Nevertheless, a NURBS fitting scheme in general requires

a constrained optimization method. The presence of trimming curves further complicates

86

Figure 4.16: Partial segmentation of a surface into smooth patches for NURBS fitting.

the problem, since these curves are typically obtained as approximations to surface-surface

intersection solutions, and are therefore difficult to incorporate in a general optimization.

In current methods, the patch network is specified manually, thereby fixing the locations

of sharp features and restricting the distribution of degrees of freedom. While it may be

possible to develop a scheme for optimizing over the connectivity of a quadrilateral patch

network, this seems to be more difficult than with meshes. One difficulty is that concave

quadrilateral faces can lead to folds in the surface.

In contrast, let us see how the same surface is fit with our piecewise smooth subdivision

surface representation. The surface is now associated with a single connected mesh. Since

the subdivision surface scheme can represent surface boundaries and creases intrinsically,

the surface need not be partitioned and trimming curves are unnecessary. Since the sub-

division surface is continuous everywhere and tangent plane smooth everywhere except at

intended sharp features, continuity constraints are not required. Thus, as demonstrated in

Section 4.5, fitting subdivision surfaces leads to an unconstrained, low-dimensional opti-

mization. The simplicity of the representation allowed the development of an optimization

algorithm able to fine tune the distribution of degrees of freedom (control mesh vertices)

in order to locally adapt to surface shape. Finally, as the set of sharp edges in the control

mesh is easily made a variable of the optimization, the procedure is able to automatically

infer the presence of sharp features in the surface.

87

Initial set of sharp edges Subdivision surface optimization requires an initial set L0 of

sharp edges. In all the examples we let L0 consist of all edges in the phase 2 mesh whose

dihedral angles exceed the threshold value of 40 degrees. Two other obvious alternatives

are to let L0 be empty or to let it contain all edges of K.

In practice letting L0 be empty starts the optimization too far from the global minimum.

The initial global optimization over V for (K0� L0) disrupts the control mesh as in Figure 4.9a,

and the optimization algorithm cannot recover.

We also tried the alternative of letting L0 contain all edges of K0. This approach is elegant

since the initial subdivision surface has the same geometry as the phase 2 surface.4 However,

this approach seems to unnecessarily slow down the optimization, and occasionally leads

to poor energy minima.

More accurate approximation to the subdivision surface To project a point onto the

subdivision surface, instead of using a global piecewise linear approximation (�Mr), we

could obtain a more precise projection using recursive root-finding. In such a scheme, we

would first perform iterations of local subdivision. As the mesh is subdivided, we need

only keep the neighborhood defining the region of the subdivision surface onto which the

point projects. (The convex hull property of subdivision surfaces could be exploited here.)

Local subdivision is equivalent to midpoint bisection search, and has linear convergence.

After a few subdivision steps, the local neighborhood usually becomes regular, with all

vertices being smooth and of valence 6. Since the subdivision surface defined by a regular

neighborhood has a closed form expression (it is a quartic box-spline), numerical root-

finding (e.g. Newton-Raphson) can then be used to converge superlinearly to within

machine precision.

Wider variety of sharp surface features The three types of features we define (corners,

creases, and darts) are derived from the simple strategy of tagging mesh edges. New

subdivision rules could be developed to model a wider variety of features (e.g. cones,

multiple darts meeting at a smooth vertex, darts meeting at a corner, and corners along

boundaries). An obvious approach is to tag not only edges, but also vertices and faces of

the mesh.

4 This is true except at boundary vertices of valence 2, which are crease vertices under the current subdivision
rules and are therefore not interpolated by the subdivision surface.

Chapter 5

SURFACE APPROXIMATION

tessellation of
a NURBS surface

(123 KB)

�
���

Q
QQs

concise
piecewise linear
approximation

(3.3 KB)

concise
piecewise smooth

approximation
(2.2 KB)

Figure 5.1: Approximation of a NURBS surface by concise piecewise linear and piecewise

smooth surfaces. The surface describes a gas turbine engine component (tessellation

courtesy of Pratt & Whitney). Size of representation is expressed in kilobytes.

5.1 Introduction

For practical reasons, complex surface representations must often be approximated using

low-order elements. For instance, displaying a smooth surface on a graphics workstation

usually involves approximating the surface by planar elements that can be fed into a

graphics pipeline. Similarly, performing finite element analysis on a surface typically

requires approximating the surface by polynomial elements of low degree.

A piecewise linear approximation to a parametric surface can easily be obtained by

triangulating its parametric domain and evaluating the surface at these vertices, a process

89

called tessellation. Similarly, the triangulation of an implicit surface is typically generated

using a contour tracing algorithm in which surface points are computed exactly by root-

finding.

However, common methods for tessellation and contour tracing naturally produce dense

representations. Dense models are also the natural result of many other geometric modeling

problems, such as approximation of offset surfaces, constructive solid geometry (CSG)

operations, and surface-surface intersection. Although dense representations may be easiest

to generate, they are of course inconvenient, since they require more space to store and

take longer to transmit, render, and analyze. Thus there has been extensive work in

various application areas to attempt to reduce the size of the output in regions where it

is unnecessary. For instance, many methods adapt the density of the representation using

heuristic estimates of curvature [6, 56, 71]. However, in general these heuristic methods

are tedious to implement and produce results that are far from optimal.

Another approach to finding a concise surface approximation is to first generate a

dense approximation, and then simplify it. One advantage of this approach is that the

same algorithm can be used for all the problem areas mentioned above. The optimization

algorithms from phases 2 and 3 of the surface reconstruction procedure can be used for this

purpose, as demonstrated in Figure 5.1.

We first show that mesh optimization (phase 2) can be used for mesh simplification—

finding piecewise linear approximations to piecewise linear surfaces (Section 5.2). More

generally, mesh optimization can be used to find piecewise linear approximations to arbitrary

surfaces (Section 5.3). Finally we show that subdivision surface optimization (phase 3) can

be used to further reduce representation size by finding piecewise smooth approximations

to arbitrary surfaces (Section 5.4).

