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University of Washington
Abstract
Surface Reconstruction from Unorganized Points
by Hugues Hoppe

Chairperson of Supervisory Committee: Professor Tony DeRose

Department of
Computer Science and Engineering

Thisthesisdescribes agenera method for automatic reconstruction of accurate, concise,
pi ecewi se smooth surfaces from unorganized 3D points. Instancesof surface reconstruction
arise in numerous scientific and engineering applications, including reverse-engineering—
the automatic generation of CAD models from physical objects.

Previous surface reconstruction methods have typically required additional knowledge,
such as structure in the data, known surface genus, or orientation information. In contrast,
the method outlined in this thesis requires only the 3D coordinates of the data points.
From the data, the method is able to automatically infer the topological type of the surface,
its geometry, and the presence and location of features such as boundaries, creases, and
corners.

The reconstruction method has three major phases: 1) initial surface estimation, 2)
mesh optimization, and 3) piecewise smooth surface optimization. A key ingredient in
phase 3, and another principal contribution of this thesis, is the introduction of a new
class of piecewise smooth representations based on subdivision. The effectiveness of the
three-phase reconstruction method is demonstrated on a number of examples using both
simulated and real data.

Phases 2 and 3 of the surface reconstruction method can also be used to approximate
existing surface models. By casting surface approximation asaglobal optimization problem
with an energy function that directly measures deviation of the approximation from the
original surface, models are obtained that exhibit excellent accuracy to conciseness trade-
offs. Examples of piecewise linear and piecewise smooth approximations are generated for
various surfaces, including meshes, NURBS surfaces, CSG models, and implicit surfaces.
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Chapter 1
INTRODUCTION

(a) Unknown surface U (b) Sampled points X (c) Reconstructed surface S

Figure 1.1: Example of surface reconstruction.

1.1 Problem statement

Computer-aided geometric design and computer-aided manufacturing systems are used in
numerous industries to design and create physical objects from digital models. However,
the reverse problem, that of inferring adigital description from an existing physical object,
has received much less attention. We refer to this problem as reverse-engineering or, more
specifically, 3D scanning. There are various properties of a 3D object that one may be
interested in recovering, including its shape, its color, and its material properties. This
thesis addresses the problem of recovering 3D shape, also called surface reconstruction.

The goal of surface reconstruction can be stated asfollows: Given aset of sample points
X assumed to lie on or near an unknown surface U, create a surface model S approximating
U (seeFigure 1.1).



As we shall see shortly, previous reconstruction methods have usually been crafted to
exploit characteristics of specific problem instances.

In contrast, this thesis examines the surface reconstruction problem in a general form
that makes few assumptions about the sample X and the unknown surface U. Inthe general
surface reconstruction problem we consider, the points X may be noisy, and no structure
or other information is assumed within them. The surface U (assumed to be a manifoldt)
may have arbitrary topological type?, including boundaries, and may contain sharp features
such the creases and corners present in the surface of Figure 1.1a. Since the points X
may be a noisy sampling, we do not attempt to interpolate them, but will instead find an
approximating surface.

Of course, a surface reconstruction procedure cannot guarantee recovering U exactly,
since it is only given information about U through a finite set of sample points. The
reconstructed surface S should have the same topological type as U, and be everywhere
close to U. In this thesis we will evaluate the reconstruction method by considering
examples where the true underlying surface U is known and can be compared visually and
guantitatively to the reconstruction.

1.2 Motivating applications

We were led to consider the general surface reconstruction problem stated above by a
number of application areas in science and engineering, including 3D scanning, surface
reconstruction from contours, and surface sketching. The next three sections discuss each
of these application areas in more detail.

1.2.1 3D scanning

One of the most important applications of surface reconstruction is 3D scanning—the
measurement and modeling of shape and other visual properties.

Asshown in Table 1.1, many other physical forms such as images, movies, and sound,
can be measured using common consumer devices like document scanners, videocameras,

LIntuitively speaking, a manifold is a surface that does not intersect itself. More precisely, a manifold
(possibly with boundary) embedded in R is a set everywhere locally homeomorphic to either adisk or a
half-disk, where ahomeomorphism is a continuousinvertible map whose inverseis also continuous [47].

2 Thetopological type of asurface refersto its genus, the presence of boundaries, etc. (cf. [47]).



and microphones. These multimedia devices have had an enormous impact because the
models they generate can be used in many ways that physical forms cannot. For example,
such models can be transmitted digitally, stored in databases, edited and analyzed with
software, and used as templates for making digital or physical copies. Another set of
technologiesalso allowsfor the re-instantiation of these same physical forms, using devices
such as printers, televisions, and speakers.

Table 1.1: Modeling of physical forms.

physical acquisition representation instantiation
form
image document scanner TIFF image, printer
postscript
movies videocamera videotape, television
laserdisc
sound microphone compact disc, speaker
digital audio tape
shape 3D scanner + concise NC milling,
surfacereconstruction | representation | stereo lithography

Our visionisto put shape on an equal footing with these other media. We would like to
acquire, represent, analyze, and recreate 3D shapes with ease.

3D scanning technology There are numerous methods for acquiring shape information.
For instance, in computer vision, registration of landmarks in multiple views is used to
infer object shape. In adifferent technique called shape from shading, the intensity of light
reflected from the object’s surface provides knowledge of surface orientation, and with
further processing, the global shape of the object.

In the manufacturing industries, mechanical touch probes mounted on coordinate mea-
suring machines are used to record points on surfaces such as car bodies and airplane
wings. The resulting measurements are very accurate, but the technique is extremely slow
and limited to materials that can withstand mechanical contact. Cheaper, less accurate
hand-held 3D digitizing probes determine position using magnetic fields (Polhemus Corp.)



or ultrasound (Science Accessories Corp.). However, this type of “digitization” requires
significant human intervention.

Recently, mechanical probes are being replaced by laser range scanners. Laser range
scannersilluminate the object with alaser beam, and measure distance using either triangu-
lation, interference, or time-of-flight principles (for an extensive survey of range imaging
sensors, see Bed [4]). Laser range scanners are promising because they can provide dense,
accurate range data at high bandwidths.

Range scanning systemstypically produce range images—rectangular grids of distances
from the sensor to the object being scanned. If the sensor and object are fixed, only objects
that are “point viewable” can be fully digitized. More sophisticated systems, such as those
produced by Cyberware Laboratory, Inc., are capable of digitizing cylindrical objects by
rotating either the sensor or the object. To adequately scan objects of more complicated
topological type, such asthe object depicted in Figure 1.1a (a surface of genus 3), multiple
range images must be generated. Although the resulting data contains structure within each
range image, merging the data to reconstruct a useful surface representation isa non-trivial
task [38, 72].