5.2 Mesh simplification

Mesh simplification refers to the problem of reducing the number of faces in a dense mesh

while minimally perturbing the shape. The problem can also be stated as that of finding a

concise piecewise linear approximation to a piecewise linear surface. As an example, from

the dense mesh in Figure 5.1, we want to obtain the much coarser one shown on the upper

right.

90

5.2.1 Previous work

Some notable papers discussing the mesh simplification problem are Schroeder et al. [60],

Turk [71], Rossignac and Borrel [53], and Lounsbery et al. [35].

The motivation of Schroeder et al. [60] is to simplify meshes generated by “marching

cubes” that may consist of millions of triangles. In their iterative approach, the basic

operation is removal of a vertex and re-triangulation of the hole thus created. The criterion

for vertex removal in the simplest case (interior vertex not on edge or corner) is the distance

from the vertex to the plane approximating its surrounding vertices. It is worthwhile noting

that this criterion only considers deviation of the new mesh from the mesh created in the

previous iteration; deviation from the original mesh does not figure in the strategy.

The goal of Turk [71] is to reduce the amount of detail in a mesh while remaining

faithful to the original topology and geometry. His basic strategy is to distribute points

on the existing mesh that are to become the new vertices, create a “mutual” triangulation

containing both old and new vertices, and finally remove the old vertices. The density of

the new vertices is chosen to be higher in areas of high curvature.

Rossignac and Borrel [53] describe a simple and efficient simplification method that

generalizes to arbitrary simplicial complexes. Their approach is to partition space into

cubical bins, enter all vertices of the model in these bins, unify vertices within each bin

into a single representative vertex, and finally, appropriately collapse affected simplices. A

unique aspect of their approach is that the topological type of the model may change in the

process; for instance, a cylinder of small radius may be reduced to a simple line segment

(1-simplex) in the simplified model. Their technique is effective at removing small detail in

representations with a wide range of scale. In a detailed representation of a car, for instance,

screws, rivets, and other small items would likely be removed altogether. However, the

method is less successful on models of uniform scale, as it ignores geometric qualities like

curvature. As a simple example, it would keep most vertices within a planar triangulation.

Lounsbery et al. [35] extend the notion of multiresolution analysis to surfaces of arbitrary

topological type. They present a hierarchical representation for subdivision surfaces (and in

particular, meshes), using locally supported basis functions that have many of the qualities

of wavelets. Their method allows the fast simplification of meshes, but cannot be applied

in its current form to the general problem of mesh simplification, as it requires the original

mesh to have subdivision connectivity—the original mesh must be the result of uniform

subdivision of a simple base mesh.

91

5.2.2 Mesh simplification using mesh optimization

original
dense mesh

M0

�

�
��R

sample points
X

�

simplified mesh

Figure 5.2: Example of mesh simplification using mesh optimization.

Our mesh simplification approach applies the mesh optimization algorithm (described in

Section 3.3) as follows: Sample data points X from the initial mesh and use the initial

mesh as the starting point M0 for mesh optimization. To obtain X, we first sample a set

of points randomly from the original mesh using uniform random sampling over area; that

is, the average number of sample points in a triangle is proportional to the area of the

triangle. Next, we add the vertices of the mesh to this point set. Finally, to more faithfully

preserve the boundaries of the mesh, we sample additional points from boundary edges.

Note that there is no need to run phase 1, since the initial mesh is in fact the surface U to

be approximated. The distance energy Edist involving the points X is in effect a metric that

measures deviation of the final mesh from the original.

As an example (Figure 5.2), from a dense mesh of 2,032 vertices1 and a set of 6,752

points sampled from this mesh, mesh optimization obtains a coarser mesh of 487 vertices.

1 The mesh is an approximation to a minimal surface (courtesy of Celso Costa, David Hoffman, William
Meeks III, and James T. Hoffman).

92

Although the size of the representation has been greatly reduced, the mesh is still a good

geometric approximation due to the judicious placement of its vertices.

The principal advantage of our mesh simplification method compared to previous tech-

niques is that we cast mesh simplification as an optimization problem: we find a new mesh

of lower complexity that is as close as possible to the original mesh. This is recognized

as a desirable property by Turk (Section 8, p. 63): “Another topic is finding measures of

how closely matched a given re-tiling is to the original model. Can such a quality measure

be used to guide the re-tiling process?”. Optimization automatically retains more vertices

in areas of high curvature, and leads to faces that are elongated along directions of low

curvature, another property recognized as desirable by Turk.

5.2.3 Data dependent triangulations

In a related problem called data dependent triangulation, the goal is to fit meshes to data

defined as a function over the plane (z = f (x� y)) (see Dyn and Rippa [16] for a review).

This problem can be viewed as a specialized instance of mesh simplification, in which the

meshes are restricted to project one-to-one onto the xy plane.

A common instance of the data dependent triangulation problem involves the modeling

of elevation data. Digital elevation data typically takes the form of a dense rectangular

grid of height values. Such data can be visualized as a surface by defining a dense mesh

over the set of 3D data points. To obtain a more concise mesh, some simplification

methods [10, 15, 63] select as vertices only a subset of the points and obtain an accurate

surface by optimizing over the connectivity of these vertices. More recent work allows for

movement of the mesh vertices and simplification of the mesh based on computed estimates

of curvature [56].

Since this problem is an instance of the mesh simplification problem, we can apply mesh

optimization. As an example, from a terrain mesh of 1200
 1200 vertices2, we obtain the

much coarser mesh (6,848 vertices) shown in Figure 5.3. This represents a factor of 200

in compression. As a by-product of our energy minimization approach, the mesh vertices

have clustered near features of the terrain, so that viewed from afar, the two surfaces appear

similar (Figure 5.4).

2 The mesh vertices correspond to height values on a grid of one degree in latitude by one degree in longitude
in the Mojave desert.

93

Figure 5.3: Result of mesh optimization on a dense grid of elevation data. Altitude is

exaggerated by a factor of 20.

2.6in2.95in

(a) Original mesh of 1,440,000 vertices (b) Optimized mesh of 6,848 vertices

Figure 5.4: Comparison of shaded original and optimized meshes.

94

An important issue in the use of mesh optimization for function reconstruction is the

definition of the distance metric. In mesh optimization, we measure distance of a point

xi = (xi� yi� zi) to the surface S = f(x� y� f (x� y))g as Euclidean distance to the closest point on

the surface, or d(xi� S). On the other hand, in function reconstruction, distance is measured

by projecting onto the surface along the z axis, or (zi � f (xi� yi)). The implications of this

subtle difference on the optimization problem and algorithm require further investigation.

5.3 Piecewise linear approximation

points on a
surface U

an initial
mesh

near U

�
��R

�
���

concise
piecewise linear

approximation to U

Figure 5.5: Piecewise linear approximation.

In the previous section we described how mesh optimization can be used to find a concise

piecewise linear approximation to a dense mesh. More generally, mesh optimization can

be used to find a concise piecewise linear approximation to an arbitrary surface U. For this

purpose, we require two inputs, as shown in Figure 5.5:

1. a dense set of points that lie exactly on U,

2. an initial mesh approximating U.

95

Another way to supply these two inputs is to simply provide a dense tessellation of U

whose vertices lie exactly on U. Such a tessellation is easily obtained from a parametric

surface by evaluating the surface at grid points in the parametric domain, or from an implicit

surface by executing a contour tracing algorithm in which isosurface vertices are computed

exactly (using root-finding). Note that the surface need not have a closed form formula; for

instance, we can find tessellations of offset surfaces, CSG surfaces, etc.

As an example, Figure 5.5 shows the piecewise linear approximation of a NURBS

surface given a tessellation of 6,475 vertices. We invoke mesh optimization on the dense

mesh, using its vertices as the set of points X, to obtain a concise mesh of 161 vertices.

We have experimented with CSG surfaces (Figure 3.1), NURBS surfaces (Figure 3.10j),

swept surfaces (Figure 3.10h), surfaces of revolution (Figure 5.6b), implicit surfaces (Fig-

ure 5.6d), and procedurally-defined models (Figure 5.6f). As these examples illustrate,

using an optimization with a measure of distance between the surface U and the approxi-

mation has a number of benefits:

� Vertices are dense in regions of high Gaussian curvature, whereas a few large faces

span the flat regions.

� Long edges are aligned in directions of low curvature, and the aspect ratios of the

triangles adjust to local curvature.

� Edges and vertices of the simplified mesh are placed near sharp features of the original

mesh.

It should be emphasized that no heuristics are necessary to obtain these benefits; they

are simply by-products of the energy minimization process.

96

(a) Tessellation of surface of revolution (b) Concise PL approximation

(c) Tessellation of implicit surface (d) Concise PL approximation

(e) Points from a surface defined procedu-
rally

(f) Concise PL approximation

Figure 5.6: Results of piecewise linear approximation. Point sets X are the vertices of the

tessellations. (Mickey courtesy of Steve Mann.)

97

5.4 Piecewise smooth approximation

points on a
surface U

an initial
mesh

near U

�
��R

�
���

concise tagged
control mesh

M

S(M),
a piecewise smooth
approximation to U

Figure 5.7: Piecewise smooth approximation.

Phase 3 (subdivision surface optimization) can be used to find a concise piecewise smooth

approximation to an arbitrary surface U. As in the previous section, we begin with a set of

points on U and an initial mesh. We then run phases 2 and 3 of the surface reconstruction

procedure.

As an example, Figure 5.7 shows the approximation of a NURBS surface, given a dense

tessellation. The output is a piecewise smooth subdivision surface, whose control mesh is

more sparse than the PL approximation from Figure 5.5 (now 108 vertices instead of 161).

Also note that the optimization algorithm automatically inferred the sharp features in the

surface.

We have experimented with CSG surfaces (Figure 4.3), NURBS surfaces (Figure 4.15j),

swept surfaces (Figure 4.15h), surfaces of revolution (Figure 5.8b), implicit surfaces (Fig-

ure 5.8d), and procedurally-defined models (Figure 5.8f).

In the surface of Figure 5.8d, the corners of the original surface are smoothed out in

the reconstruction. The reason is that the current set of subdivision rules in our piecewise

smooth scheme (Section 4.3.1) allow a sharp corner on a boundary only if an incident

98

(a) Concise tagged control mesh (b) Subdivision surface approximation

(c) Concise tagged control mesh (d) Subdivision surface approximation

(e) Concise tagged control mesh (f) Subdivision surface approximation

Figure 5.8: Results of piecewise smooth approximation. The inputs were the dense

tessellations shown in Figure 5.6.

99

interior edge is tagged as sharp. A possible remedy is to modify the subdivision rules to let

boundary vertices of valence 2 be corner vertices. We have not explored that modification.

5.5 Discussion

The problem of surface approximation belongs to the larger field of approximation theory.

However, most of the approximation work to date has addressed function approximation,

and can therefore only deal with surfaces defined as functions over simple domains (often

1D domains). In our context, little is known about approximation of manifolds of arbitrary

topological type. Our approach does not advance theoretical matters, as we do not make

any statements concerning asymptotic convergence rates of our surface approximations.

However, we do offer a practical solution to a rather difficult problem.

Obtaining a sample of points When sampling points on a surface for the purpose of

surface approximation, the parameterizations of the points (their barycentric coordinates)

should be recorded along with their positions. Doing so avoids the need to initially project

the points. More importantly, it allows the simplification of models that have co-incident

surfaces. When several components of a surface share a surface region, points sampled

from that region might, if projected, be associated with only one of the components, leaving

the other components with no sample points there.