3D scanning applications The development of fast, inexpensive 3D scanning Systems
opens up avast range of applications, including:

Reverse engineering: Computer-aided designs often begin with a physical object. Many
industries have a large catalog of traditional parts, created without CAD tools, for
which there may not even be paper engineering drawings, and which must be incor-
porated or modified into new designs.

Industrial design: Current CAD systems are far from providing the tactile and visual
advantages of traditional media such as wood and clay. CAD systems are used to
design three-dimensional shapes, but, with few exceptions, only two dimensional
input and output devices are used. Certain subtle but important features—such asthe
facial features in Figure 4.15f—can be difficult to achieve. 3D scanning allows the
transfer of manually sculptured shapesinto CAD systems.

Analysisand simulation: Digital descriptions can be analyzed and used in computer sim-
ulations. It then becomes possible, for example, to calculate the drag coefficient of a
car body sculpted in clay by the designer.



Populating virtual environments. Creating virtual environments simulating the physical
world around usrequires modelsfor the objects populating thisworld. Current virtual
realitiestend to have a cartoon-like character partly dueto lack of realistic models of
everyday things. 3D scanning can be used to efficiently obtain such models.

3D faxing: The emerging technologies of solid free-form fabrication (SFF), which allow
the quick prototyping of 3D objects, together with 3D scanners and efficient surface
reconstruction algorithms, may allow “3D faxing”—the scanning, transmission, and
re-instantiation of 3D shape.

Tofully realizethepotential of 3D scanning, itisessential to develop general, automatic,
efficient, and robust surface reconstruction algorithms for converting the data points that
3D scanners produce into useful models.

1.2.2 Contour data

Another application area involves the reconstruction of surfaces from contours. In many
medical studiesitiscommon to slicebiological specimensinto thinlayerswithamicrotome.
The outlines of the structures of interest are then digitized to create a stack of contours. In
manufacturing, similar stacks of contours are also produced by cross-section CAT scans
of mechanical parts. The surfaces from contours problem attempts to recover the three-
dimensional structures from the stacks of parallel two-dimensional contours. Although the
problem hasreceived agood deal of attention [8, 39, 40], thereremain severelimitationswith
current methods. Perhaps foremost among these is the difficulty of automatically dealing
with branching structures. While algorithms addressing the general surface reconstruction
problem may not be as successful as methods specialized for contour data, they need not
consider such special cases.

In arelated problem, ultrasound sensing is used to study the shape of the heart [28].
Contour images of the heart are obtained after insertion of a probe into the esophagus.
Unlike the microtome data, the ultrasound contours are not parallel. Moreover, the probeis
ableto generate many sets of contoursfrom different directionsand from different positions.
Algorithmsfor solving the surfaces from contours problem cannot be easily applied to this
type of data.



1.2.3 Surface sketching

A number of researchers, including Schneider [59] and Eisenman [19], have investigated
the creation of curvesin R? by tracing the path of a stylus or mouse as the user sketchesthe
desired shape. Sachset al. [54] describe a system, called 3-Draw, that permits the creation
of free-form curves in R® by recording the motion of a stylus fitted with a Polhemus
sensor. This can be extended to the design of free-form surfaces by ignoring the order in
which positionsare recorded, allowing the user to movethe stylusarbitrarily back and forth
over the surface. The problem is then to construct a surface representation faithful to the
unordered collection of points.

1.3 Previouswork

Previous surface reconstruction algorithms addressi ng these application areas have typically
been crafted on a case by case basis to exploit additional knowledge such as topological
type of the surface, structure in the data, orientation information, or absence of noise.

1.3.1 Algorithmsassuming fixed topological type

A common restriction of surface reconstruction methodsis that they assume that the topo-
logical type of the surface is known apriori.

Parametric reconstruction methods Parametric methods represent the reconstructed
surface as an embedding f(A) C R? of a 2-dimensional parameter domain A. Previous
work has concentrated on domain spaces with ssmple topological type, i.e. the plane and
the sphere. Hastie and Stuetzle [27], and Bolle and Vemuri [7] discuss reconstruction
of surfaces by a topological embedding f(A) of a planar region A into R3. Brinkley [9]
considersthereconstruction of surfacesthat are slightly deformed spheres, and thus chooses
A to be an approximation to a sphere. Schmitt et al. [57, 58] fit embeddings of cylinders.
Goshtashy [25] works with embeddings of cylinders and tori.

Since the domain A and the surface f (A) are homeomorphic, parametric reconstruction
methods inherently require knowledge of the topological type of the surface. Moreover, to
converge correctly, they also require an initial embedding fo(A) that is * sufficiently close”
toU. Equivalently, they assumea*“good” initial parameterization of thepointsX in A. This
presents a problem since such an initial parameterization may be difficult to construct.



Thereisalso extensiveliterature on smooth interpolation of triangulated data of arbitrary
topological type using parametric surface patches; see Lounsbery et al. [36] for a survey.
These schemes are designed to interpolate sparse data, rather than to fit dense, noisy
point sets of the type obtained from range scanners. Some more recent examples include
Veltkamp [73] and Szeliski et al. [67].

Function reconstruction Termslike “surface fitting” appear in reference to two distinct
classes of problems: surface reconstruction and function reconstruction. The goa of
surface reconstruction was stated earlier. The goal of function reconstruction may be stated
as follows: Given asurface D, aset {x; € D}, and aset {y; € R}, determine a function
f : D — R, suchthat f(x;) ~ ;.

Thedomain surface D ismost commonly aplane, inwhich casethe problemisastandard
one considered in approximation theory. The case where D isa sphere has also been treated
extensively . Foley [22] defines radial basis functions centered on points scattered over a
sphere. Schudy and Ballard [61, 62] use spherical harmonics to fit a surface as a function
over a spherical domain. Sclaroff and Pentland [65] describe a hybrid implicit/parametric
surface fitting method that involves fitting a function over a deformed superquadric. Some
recent work under the title surfaces on surfaces addresses the case when D is a general
curved surface such as the skin of an airplane [2, 46].

Function reconstruction methods can be used for surface reconstruction in simple,
specia cases, where the surface to be reconstructed is, roughly speaking, the graph of
a function over a known surface D. It is important to recognize just how limited these
special cases are—for example, not every surface homeomorphic to a sphere is the graph
of a function over the sphere. The point is that function reconstruction must not be
misconstrued to solve the general surface reconstruction problem.

Constriction methods Constriction methods attempt to find a mesh interpolating a set
of data points. They first construct a 3-dimensional triangulation Ty of the points (Ty is
often chosen to be the Delaunay Triangulation).® The boundary B(To) of the triangulation
is a mesh that corresponds to the convex hull of the points. Since many surfaces are not
convex, B(Typ) in general only interpolates a subset of the points. Therefore, they apply
an iterative constriction technique that, from atriangulation T;, creates a new triangulation

3 Intuitively, a 3-dimensional triangulation consists of a set of tetrahedra pasted together along their faces.



Ti+1 by removing atetrahedron adjacent to B(T;). AsT progressively shrinks, the boundary
mesh B(T) interpolates an increasing number of data points. In deciding which tetrahedron
to remove next from T;, O’ Rourke [48] uses a criterion based on minimal area of B(Tj+1),
and Veltkamp [73] uses a criterion based on maximal interior angle of B(T;). However,
these methods are restricted in that they always produce a closed surface of genus zero.