Mesh generation for analysis Our approximating meshes usually have far fewer triangles

than the original ones, making them attractive for analysis (e.g. finite element analysis).

However, in such analyses, the singularity of the solution system is strongly influenced

by the geometric aspect ratios of the elements. It would therefore be advantageous to

discourage the presence of long skinny triangles, which make the system ill-conditioned,

by adding an additional penalty term to the energy function.

Simplification of complex models The surface approximation techniques developed in

this chapter are effective at simplifying models at a given scale. However, dealing with

more complex models involves many issues beyond the scope of this work. For instance, an

interactive walk-through of a Boeing 777 CAD model involves millions of parts on a wide

range of scales (e.g. from a fuselage down to individual bolts). To reduce the complexity,

it is essential to organize these parts into hierarchical structures that can be displayed at

100

different levels of detail. Surface approximations for parts and groups of parts should

be allowed to change topologically at various levels (as in the method of Rossignac and

Borrel [53]). Another approach, or one to use in conjunction with the above, is to encode

geometric detail of distant surfaces using texture maps.

Chapter 6

SUMMARY AND FUTURE WORK

We have described a surface reconstruction procedure consisting of three major phases

(Figure 6.1). The goal of phase 1 is to robustly determine the topological type of the surface

(including the presence of boundaries), and to find an approximation of its geometry, in

the form of a mesh. In phase 2 we defined an energy function embodying the two goals of

accuracy and conciseness, and described an optimization algorithm for finding a new mesh

of the same topological type minimizing this energy. Finally in phase 3 we introduced a

new surface representation (piecewise smooth subdivision surfaces) allowing the convenient

modeling of sharp surface features, and we showed how such surfaces could be optimized

using an extension of the phase 2 algorithm. The surface reconstruction procedure was

demonstrated on a number of examples including real laser range data. In addition, we

also showed how the phase 2 and 3 optimization algorithms could be used effectively for

surface approximation.

(a) Phase 1 surface (b) Phase 2 surface (c) Phase 3 surface

Figure 6.1: Example summarizing the 3 phases of surface reconstruction.

102

6.1 Analysis of the reconstruction method

As shown in Table 6.1, the accuracy and conciseness of the surface model was successively

improved in each phase. It is interesting to note that the shift to smooth surfaces in

phase 3 did not provide as drastic an improvement for noisy sampled data as it did for

exact data. However, these numbers do not reflect the fact that the piecewise smooth

surfaces are likely to be much better predictors of the underlying surfaces than the piecewise

linear approximations. In other words, the piecewise linear approximations may happen

to accurately fit the finite set of sample points, but yet be inaccurate representations of

the underlying surfaces. As an example, Table 6.2 shows the distance energies of the

approximations of the “knot” surface as measured using a different set of sample points.

Table 6.1: Comparison of accuracy and conciseness of the surfaces after each phase.

Accuracy is measured by the residual sum of squares Edist; conciseness is measured by the

number of kilobytes required to store the representation in compressed form.

measured data exact points

oilpmp distcap knot

Edist size (KB) Edist size (KB) Edist size (KB)

point set - 212 - 131 - 112

phase 1 0.05830 373 0.13000 153 0.15200 67

phase 2 0.00493 20 0.00405 15 0.00308 21

phase 3 0.00414 14 0.00385 10 0.00232 4

Table 6.2: Validation results: Edist to another point set sampled on U.

original points new points

phase 1 0.15200 0.15300

phase 2 0.00308 0.00934

phase 3 0.00232 0.00264

103

6.2 Specialization to curve reconstruction

The three phases of the reconstruction procedure can easily be adapted to the reconstruction

of curves in R2. We have implemented phases 1 and 2 for curve reconstruction. Although

adapting phase 3 would be equally straightforward (as will be outlined below), we have not

yet done so.

As an example, Figure 6.2 shows the reconstruction of curves from two sets of 200

points in the plane.

The phase 1 algorithm is essentially the same as described in Chapter 2, with only minor

differences. Instead of tangent planes, tangent lines are estimated from the data points.

Instead of marching over cubes in R3, the contour tracing algorithm marches over squares

in R2. As the phase 1 results of Figures 6.2a and 6.2b show, the algorithm is able to handle

considerable noise when the sampling is dense. Note that the curve reconstruction problem

is fundamentally simpler than surface reconstruction as there are only two topologically

distinguishable curves: open curves and closed curves.

Phase 2 adapts easily to the optimization of piecewise linear 1-dimensional manifolds

(polylines) in Rd� d � 2. To optimize over 1-dimensional simplicial complexes K, the

algorithm considers edge collapse and edge split transformations. From the dense curves

obtained above, phase 2 produces the optimized curves of Figure 6.2c and 6.2d. As Table 3.1

indicated, accuracy and conciseness are improved in both curves.

Phase 3 adapts easily to the optimization of piecewise smooth subdivision curves.

Although we have not yet implemented this, we could do so as follows: We would tag

vertices as either smooth or corner, and consider three transformations: edge collapse, edge

split, and vertex tag. The curve would converge to a uniform cubic B-spline away from

corners with the following three simple subdivision masks: a (1� 1) edge mask, a (1� 6� 1)

smooth vertex mask, and a (0� 1� 0) corner vertex mask. The limit masks would simply

be: a (1� 4� 1) smooth position mask, a (0� 1� 0) corner position mask, a (�1� 0� 1) smooth

tangent mask, and (1��1� 0)� (0��1� 1) corner tangent masks.

Alternatively, phase 3 could represent piecewise smooth curves using non-uniform cubic

B-splines. Discontinuities (endpoints and corners) would be introduced at selected vertices

by triplication of knot values.

These proposed piecewise smooth curve optimization schemes are similar to the para-

metric curve fitting method of Plass and Stone [49]. Their method also casts fitting as

non-linear optimization and produces piecewise smooth, rather than everywhere smooth

104

(a) Low noise sample and phase 1 recon-
struction (75 vertices)

(b) High noise sample and phase 1 recon-
struction (62 vertices)

(c) Phase 2 optimized polyline (13 vertices) (d) Phase 2 optimized polyline (9 vertices)

Figure 6.2: Two examples of curve reconstruction from points in R2 (number of curve

vertices in parenthesis).