1.3.2 Algorithmsexploiting structureinfor mation

Many surface reconstruction algorithms exploit structure in the data. For instance, algo-
rithms solving the surfaces from contours problem (Section 1.2.2) make heavy use of the
fact that the data points are organized into contours, and that the contours lie in parallel
planes.

Similarly, algorithms to reconstruct surfaces from multiple range images typically ex-
ploit the adjacency relationship of the datawithin each rangeimage. Merriam [38] suggests
two methodsfor merging rangeimages. avirtual milling techniquethat intersects polyhedra
constructed from the different range images, and a pruning technique that first constructs
the 3D Delaunay Triangulation of the points and then prunes away tetrahedra “exposed’
in the various range images. Turk and Levoy [72] describe a mesh zippering approach, in
which overlapping surfaces (the range images) are “ stitched” together.

These approaches have the drawback that they must deal with special cases using ad
hoc techniques. It is therefore difficult to apply them to similar but different problems.
For instance, methods solving the surfaces from contours problem cannot be used when
presented with several sets of intersecting contours.

1.3.3 Algorithmsexploiting orientation infor mation

Knowledge of the orientation of the surface at each data point is extremely valuable in
surfacereconstruction. Infact, automatically determining such orientationisoneof themain
challenges in our method, as we shall see in Section 2.2.3. Many previous reconstruction
methods assume that such orientation information is supplied with the data.

When the data points X are obtained from volumetric data, the gradient of this data can
provide orientation information that helps guide the reconstruction. For instance, Moore
and Warren [42] fit a piecewise polynomial implicit surface to a set of points, and make
use of auxiliary volumetric samples (off the surface) to assign correct orientations to the
surface pieces and to prevent spurious surface sheets. Likewise, Miller et al. [41] describe a



procedure for fitting meshes to isosurfaces of volumetric data, and make use of volumetric
information.

Other reconstruction procedures assume that each data point x; is also provided with
anormal vector n;. For example, algorithms for reconstructing surfaces from range data
typically exploit the fact that each surface point x; is known to be visible from the sensor,
and make use of these direction vectorsin orienting the surface. Szeliski and Tonnesen [68]
reconstruct a surface using an optimization problem involving oriented particles. By lo-
cal interaction, these particles align themselves on a 2-dimensional manifold. The initial
orientations of the particles is crucial to the success of their method, and must be spec-
ified as input. Muraki [43] fits an implicit function f that is a linear combination of
three-dimensional Gaussian kernels with different means and spreads. His goodness-of-fit
function measures how close the values of f at the data points are to zero, and how well the
direction of the gradient of f matches normalsn; estimated from the data.

1.3.4 Algorithmsfor triangulating noise-free data

Some recent computational geometry methods come close to addressing the general surface
reconstruction problem. They find meshes of arbitrary topological type that interpol ate sets
of unorganized points. Since they interpolate the data, their main limitation is that they
require the data to be noise-free.

Edelsbrunner and Miicke [18] generalize the notion of convex hull to that of alpha
hull («-hull). The convex hull of a set X can be thought of as the complement of the
union of all half-spaces not containing X. The a-hull is defined to be the complement of
the union of al a-spheres (spheres of radius o)) not containing X. Thus, the convex hull
equals the a-hull with o = co. Edelsbrunner and Miicke also introduce the alpha shape
(a-shape), obtained by substituting simplicial elements (segments and triangles) for the
curved boundary elements of the a-hull. More recently, Edelsbrunner [17] has extended
thisnotion toweighted alpha shapes, in which the datapointscan be assigned scalar weights
to cope with non-uniform samplings.

The a-shape approach has great potential in addressing the general surface reconstruc-
tion problem. However, if the sample X is noisy, or if the underlying surface U is not
sufficiently smooth, the a-shape of X will in general have finite thickness, and not be, as
one would desire, a 2-dimensional manifold. It may be possible, as a post-process, to
“flatten” such an a-shapeinto a surface.
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Favardin [21] presents a modified “gift-wrapping” algorithm for triangulating a set of
points. Gift-wrapping is a standard algorithm from computational geometry for computing
the convex hull of a set of points. It creates a triangulation by successively pivoting
planes about boundary edges of the triangulation until these plane encounter other points.
Favardin modifies the standard procedure to allow the creation of non-convex surfaces
by only considering pointsin alocal neighborhood of the pivoting edge. Favardin aso
describes a heuristic for detecting and dealing with surface boundaries.

There appears to be a close connection between the two previous methods. By appro-
priately defining the local neighborhood of Favardin’s modified gift-wrapping algorithm,
we conjecture that it can in fact generate the boundary of the «-shape. Specifically, the
neighborhood should be defined as the union of all a-spheres incident to both vertices of
the edge.

1.3.5 Implicit surfacefitting algorithms

Several methods fit algebraic implicit surfaces (zero sets of polynomial functions) to sets
of points [50, 69]. However, the intent of these methods is not to reconstruct surfaces but
to either recognize objects or infer their orientations in a scene. These fitting methods
cannot be used directly for surface reconstruction because the topol ogical type of algebraic
surfacesis highly unpredictable; in most cases, fitting an algebraic surface to a set of points
resultsin numerous surface sheets that happen to pass near the data but only connect up far
away (e.g. Figure 1.2).

Figure 1.2: Problem with fitting an algebraic surface.

One approach to controlling the topological type of an implicit surface isto triangul ate
space and define a piecewise algebraic function of low degree over the resulting simplices.
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Moore and Warren [42] use a piecewise polynomial function of degree 3. By keeping the
degree low and using additional volumetric samples (Section 1.3.3), they are able to avoid
extraneous surface sheets when the data is dense and nearly linear within each simplex.
Taubin and Ronfard [70] use a piecewise linear function in their implicit simplicial model
representation. The topological type of their surface is easy to predict, since the degree
1 algebraic surface can have at most one surface sheet within each simplex. Using this
representation, they have designed a curve reconstruction method that should in principle
generalize to surface reconstruction. A unique aspect of their method is that they infer both
the topological type of the curve and its geometry in a single process. Also, the use of an
implicit representation guarantees that the curves they generate never intersect themselves.

1.4 Overview of the surfacereconstruction method

As seen in the previous section, surface reconstruction algorithms have typically been
designed to exploit additional knowledge in specific problem instances.