105

models. However, unlike our approach, they do not optimize globally over representation

size and presence of sharp features.

6.3 Future work on surface reconstruction

There are a number of avenues for future work in extending the surface reconstruction

method:

Further experimentation with non-uniform, sparse, and noisy data As discussed in

Section 2.1, to obtain a proper reconstruction, several assumptions must be made concerning

the sampling process that generates the data points. Several shortcomings of our method

can be observed when the data is not uniform, dense, and accurate:

Non-uniform data: Although the reconstruction method can handle some non-uniformity

in the point sample surprisingly well (e.g. Figures 2.11e and 4.15f), it is not designed

for data sampled at varying resolutions. Phase 1 requires an estimate of the sampling

density (� + �), and this parameter is currently user-specified and global. In phases

2 and 3, since the distance energies Edist weigh all points equally, the optimizations

seek to balance residual distances uniformly over all points without regard to scale.

If the points are sampled from several objects (possibly of different sizes), it would

therefore be beneficial to partition the points into subsets associated with each object,

and to process each subset independently, in a scale-invariant fashion as is already

done in phases 2 and 3.

Contour data (e.g. Figure 2.10a) is often anisotropic—the distance between points

within a contour is typically smaller than the distance between contours. When phase

2 is applied to this type of data, many faces in the optimized meshes orient themselves

to lie within the planes containing the contours, as such geometric configurations

provide “excellent fit”; similar problems occur in phase 3. The underlying problem

lies in the definition of our energy function, whose minimum in this case simply does

not correspond to a desirable surface. Although the point set shown in Figure 2.11a

also originates from contour data, its anisotropy is much less pronounced and we

were able to obtain a good reconstruction.

106

Sparse data: When the data is sparse, that is, when there are few points relative to the

amount of detail on the underlying surface, phase 3 often infers a desultory set of

sharp features. For instance, from a sparse sample of 1,000 points (Figure 2.5b)

sampled from a mesh of 700 faces (Figure 2.5a), phase 3 produced the relatively poor

reconstruction shown in Figure 4.15l; however, significant improvements would be

difficult with so little data.

Noise: In many of our examples, the data points were obtained by a physical scanning

process (with finite precision), so the data points contain some amount of noise.

We were fortunate in that the magnitude of this noise was relatively small. Further

experiments with noisier data may reveal the need in phase 3 for a regularizing term

like the phase 2 spring energy term.

Statement of correctness Phase 1 has produced surfaces of the correct topological type

in all our examples. It would be desirable to develop formal guarantees on the correctness

of the reconstruction, given constraints on the sample and the original surface as hinted in

Section 2.1. One might consider generalizing results of sampling theory, such as formulating

a Nyquist-like theorem for manifold reconstruction. However, even simple cases like the

reconstruction of functions of two variables (z = f (x� y))—in which the topological type of

the surface is known—are not fully understood. Moreover, sampling theory results usually

assume that the original signal is band-limited in frequency. Most surfaces of interest are

not everywhere smooth and would therefore violate such assumptions.

Speedup of the algorithm Analysis in Section 2.4 concluded that phase 1 requires

roughly O(n log n) time. Although we cannot make any precise statements concerning time

complexity in phases 2 and 3, empirical evidence suggests that their execution times grow

roughly as O(n), consistent with the fact that the optimization problems are either local or

involve sparse linear systems, and that we use spatial partitioning techniques to perform

geometric searches in constant time.

However, for the sizes of data sets we considered (n
 100� 000), execution time of the

reconstruction method is dominated by phases 2 and 3; the ratios of execution times of phase

1 to phase 2 to phase 3 are roughly 1 : 50 : 300. Significant speedups would be required for

commercial applications. Implementation of the algorithm on parallel architectures should

also be considered.

107

On-line algorithm The development of an on-line algorithm would allow for incremental

reconstruction as data is acquired.

Symmetric distance metric The energy functions of phases 2 and 3 lack a measure of

distance from the surface to the points—our distance energy Edist only measures distance

from the points to the surface. In practice this does not pose a problem, except at surface

boundaries, where the reconstructed surface sometimes extends beyond the boundary indi-

cated by the points. The regularizing spring energy term Espring of phase 2 either counteracts

or reinforces this deficiency, depending on whether the surface near the boundary is convex

or concave, respectively.

Ideally, one would want to define an energy functional that measures distance in both

directions, but we see no way to incorporate such a symmetric distance functional into our

scheme. The main difficulty is that measuring distance from a surface to the points involves

an area integral, instead of a discrete sum as in Edist.

Control over maximum error The current distance energy minimizes a least squares

functional, or L2 norm. In industrial applications, specification is often done through toler-

ances, so it would be desirable to optimize over maximum error, or an L� norm. Alternative

optimization algorithms should be developed to allow direct control over maximum error.

Control over representation size Currently, the trade-off between accuracy and concise-

ness in phases 2 and 3 is specified by the user through the parameter crep. An advantage of

this mode of specification is that, for a fixed value of crep, the representation size of resulting

models adapts to the complexity of their geometry. (Almost all examples in Chapters 3

and 4 use the same value of crep = 10�5.)

An alternative, equally useful approach would be to let the user specify the desired

representation size (e.g. the number of vertices), and let the method try to find the best

fitting model of that size.

Output of NURBS surfaces Since most CAD systems do not yet support subdivision

surface representations, the phase 3 procedure could be extended or used as a starting point

for the generation of NURBS surfaces. The automatic detection of sharp features in phase

3 may simplify the task of segmenting the surface into NURBS patches.

108

Inference of higher level primitives It may be desirable to detect and precisely recover

geometric surface primitives, such as planar and quadric regions. Current subdivision

surface schemes, including ours, do not have quadric precisions (i.e. they cannot model

spheres and cylinders exactly). New research on subdivision surfaces may yet solve that

limitation. Ideally, one would want to not only recover such primitives, but also infer higher

level structure, such as constructive solid geometry (CSG) descriptions.

6.4 Future work on reconstruction of more general mani-
folds

This thesis has addressed the problem of reconstructing “surfaces”—orientable 2-dimensional

manifolds embedded in R3. As discussed in Section 6.2, our scheme can be adapted to re-

construct curves (1-dimensional manifolds). Future research should explore the reconstruc-

tion of more general manifolds, such as non-orientable manifolds and higher dimensional

manifolds, as well as non-manifold sets.

Non-orientable manifolds Our reconstruction method may be generalized to allow re-

construction of non-orientable manifolds. In phase 1, although a non-orientable manifold

cannot be defined as the zero set of a globally defined signed distance function, it is possible

to use such a description locally. Instead of globally orienting the tangent planes as we do

now, it may be possible to determine their relative orientations on a cube by cube basis.

That is, when generating the contour within a cube, the tangent planes contributing to the

function values at the cube’s vertices can be oriented relative to each other by considering

only a local neighborhood of the Riemannian Graph.

In phases 2 and 3, the current implementation requires the surfaces to be orientable

only because of the current half-edge data structure used to represent meshes [75]. Using

a different data structure would remove this restriction.

Higher dimensional manifolds In principle, the phase 1 algorithm can be extended to

reconstruct manifolds of co-dimension one in spaces of arbitrary dimension; that is, to

reconstruct (k�1) dimensional manifolds in k dimensional space. The case of k = 2 (curve

reconstruction in the plane) was demonstrated in Section 6.2.

The phase 2 and 3 algorithms can trivially optimize 2-dimensional meshes in spaces of

109

higher dimension (e.g. R4). However, unlike phase 1, these algorithms do not generalize

easily to manifolds of higher dimension. A major difficulty is that of dealing with higher

dimensional simplicial complexes. Defining a complete set of simplicial complex trans-

formations to allow optimization over 3-dimensional simplicial complexes may be difficult

(if at all feasible). Another research area is that of generalizing subdivision schemes to

volumes and, more generally, hypersurfaces.

Non-manifolds It may useful to reconstruct non-manifold surfaces, such as three surface

sheets meeting along an edge, as well as sets of varying dimensionality, such as surfaces with

“hair”, or combinations of volumes and surfaces. It is doubtful that the phase 1 algorithm

can be extended to these ends. Edelsbrunner’s �-shape approach is most encouraging in

this regard.

6.5 Future work related to 3D scanning

The field of 3D scanning is likely to grow significantly in the next few decades, thereby

motivating a number of pertinent research problems, including:

Automatic generation of scan paths In most current 3D scanning systems, the path

taken by the scanhead is either predetermined or specified manually by an operator. When

an object to be scanned has complicated geometry, finding a scan paths that completely

sample its surface can be tedious and error-prone. Techniques should therefore be developed

that, possibly given a partial set of scanned points (for instance, those of Figure 2.11c),

automatically determine which surface regions require further sampling, and how to go

about scanning them.

Hand-held scanners Most of the weight and expense in current scanning systems is in

the machinery required for the precise positioning of the scanhead relative to the object; this

machinery is the equivalent of a coordinate measuring machine. To allow the development

of more portable and inexpensive scanning systems, an alternative is to only coarsely

position the scanhead and to let software perform the task of accurately registering the

data [5, 72].

Furthermore, for hand-held scanners to become commercially successful, reconstruction

algorithms should be real-time and on-line. Even the current phase 1 execution times would

110

require improvements in speed of several orders of magnitude.

Modeling of surface properties Several 3D scanners capture not only (x� y� z) coordinates

on a surface, but also information about its color—for instance (r� g� b) color coordinates.

This color data should be reconstructed in addition to the geometry of the surface.

One approach is to reconstruct a surface from the (x� y� z) data points, define scalar basis

functions on the resulting surface, and finally fit the (r� g� b) color data using these basis

functions. While there has been extensive research in the approximation of scalar functions

over manifolds of simple topological type, extending this work to manifolds of arbitrary

topological type is still a relatively unexplored area. The recent “surfaces on surfaces”

work [2, 46] addresses this problem.

Another approach is to view this problem as the reconstruction of a surface inR6, where

the data points have coordinates (x� y� z� r� g� b).

In either case, solving the problem is not as straightforward as it may seem, because

color on a surface can have numerous discontinuities (consider the color of this page of

text). While our piecewise smooth subdivision schemes can represent non-C1 functions,

color reconstruction requires a non-C0 representation.

By color we have been referring to the light reflected from an object under a given set

of lighting and viewing conditions. More generally, one may want to recover lighting-

independent surface reflectance properties, so that the model can then be simulated in other

lighting environments. Specialized instruments have been designed to measure bidirec-

tional reflectance distribution functions (BRDF’s) [74], but one can envision inferring such

reflectance information directly from 3D scanner data.

BIBLIOGRAPHY

[1] E. L. Allgower and P. H. Schmidt. An algorithm for piecewise linear approximation
of an implicitly defined manifold. SIAM Journal of Numerical Analysis, 22:322–346,
April 1985.

[2] R. E. Barnhill, K. Opitz, and H. Pottman. Fat surfaces: a trivariate approach to
triangle-based interpolation on surfaces. CAGD, 9(5):365–378, November 1992.

[3] J. L. Bentley. Multidimensional divide and conquer. Comm. ACM, 23(4):214–229,
1980.

[4] P. J. Besl. Active, optical range imaging sensors. Machine Vision and Applications,
1(2):127–152, 1988.

[5] P. J. Besl and H. D. McKay. A method for registration of 3-D shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 14(2):239–256, February 1992.

[6] Jules Bloomenthal. Polygonization of implicit surfaces. Computer Aided Geometric
Design, 5(4):341–355, November 1988.