In contrast, our approach isto pose a unifying general problem. Thisapproach has both
theoretical and practical merit. On the theoretical side, abstracting to a general problem
often sheds light on the truly critical aspects of the problem. On the practical side, a
single algorithm that solves the general problem can be used to solve any specific problem
instance.

We have developed a method for automatically reconstructing an accurate, concise
piecewise smooth surface S from a set of of points X, where

e X isan unorganized, noisy sample of an unknown surface U;

¢ the unknown surface U can have arbitrary topological type (including boundaries),
and may contain tangent plane discontinuities such as creases and corners,

e No other information, such as structure in the data or orientation information, is
provided.

A magjor difficulty in this general surface reconstruction problem isthat the topological
typeof U isnot known apriori and must beinferred from the points. To tacklethisdifficulty,
we have partitioned the reconstruction problem: wefirst robustly determine the topol ogical
type of the surface, and only then concern ourselves with the accuracy and conciseness of
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the model. Our reconstruction method consists of three successive phases, as illustrated in
Figures1.3and 1.4.

points

(o
initial mesh
optimized mesh

e

optimized piecewise smooth surface

Figure 1.3: The three phases of our surface reconstruction method.

Phase 1: initial surface estimation (Chapter 2 and [4]): From an unorganized set of
points (Figure 1.4a), phase 1 constructs an initial dense mesh (Figure 1.4b). The goal
of this phase is to determine the topological type of the surface, and to produce an
initial estimate of its geometry.

Phase 2: mesh optimization (Chapter 3and|[3, 2]): Starting with the dense mesh created
in phase 1, phase 2 reduces the number of faces and improves the fit to the data
points (Figure 1.4c). We cast this problem as optimization of an energy function
that explicitly models the trade-off between the competing goals of accuracy and
conciseness. The free variables in the optimization are the number of verticesin the
mesh, their connectivity, and their positions.

Phase 3: piecewise smooth surface optimization (Chapter 4 and [1]): In phase 3, the
surface representation is changed from a piecewiselinear one (meshes) to a piecewise
smooth one. We introduce of a new piecewise smooth representation based on
subdivision. These surfaces are ideal for surface reconstruction, as they are smple
to implement, can model sharp features concisely, and can be fit using an extension
of the phase 2 optimization algorithm.
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(a) Unorganized points X

(b) Result of phase 1: initial dense mesh

(c) Result of phase 2: optimized mesh

(d) Result of phase 3: piecewise smooth

surface

Figure 1.4: Example of the three phases of the surface reconstruction method.
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Starting with the optimized mesh produced in phase 2, phase 3 fits an accurate,
concise piecewise smooth subdivision surface (Figure 1.4d), again by optimizing
an energy function that trades off accuracy and conciseness. In addition to varying
the geometry and size of the surface representation, phase 3 aso optimizes over the
number and locations of sharp features. The automatic detection and recovery of
sharp featuresin the surface is an essential part of phase 3.

Phase 2 could in principle be eliminated, but has proven useful for two reasons. first,
it is computationally more efficient to optimize over a piecewise linear surface in the early
stages of optimization, and second, initial estimates of sharp features are much more robust
when obtained from the phase 2 mesh.

1.5 Contributions

The principal contributions of thisthesis are:

e It presents arobust algorithm (phase 1) for reconstructing surfaces of arbitrary topo-
logical type from unorganized points. From the data points, the algorithm automat-
icaly infers the topological type of the surface (including the presence of boundary
curves).

e It presents an algorithm (phase 2, mesh optimization) for fitting a mesh of arbitrary
topological type to a set of data points. The fitting problem is cast as an energy
minimization problem over all meshes of a given topological type, with an energy
function that directly represents the trade-off of accuracy and conciseness.

e It introduces a new representation for piecewise smooth surfaces of arbitrary topo-
logical type. The new surface representation generalizes Loop’s subdivision surface
scheme [33] by introducing additional subdivision rules that allow the modeling of
sharp surface features such as creases and corners.

e It presents an algorithm (phase 3) for fitting piecewise smooth surfaces to sets of
points. The algorithm is a generalization of mesh optimization to piecewise smooth
subdivision surfaces, with the addition of anew set of free variables, the set of sharp
surface features. By casting the fitting problem as an optimization over all piecewise
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smooth subdivision surfaces of a given topological type, the algorithmisable to find
accurate, concise piecewise smooth surfaces wherein sharp features are recovered
automatically.

e It demonstrates how the optimization algorithms of phases 2 and 3 can be used ef-
fectively for the approximation of surfaces by piecewiselinear and piecewise smooth
models (Chapter 5). By casting surface approximation as a global optimization prob-
lem with an energy function that directly measures deviation of the approximation
from the original surface, we obtain models with excellent accuracy to conciseness
trade-offs. One commonly encountered instance of surface approximation is the
problem of mesh simplification—the accurate approximation of a dense mesh by a
more concise one.

1.6 Overview of thesis

The three phases of the surface reconstruction method are discussed and demonstrated in
Chapters 2, 3, and 4, respectively. The application of this work to the related problem of
surface approximation is presented in Chapter 5. Finally we analyze the shortcomings of
the surface reconstruction method as a whole and highlight directions for future work in
Chapter 6.

1.7 Terminology and notation

By asurface we mean a “compact, connected, orientable two-dimensional manifold, pos-
sibly with boundary, embedded in R®” (cf. O’ Neill [47]). A surface without boundary will
be called a closed surface. If we want to emphasize that a surface possesses a hon-empty
boundary, we will call it a bordered surface. Similarly, a curve will refer to a “compact,
connected one-dimensional manifold, possibly with boundary, embedded in RY”. We use
||x|| to denote the Euclidean length of avector x, and we used(X, Y) to denote the Hausdorff
distance between the sets of points X and Y (the Hausdorff distance issimply the Euclidean
distance between the two closest points of X and Y).
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1.7.1 Mesh representation

Intuitively, amesh isapiecewiselinear surface, consisting of triangular faces pasted together
along their edges. For our purposesit isimportant to maintain the distinction between the
connectivity of the mesh and its geometry. Formally, amesh M isapair (K, V), where: K
isasimplicial complex representing the connectivity of the vertices, edges, and faces, thus
determining the topological type of themesh; V = {v1,..., v}, vi € R®isaset of vertex
positions defining the shape of the mesh in R3 (its geometric realization).

Simplicial complex K

vertices: {1}, {2}, {3}
edges. {1,2}, {2 3}, {1, 3}
faces. {1,2,3}

Topological realization K|  Geometric realization m, (K}

Figure 1.5: Mesh representation: an example of a mesh consisting of asingle face.

A simplicia complex K consists of a set of simplices {1},...,{m}, called vertices,
together with a set of simplices formed by unions of these vertices, such that every non-
empty subset of asimplex in K isagain asimplex in K (cf. Spanier [66]). The 1-simplices
{i,j} € K are caled edges, and the 2-simplices {i, j, k} € K are caled faces.