[7] Ruud M. Bolle and Baba C. Vemuri. On three-dimensional surface reconstruction
methods. IEEE Trans. Pat. Anal. Mach. Intell., 13(1):1–13, January 1991.

[8] Y. Breseler, J. A. Fessler, and A. Macovski. A Bayesian approach to reconstruction
from incomplete projections of a multiple object 3D domain. IEEE Trans. Pat. Anal.
Mach. Intell., 11(8):840–858, August 1989.

[9] James F. Brinkley. Knowledge-driven ultrasonic three-dimensional organ modeling.
IEEE Trans. Pat. Anal. Mach. Intell., 7(4):431–441, July 1985.

[10] J. L. Brown. Vertex based data dependent triangulations. CAGD, 8(3):239–251,
August 1991.

[11] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topo-
logical meshes. Computer-Aided Design, 10:350–355, September 1978.

[12] T. DeRose, H. Hoppe, T. Duchamp, J. McDonald, and W. Stuetzle. Fitting of surfaces
to scattered data. In J. Warren, editor, Curves and Surfaces in Computer Vision and
Graphics III. Proc. SPIE 1830:212–220, 1992.

112

[13] David P. Dobkin, Silvio V. F. Levy, William P. Thurston, and Allan R. Wilks. Con-
tour tracing by piecewise linear approximations. ACM Transactions on Graphics,
9(4):389–423, October 1990.

[14] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary
points. Computer-Aided Design, 10(6):356–360, September 1978.

[15] N. Dyn, D. Levin, and S. Rippa. Data dependent triangulations for piecewise linear
interpolation. IMA Journal of Numerical Analysis, 10(1):137–154, January 1990.

[16] N. Dyn and S. Rippa. Data-dependent triangulations for scattered data interpolation
and finite element approximation. Applied Numerical Mathematics, 12(1-3):89–105,
May 1993.

[17] Herbert Edelsbrunner. Weighted alpha shapes. Report 92-1760, Univ. of Illinois at
Urbana-Champaign, July 1992.

[18] Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha shapes. In
A. Kaufman and W.E. Lorensen, editors, Proceedings of 1992 Workshop on Volume
Visualization, pages 75–82, October 1992.

[19] John A. Eisenman. Graphical editing of composite bezier curves. Master’s thesis,
Department of Electrical Engineering and Computer Science, M.I.T., 1988.

[20] Gerald Farin. Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, 3rd edition, 1992.

[21] Chantal Favardin. Détermination automatique de structures géométriques destinées
à la reconstruction de courbes et de surfaces à partir de données ponctuelles. PhD
thesis, Université Paul Sabatier, Toulouse, France, 1993.

[22] T.A. Foley. Interpolation to scattered data on a spherical domain. In M. Cox and
J. Mason, editors, Algorithms for Approximation II, pages 303–310. Chapman and
Hall, London, 1990.

[23] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Freeman
and Company, 1979.

[24] Gene Golub and Charles Van Loan. Matrix Computations. John Hopkins University
Press, 2nd edition, 1989.

[25] Ardeshir Goshtasby. Surface reconstruction from scattered measurements. SPIE,
1830:247–256, 1992.

113

[26] Mark Halstead, Michael Kass, and Tony DeRose. Efficient, fair interpolation using
Catmull-Clark surfaces. Computer Graphics (SIGGRAPH ’93 Proceedings), pages
35–44, August 1993.

[27] T. Hastie and W. Stuetzle. Principal curves. JASA, 84:502–516, 1989.

[28] K. Hisanaga, A. Hisanaga, K. Nagata, and S. Yoshida. A new transesophageal real-
time two-dimensional echocardiographic system using a flexible tube and its clinical
application. Proc. Jpn. Soc. Ultrason. Med., 32:43, 1977.

[29] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer,
and W. Stuetzle. Piecewise smooth surface reconstruction. Computer Graphics
(SIGGRAPH ’94 Proceedings), pages 295–302, July 1994.

[30] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface reconstruc-
tion from unorganized points. Computer Graphics (SIGGRAPH ’92 Proceedings),
26(2):71–78, July 1992.

[31] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization.
Computer Graphics (SIGGRAPH ’93 Proceedings), pages 19–26, August 1993.

[32] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimization.
TR 93-01-01, Dept. of Computer Science and Engineering, University of Washington,
January 1993.

[33] Charles Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,
Department of Mathematics, University of Utah, August 1987.

[34] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. Computer Graphics, 21(4):163–169, July 1987.

[35] Michael Lounsbery, Tony DeRose, and Joe Warren. Multiresolution analysis for
surfaces of arbitrary topological type. TR 93-10-05b, Dept. of Computer Science and
Engineering, University of Washington, October 1993.

[36] Michael Lounsbery, Stephen Mann, and Tony DeRose. Parametric surface interpola-
tion. IEEE Computer Graphics and Applications, 12(5):45–52, September 1992.

[37] Samuel Marin and Philip Smith. Parametric approximation of data using ODR splines.
GMR 7057, General Motors Research Laboratories, May 1990.

[38] Marshal L. Merriam. Experience with the cyberware 3D digitizer. In NCGA Proceed-
ings, pages 125–133, March 1992.

114

[39] David Meyers. Multiresolution tiling. In Proceedings of Graphics Interface ’94, pages
25–32, May 1994.

[40] David Meyers, Shelly Skinner, and Kenneth Sloan. Surfaces from contours. ACM
Transactions on Graphics, 11(3):228–258, July 1992.

[41] J.V. Miller, D.E. Breen, W.E. Lorensen, R.M. O’Bara, and M.J. Wozny. Geometrically
deformed models: A method for extracting closed geometric models from volume
data. Computer Graphics (SIGGRAPH ’91 Proceedings), 25(4):217–226, July 1991.

[42] Doug Moore and Joe Warren. Approximation of dense scattered data using algebraic
surfaces. TR 90-135, Rice University, October 1990.