A geometric realization of a mesh as a surface in R® can be obtained as follows. For
a given simplicial complex K, form its topological realization |K| in R™ by identifying
the vertices {{1}, ..., {m}} with the standard basis vectors {e, ..., ey} of R™. For each
smplex s € K let |s| denote the convex hull of its verticesin R™, and let |K| = Usek |[S].
Let 7 : R™ — RS2 be the linear map that sends the i-th standard basis vector ¢; € R™ to
vi € R® (see Figure 1.5).

The geometric realization of M is the image my (|K|), where we write the map as my to
emphasize that it is fully specified by the set of vertex positionsV = {vy,...,vn}. The
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map 7y iscalled an embedding if itis 1-1, that isif m (|K|) is not self-intersecting. Only a
restricted set of vertex positionsV result in m, being an embedding.

If my isan embedding, any point p € my(|K|) can be parameterized by finding itsunique
pre-image on |K|. Thevector b € |K| with p = my(b) is called the barycentric coordinate
vector of p (with respect to the simplicial complex K). Note that barycentric coordinate
vectors are convex combinations of standard basis vectors ¢ € R™ corresponding to the
vertices of a face of K. Any barycentric coordinate vector has at most three non-zero
entries; it has only two non-zero entries if it lies on an edge of |K|, and only oneif itisa
vertex.

Our implementation represents the simplicial complex using a half-edge data structure
(cf. Weller [75]). Points stored at vertices of this data structure determine the geometric
realization of the mesh.

1.7.2 Neighborhoodson meshes

It is aso useful to define neighborhoods on a ssimplicial complex. For this purpose, we
define aface of asimplex s to be any subset of s, and define the simplicial neighborhood of
aset of smplicesJ C K asthe set of all ssimplicess suchthat s isaface of asimplexs’ € K
that hasafaces” in J:

nbhd(J;K) ={se K : 3" € J, ' e Ksuchthats" Us C s'}.

Figure 1.6 shows examples of nbhd(J; K) where J consists of asingle simplex. Finaly, we
inductively define nbhd(J; K) = nbhd(nbhd~1(J; K)), k > 1.



18

[ileK - nbhd({i} K) %
litek / nbhd( {i, j} K) @

(i ik} e K q nbhd( {1, j, k} K)

Figure 1.6: Simplices and their corresponding simplicial neighborhoods.



Chapter 2
PHASE 1. INITIAL SURFACE ESTIMATION
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Figure 2.1: Phase 1. estimation of an initial mesh from a set of points.

2.1 Introduction

Phase 1 of the surface reconstruction procedure constructsaninitial estimatefor the surface.
From an unorganized set of points X = {xy, ..., x,} sampled from some unknown surface
U, phase 1 creates amesh My that approximatesU. A major difficulty isthat the topol ogical
typeof U isunknown and must beinferred fromthepoints. Thegoal of phaselistoprovidea
robust method for correctly inferring thistopological type. Atthesametime, phase 1 creates
a geometric approximation to the surface, albeit a crude one. In the example of Figure 2.1,
from a set of 4,102 points, phase 1 creates an initial mesh of the correct topological type
(closed surface of genus 3). Asis evident in the example, the approximating mesh Mg
typically has an excessive number of faces and is a poor fit to the data. Phases 2 and 3 are
responsible for improving the accuracy and the conciseness of the surface.

In contrast to previous surface reconstructions schemes (Section 1.3), the phase 1
reconstruction algorithm makes relatively few assumptions about the set of points X and
the underlying surface U from which these were sampled:
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the points may be noisy;

no structure is assumed in the points,

no information is required at each point beyond its (x,y,z) coordinates,

the surface U may have arbitrary topological type (including boundaries);

this topological typeis not known apriori;

the surface U is not assumed to be smooth.

We do require U to be a manifold (a non-intersecting surface), and at present require
it to be orientable. These are not severe restrictions in practice since surfaces that are
boundaries of physical objects satisfy these requirements.

Of course, if the only knowledge of U the algorithm is given is the finite set of sam-
ple points X, a correct surface reconstruction cannot generally be guaranteed, since the
topological type of U cannot be deduced. Additional assumptions must therefore be made
concerning the relationship between the surface U and the process that created the sample
X. To be practicaly useful, these assumptions must be sufficiently general to be widely
applicable, but sufficiently concrete to allow the algorithm to use them effectively. We
make two main assumptions: one concerns the sampling process, and the other concerns
the size of featuresin U.

Assumptionson the sampling process To capture the error in most sampling processes,
each of the points x; € X is assumed to be of the form x; = y; + ej, wherey; € U isa
point on the unknown surface U and e; € R3 isan error vector. Such asample X is called
d-noisy if ||ej|| < ¢ for all i. Of course, it isimpossible to recover features of U in regions
where insufficient sampling has occurred. In particular, if U is a bordered surface, such
as a sphere with a disc removed, it is impossible to distinguish holes in the sample from
holes in the surface. To capture the intuitive notion of sampling density we need to make
another definition: LetY = {y1,...,yn} C U bea(noiseless) sample of asurface U. The
sampleY issaid to be p-dense if any sphere with radius p and center in U contains at |east
one sample point in Y. A §-noisy sample {xy,...,x,} C R?of asurface U is said to be
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p-denseif there exists anoiseless p-dense sample {y1, ..., yn} C U suchthat x; = y; + e,
leil| <46,i=1,...,n.

With these definitions, let us consider when, given the set of sample points X, an
arbitrary point p € R3 could beapoint of U. If thereisno noise, we can deducethat p with
d(p, X) > p cannot be a point of U since that would violate X being p-dense. Intuitively,
the sample points do not leave holes of radius larger than p. If the sample is §-noisy, the
radius of the holes may increase, but by no more than §. We therefore conclude that, given
a p-dense, §-noisy sample X of U, apoint p cannot be apoint of U if d(p, X) > p +4.

Assumptions on the size of features in U Features of U that are small compared to
either p or ¢ are obviously not recoverable. While it may be acceptable to leave out small
details of U from the reconstruction, it is critical that the topological type of U be inferred
correctly. To realize this, we assume that no two “sheets’ of U come “too close together”
(Figure 2.2). Specificaly we assume that points sampled from two different sheets of
surface are separated by a distance of at least p + 6. Otherwise there would be no way
to resolve the underlying topological type of U. Taking sampling noise into account, an
equivalent condition is that no two sheets of U may come within distance p + 3§ of each
other.

p+30

Figure 2.2: Assumption on the size of featuresin U.

An approximation of p + ¢ is provided to the algorithm as a user-specified parameter.
A valuefor the noise magnitude § can be estimated in most applications (e.g., the accuracy
of the laser scanner). Similarly, analysis of the scanning procedure can aso provide an
estimate for the sampling density p.
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2.2 Description of the algorithm

2.2.1 Overview of thealgorithm

From a set of data points X = {x, ..., xn} assumed to be on or near an unknown surface
U, the phase 1 algorithm generates a mesh approximating U.

The key idea in phase 1 is to estimate from X the signed distance to U. The signed
distance from an arbitrary point p € R® to a known closed surface U is defined as
du(p) = s(p) - d(p, U), where s(p) = +1, depending on which side of the surface p lies.
If U isabordered surface, a continuous signed distance can be defined if one stays within
a tubular neighborhood D of the surface!. For our purposes, it is important to note that
knowing the signed distance function dy isequivalent to knowing the surface U; animplicit
representation for U is given by the zero set Z(dy) = {p : duy(p) = 0}. Although we know
neither U nor dy, our strategy will be to first estimate dy from the data points and then
extract an approximation of its zero set.

More concretely, the phase 1 agorithm consists of two stages (Figure 2.3). The first
stage definesafunctiondy : D — R, where D ¢ R3 isaregion near the data points, such
that dy estimatesthe signed distance dy. To handle bordered surfaces, the algorithm leaves
dy(p) undefined when p ¢ D. Sincedy estimatesdy, its zero set Z(dy) = {p : du(p) = 0}
is our estimate for U. In the second stage we use a contouring algorithm to extract an
approximation to Z(dy) in the form of a mesh.

Although the unsigned distance function |dy| would be easier to estimate, zero is not
aregular value of |dy|. Zero is, however, aregular value of dy, and the implicit function
theorem thus guarantees that the set Z(dy) is amanifold.

The key ingredient to estimating the signed distance function isto associate an oriented
plane with each of the data points. These estimated tangent planes serve as local linear
approximationsto the surface. Although the construction of the tangent planesisrelatively
simple, the selection of their orientations so as to define a globally consistent orientation
for the surface is one of the major obstacles facing the algorithm. These oriented tangent
planes, shown in Figure 2.4a, are then used to define the signed distance function to the
surface. An example of the mesh obtained by contouring the zero set of the signed distance
function is shown in Figure 2.1. The next several sections develop in more detail the
successive steps of the algorithm.

L Informally, the tubular neighborhood of asurface S isthe set of points p such that d(p, S) is small.
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1. Estimate d, from data points:
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Figure 2.3: lllustration of the two stagesin the phase 1 algorithm.

2.2.2 Tangent plane estimation

The first step toward estimating a signed distance function is to compute an oriented
tangent plane for each data point (Figure 2.4a). The tangent plane 7'p(x;) associated with
the data point x; is represented as a point o;, called the center, together with a unit normal
vector n;. The signed distance of an arbitrary point p € R®to Tp(x;) is defined to be
disti(p) = (p — 0i) - nj. The center and normal for Tp(x;) are determined by gathering
together the group of points of X within distance p + § of x; (where p and ¢ are parameters
estimating the sampling density and noise); this set is denoted by Nbhd(x;) and is called
the neighborhood of x;. The center and unit normal are computed so that the plane
{disti(p) = 0} is the least squares best fitting plane to Nbhd(x;). That is, the center o
is taken to be the centroid of Nbhd(x;), and the normal n; is determined using principal
component analysis. To compute n;, the covariance matrix of Nbhd(x;) isformed. Thisis
the symmetric 3 x 3 positive semi-definite matrix

CVi= ) (-0o)®((y-o)
y € Nbhd(xi)

where ® denotesthe outer product vector operator.? If A > A\? > A3 denotethe eigenvalues
of CV; associated with unit eigenvectors vi, vZ, v, respectively, n; is chosen to be either

21f aand b have componentsa; and bj respectively, then the matrix a ® b has ajbj asits j-th entry.
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v¥ or —v. The selection determines the orientation of the tangent plane, and it must be
done so that nearby planes are “consistently oriented”.

(a) Estimated tangent planes Tp(x;) (b) Riemannian Graph on oj

Figure 2.4: Estimated tangent planes and Riemannian Graph.

2.2.3 Consistent tangent plane orientation

Suppose two data points x;, x; € X are geometricaly close. Idealy, when the data is
dense and the surface is smooth, the corresponding tangent planes 7'p(x;) = (oi, nj) and
Tp(x;) = (oj, 1) are nearly parallel, i.e. n; - n; ~ +1. If the planes are consistently
oriented, then n; - n; ~ +1; otherwise, either n; or n; should be flipped. The difficulty in
finding a consistent global orientation is that this condition should hold between al pairs
of “sufficiently close” data points.

We can model this problem as graph optimization. Let the undirected graph G = (V, E)
contain a vertex i € V for each tangent plane T'p(x;), and edges (i,j) € E connecting
two tangent planes if their centers o; and o; are sufficiently close. Two tangent planes are
deemed sufficiently closeif the corresponding data pointsliein each other’s neighborhood,
or equivaently, if ||x; — xj|| < p+ 4. This graph G (Figure 2.4b), which we call the
Riemannian Graph, isthus constructed to encode geometric proximity of the tangent plane
centers. (The graph may consist of more than one connected component if the underlying
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surface U is not connected, in which case the following algorithm is applied to each
connected component of the graph.)

In the graph optimization problem, the cost on an edge e = (i, j) encodes the degree to
which Tp(x;) and T'p(x;) are consistently oriented, and is taken to be w(e) = n; - n;. The
problem is then to make a binary choice b; € {—1, 1} for each vertex i, selecting tangent
plane orientation bjn;, SO as to maximize the cost metric

S bibw(i. j).

(i,j))eE

Unfortunately, this combinatorial optimization problem is NP-hard, as shown via a
reduction from the NP-complete MAXCUT [23] decision problem.

Proof:

MAXCUT problem: Given graph G = (V, E), weightsw(e) € Z* for eache € E, and
positive integer K, isthere apartition of V into digoint setsV; and V, such that the sum of
the weights of the edges from E that have one endpoint in V; and one endpoint in V; is at
least K?