[43] Shigeru Muraki. Volumetric shape description of range data using “blobby model”.
Computer Graphics (SIGGRAPH ’91 Proceedings), 25(4):227–235, July 1991.

[44] Ahmad H. Nasri. Polyhedral subdivision methods for free-form surfaces. ACM
Transactions on Graphics, 6(1):29–73, January 1987.

[45] Ahmad H. Nasri. Boundary-corner control in recursive-subdivision surfaces. Com-
puter Aided Design, 23(6):405–410, July-August 1991.

[46] Gregory M. Nielson, Thomas A. Foley, Bernd Hamann, and David Lane. Visualizing
and modeling scattered multivariate data. IEEE CG&A, 11(3):47–55, May 1991.

[47] Barrett O’Neill. Elementary Differential Geometry. Academic Press, Orlando, Florida,
1966.

[48] Joseph O’Rourke. Polyhedra of minimal area as 3D object models. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 664–666, 1981.

[49] Michael Plass and Maureen Stone. Curve-fitting with piecewise parametric cubics.
Computer Graphics (SIGGRAPH ’83 Proceedings), 17(3):229–239, July 1983.

[50] Vaughan Pratt. Direct least-squares fitting of algebraic surfaces. Computer Graphics
(SIGGRAPH ’87 Proceedings), 21(4):145–152, July 1987.

[51] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Fetterling.
Numerical Recipes. Cambridge University Press, Cambridge, 1986.

[52] Ulrich Reif. A unified approach to subdivision algorithms. Mathematisches Institute
A 92-16, Universität Stuttgart, 1992.

115

[53] Jarek Rossignac and Paul Borrel. Multi-resolution 3D approximations for rendering
complex scenes. In B. Falcidieno and T. L. Kunii, editors, Modeling in Computer
Graphics, pages 455–465. Springer-Verlag, New York, 1993.

[54] Emanuel Sachs, Andrew Roberts, and David Stoops. 3-Draw: A tool for designing 3D
shapes. IEEE Computer Graphics and Applications, 11(6):18–26, November 1991.

[55] Hanan Samet. Applications of Spatial Data Structures. Addison-Wesley, 1990.

[56] Lori Scarlatos. Spatial data representations for rapid visualization and analysis. PhD
thesis, Dept. of Computer Science, SUNY at Stony Brook, August 1993.

[57] F. Schmitt, B.A. Barsky, and W. Du. An adaptive subdivision method for surface fitting
from sampled data. Computer Graphics (SIGGRAPH ’86 Proceedings), 20(4):179–
188, 1986.

[58] F. Schmitt, X. Chen, W. Du, and F. Sair. Adaptive G1 approximation of range data
using triangular patches. In P.J. Laurent, A. Le Mehaute, and L.L. Schumaker, editors,
Curves and Surfaces. Academic Press, 1991.

[59] Philip J. Schneider. Phoenix: An interactive curve design system based on the
automatic fitting of hand-sketched curves. Master’s thesis, Department of Computer
Science, University of Washington, 1988.

[60] William Schroeder, Jonathan Zarge, and William Lorensen. Decimation of triangle
meshes. Computer Graphics (SIGGRAPH ’92 Proceedings), 26(2):65–70, July 1992.

[61] R. B. Schudy and D. H. Ballard. Model detection of cardiac chambers in ultrasound
images. Technical Report 12, Computer Science Department, University of Rochester,
1978.

[62] R. B. Schudy and D. H. Ballard. Towards an anatomical model of heart motion
as seen in 4-d cardiac ultrasound data. In Proceedings of the 6th Conference on
Computer Applications in Radiology and Computer-Aided Analysis of Radiological
Images, 1979.

[63] Larry Schumaker. Computing optimal triangulations using simulated annealing.
Computer-Aided Geometric Design, 10(3-4):329–345, August 1993.

[64] Jean Schweitzer and Tom Duchamp. An analysis of piecewise smooth subdivision.
In preparation.

116

[65] Stan Sclaroff and Alex Pentland. Generalized implicit functions for computer graphics.
Computer Graphics (SIGGRAPH ’91 Proceedings), 25(4):247–250, July 1991.

[66] E. H. Spanier. Algebraic Topology. McGraw-Hill, New York, 1966.

[67] R. Szeliski, D. Tonnesen, and D. Terzopoulos. Curvature and continuity control
in particle-based surface models. In SPIE Conference on Geometric Methods in
Computer Vision II, pages 172–181. SPIE, July 1993.

[68] Richard Szeliski and David Tonnesen. Surface modeling with oriented particle sys-
tems. Computer Graphics (SIGGRAPH ’92 Proceedings), 26(2):185–194, July 1992.

[69] Gabriel Taubin. Estimation of planar curves, surfaces and nonplanar space curves
defined by implicit equations, with applications to edge and range image segmentation.
Technical Report LEMS-66, Division of Engineering, Brown University, 1990.

[70] Gabriel Taubin and Remi Ronfard. Implicit simplicial models I: adaptive curve
reconstruction. Technical Report RC-18887, IBM Research Division, May 1993.

[71] Greg Turk. Re-tiling polygonal surfaces. Computer Graphics (SIGGRAPH ’92 Pro-
ceedings), 26(2):55–64, July 1992.

[72] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. Computer
Graphics (SIGGRAPH ’94 Proceedings), July 1994.

[73] Remco Veltkamp. Closed Object Boundaries from Scattered Points. PhD thesis,
Erasmus Universiteit Rotterdam, The Netherlands, 1992.

[74] Gregory J. Ward. Measuring and modeling anisotropic reflection. Computer Graphics,
26(2):265–272, July 1992.

[75] K. Weiler. Edge-based data structures for solid modeling in curved-surface environ-
ments. IEEE CG&A, 5(1):21–40, January 1985.

[76] G. Wyvill, C. McPheeters, and B. Wyvill. Data structures for soft objects. The Visual
Computer, 2(4):227–234, August 1986.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