ORIENTATION problem: Given graph G = (V, E) with weight w(e) € R for each
e € E, determine an assignment b(v) € {—1, +1} for each v € V that maximizes

Cub)= D Db(vi)b(vo)w(e).

e=(vy,v2)€E

TosolveMAXCUT(G, w, K) using ORIENTATION, letw = —w (negatetheweightson
al edges), and call ORIENTATION(G, w') to obtain assignments b that maximize C,, (b).
Partition V into two sets V_ and V. according to these assignments b(v). Let W' _, W.,,
and W’ represent the sum of the weights of edges with endpoints completely in V_,
completely inV.., and in both, respectively. Note that the total weight of edgesin the graph,
T=W'"_+W;,,+W’, isindependent of assignmentsb, andthat C,,(b) = W' _+W,, —W’ ..
Thus, Cyv(b) = T — 2W’,, and maximizing C,,(b) is equivalent to minimizing W’ ..
Moreover, since the weights have been negated, W_. = —W’ , and maximizing C,,(b) is
equivalent to maximizing W_, the sum of the weights—in the MAXCUT problem—of
edges with one endpoint in V_ and one endpoint in V.. Since ORIENTATION provides a
solution to this maximization problem, we can then trivially decideif there existsapartition

of V withwW_, > K. Q.E.D.
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Since our graph optimization problem is NP-hard, no solution method can guarantee
finding its exact solution in reasonable time. One approach to approximating the solution
is to use a simulated annealing method. For instance, Taubin and Ronfard [70] encounter
a similar graph problem when determining signs in their implicit curve reconstruction
method. They discover that this discrete optimization problem has a physically-based
counterpart, the lsing model of large populations of particles with spin, for which simulated
annealing schemes are well documented. Our approach isinstead to use an efficient, greedy
approximation algorithm. Although this greedy algorithm is not likely to perform well on
arbitrary graphs, it has been successful on the Riemannian Graphs we have encountered.

A relatively ssimple-minded greedy algorithm to orient the tangent planes would be
to arbitrarily choose an orientation for some plane, then “propagate” the orientation to
neighboring planes in the graph. In practice, we have found that the order in which
orientationispropagated isimportant. Figure 2.5¢ showswhat may result when propagating
orientation solely on the basis of geometric proximity; a correct reconstruction from the
pointsin Figure 2.5b is shown in Figure 2.11l.
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Figure 2.5: Importance of careful propagation of surface orientation.

Intuitively, we would like to choose an order of propagation that favors propagation
from Tp(x;) to Tp(x;) if the unoriented planes are nearly parallel. This can be accom-
plished by assigning to each edge (i, j) in the Riemannian Graph the cost 1 — |f; - f;]. In
addition to being non-negative, this assignment has the property that a cost is small if the
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unoriented tangent planes are nearly parallel. A favorable propagation order can therefore
be achieved by traversing the minimal spanning tree (MST) of the resulting graph (shown
in Figure 2.6). This order is advantageous because it tends to propagate orientation along
directions of low curvature in the data, thereby largely avoiding ambiguous situations en-
countered when trying to propagate orientation across sharp edges (as at the tip of the cat’s
earsin Figure 2.5a).

Figure 2.6: Orientation propagation path (minimal spanning tree).

To assign orientation to an initial plane, the unit normal of the tangent plane whose
center has the largest z coordinate is made to point toward the +z axis. Thisassignment is
not critical but is convenient in obtaining predictable surface orientations. Then, rooting
the minimal spanning tree at thisinitial node, the tree is traversed in depth-first order, each
tangent plane being assigned an orientation consistent with that of its parent. That is, if
during traversal, the current tangent plane 7'p(x;) has been assigned the orientation n; and
T'p(x;) isthe next tangent plane to be visited, then n; is replaced with —n; if n; - n; < 0.

The orientation algorithm described above has been used in all the examples and has
produced correct orientationsin all the cases we have run.

2.2.4 Signed distancefunction

The signed distance dy (p) from an arbitrary point p € R3 to aknown closed surface U is
the distance between p and the closest point z € U, multiplied by +1, depending on which
side of the surface p lies. Inreality U isnot known, but we can mimic this procedure using
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the oriented tangent planesasfollows. First, we find the tangent plane T'p(x;) whose center
oj isclosest to p. This tangent plane is alocal linear approximation to U, so we take the
estimated signed distance dy (p) to U to be the signed distance between p and its projection
z onto T'p(x;) (Figure 2.7); that is,

du(p) = disti(p) = (p — o)) - ;.

Figure 2.7: Signed distance from a point p to the nearest tangent plane.

If U is known to be a closed surface, this simple rule works well. However, the rule
must be extended to accommodate surfaces that might have boundaries. As discussed in
Section 2.1, because X is assumed to be a §-noisy, p-dense sampling of U, the points do
not leave unsampled holes of radius larger than p + 6. Therefore if the projection z of p
onto the closest tangent plane has d(z, X) > p + 6, z cannot be a point of U, and we take
du(p) to be undefined. Undefined values are used by the contouring algorithm (described
in Section 2.2.5) to identify boundaries.

Stated procedurally, the signed distance function is defined as:

i « index of tangent plane whose center is closest to p

{ Compute z as the projection of p onto Tp(x;) }
z < 0i — ((p — 0) - 0y) By
if d(z,X)< p+0 then

du(p) < (p—o0) -8  {=%|p—z}
else

du(p) «+ undefined
endif
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The simple approach outlined above creates a signed distance function dy whose zero
set Z(dy) is piecewise linear but contains discontinuities. The discontinuities result from
the implicit partitioning of space into regions within which a single tangent plane is used
to define dy. (These regions are in fact the Voronoi regions associated with the centers
0;.) Fortunately, the discontinuities do not adversely affect the algorithm. The contouring
agorithm discussed in the next section discretely samples the function dy over a por-
tion of a 3-dimensional grid near the data and reconstructs a continuous piecewise linear
approximation to Z(dy).

2.25 Contour tracing

Contour tracing, the extraction of an isosurface from a scalar function, is a well-studied
problem[1, 13, 76]. Most contour tracing algorithms partition space into cubesor simplices
(tetrahedra), evaluate the scalar function at the vertices of these volume elements, and for
each element, from the values at its vertices, infer a linear approximation to the surface.
Phase 1 currently usesthe algorithm of Wyvill et al. [76], because it is simpleto implement
and, unlike the standard “marching cubes’ algorithm [34], does not suffer from ambiguous
configurations. Also, it produces sparser representations (for a given accuracy) than the
method of Allgower and Schmidt [1] which uses tetrahedral decompositions of cubes.
(A disadvantage of the method of Whyvill et al. is that it does not generalize to higher
dimensions.)

In our implementation of the algorithm of Wyvill et al., we handle degenerate zero
evaluations (dy(p) = 0) by arbitrarily perturbing them to a small positive value, in order
to guarantee that the output is a surface. The algorithm only visits cubes that intersect the
zero set by pushing onto a queue only the appropriate neighboring cubes (Figure 2.83).
No intersection is reported within a cube if the signed distance function is undefined at
any vertex of the cube, thereby giving rise to surface boundaries. As a result, the signed
distancefunction dy isevaluated only near thedata. In Figure 2.8b, evaluation of the signed
distance function is shown graphically as line segments between the query points p (at the
cube vertices) and their projections z onto the nearest tangent plane.

To accurately estimate the surface and to properly infer itstopol ogical type, the cubesize
should be set so that cube edges are of length < p + 6. In practice it has been convenient
to smply let the cube size equa p + 4, to free the user from having to specify another
parameter.
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(a) Cubes visited by marching cubes (b) Estimated signed distance (shown as
P2

Figure 2.8; Contour tracing of Z(dy).

Theresult of phase 1isamesh approximating Z(dy ). Drawnasawireframe (Figure2.1),
the mesh is seen to be very dense (it has numerous vertices, edges, and faces). The mesh
has the same topological type as the original surface U shown in Figure 2.9a, but as is
evident in the shaded version of Figure 2.9b, the result of phase 1 isfar from faithful to the
geometry of the original model. Thisdeficiency will be addressed in the next two chapters.

2.3 Results

We have experimented with data sets obtained from several different sources. In all cases,
any structure (such as ordering) that might have been present in the point setswas discarded.

Simulated range data : To simulate laser range imaging from multiple view points, Con-
structive Solid Geometry (CSG) models were ray traced from multiple eye points.
Theray tracer recorded the point of first intersection along each ray. Eight eye points
(the vertices of a large cube enclosing the object) were used to generate the 4,102
points shown in Figure 2.1. Thisisthe point set used in Section 2.2 to illustrate the
steps of the algorithm.
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(c) Original surface U (d) Shaded phase 1 mesh

Figure 2.9: Comparison of the original surface U with the result of phase 1.

(a) Contour datafrom a CT scan (b) Phase 1 reconstruction

Figure 2.10: Phase 1 of surface reconstruction on contour data.
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Contours : Points from 39 planar slices of the CT scan of a femur (Figure 2.10a) were
combinedto reconstruct the surface of Figure2.10b. Note how the branching problem
(where a single contour forks into two contours) was handled correctly without any
special code.

Figure 2.11a shows 30,937 points on 794 cross-sections of an oil pump (courtesy of
Ford Motor Company). Thesurfacereconstructedin phase lisshowninFigure2.11b.

Real range data : Points were sampled from two physical objects by Technical Arts Co.
(Redmond, WA) using a laser scanning head mounted on a coordinate measuring
machine: 12,745 points from a Nissan distributor cap (Figure 2.11c) and 12,772
points from a mannequin head (Figure 2.11€). The phase 1 reconstructions are
shown in Figures 2.11d and 2.11f. The holes present in the surface of Figure 2.11d
are artifacts of the data, as self-shadowing prevented someregions of the surface from
being scanned. Adaptive selection of scanning paths preventing such shadowing is
an interesting area of future research. In this case, we manually closed the holes
by introducing vertices at their centroids and adding new faces. (We did leave one
boundary at the bottom of the distributor cap.)

Existing surfaces : By sampling pointsfrom avariety of existing surface models, we were
able to compare results with known references.

The 10,000 points shown in Figure 2.11g were sampled from a swept surface (knot
courtesy of Rob Scharein), and were used to reconstruct the surface in Figure 2.11h.
This surface is an example of a surface with simple topological type (that of atorus)
but a complex geometric embedding.

The 26,103 points in Figure 2.11i were sampled from the Utah teapot, defined as a
set of NURBS patches. Since in the NURBS definition, the patches intersect each
other (for instance, the spout penetrates inside the body), we had to filter the sample
points to make them lie on a manifold. Phase 1 of surface reconstruction yields the
single genus 1 surface (with one boundary at the spout) shown in Figure 2.11;.

A piecewise linear surface, the mesh of Figure 2.5a, was randomly sampled to yield
the sparse set of 1,000 points shown in Figure 2.11k. From these points, the surface
in Figure 2.111 was reconstructed. This particular case illustrates the behavior of the
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method on a bordered surface (the cat has no base and is thus homeomorphic to a
disc).

Table 2.1: Phase 1 sampling parameters and execution times.

Figure | Object # points | Parameter Time

n pté (seconds)
2.1b mechpart 4,102 .035 14
2.10b | femur 18,224 .06 190
211b | oilpmp 30,937 011 104
2.11d | distcap 12,745 .02 40
211f | mannequin | 12,772 .015 52
2.11h | knot 10,000 .025 75
211) | teapot 26,103 .02 133
211 | cat 1,000 .08 4
6.2a | curvel 200 .05 .6
6.2b curve2 200 .08 .6

Table 2.1 lists the sampling parameter used in each example, expressed as a fraction of
the object’s size, and execution times obtained on an SGI Indigo workstation.

AsshowninFigure 2.12, the method is not overly sensitiveto the value of the parameter
p + 6. However, for parameter values that are too low, holes appear in the surface; and, for
parameter values that are too high, the genus of the surface is not inferred correctly.
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Figure 2.11: Results of phase 1 (initial surface estimation).
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2.4 Discussion

Parameter setting Because the assumptions on the sampling and the surface are in-
terlinked (Section 2.1), the single parameter p + ¢ is used for several purposes in phase
1

¢ |t determinesthe neighborhoods Nbhd(x;) of pointsused in estimating tangent planes
to the surface;

e It determines geometric proximity of the tangent planes Tp(x;) (connectivity in the
Riemannian Graph);

e Itdeterminesif, intheeval uation of the estimated signed distancedy(p), the projection
of p onto the nearest tangent plane lies beyond a boundary of the surface;

e Itisused to set the resolution of the contour tracing algorithm.

When scanning multiple objects with a scanner of a given technology, the parameter
p + 9 canlikely be set to a common value. Specifying a global value for p + § works well
for data sets with uniform sampling density, uniform noise, and uniform surface features.
But ideally this parameter should be adapted locally to variations in sampling, and should
be inferred from the points themselves.

One possible scheme for automatically adapting the sampling density parameter is
to examine the shape of the neighborhoods Nbhd(x;) as points are added in order of
increasing distance. The* shape” of aneighborhood can be described by the principal frame
(0, VAlv, VA2v2 v/A3v3) obtained from principal component analysis (Section 2.2.2).
For small sets of points, data noise tends to dominate, the eigenvalues A" are similar, and
the elgenvectors v- may not reveal the surface’s true tangent plane. At the other extreme,
as number of points grows larger, the neighborhoods become less localized and the surface
curvature tends to increase the “thickness’ A3 of the neighborhood. Another possible
criterion is to compare \3 to some local or global estimate of data noise. Although we
have done some initial experimentation in this direction, we have not yet fully examined
these options. One difficulty isthat some structured data sets (such as the contour datain
Figure 2.10a) have anisotropic sampling density.
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Complexity analysis It isdifficult to analyze the asymptotic complexity of the phase 1
algorithm as a function of the number n of points, because the value of the parameter p + §
greatly affects the complexity of several subproblems. However, empirical observation
reveals the following:

e thesize of the neighborhoods Nbhd(x;) tendsto remain constant as n increases, since
the parameter p + ¢ is adjusted to a smaller value;

¢ therefore the Riemannian Graph has size O(n);

e therefore the computation of the MST on the Riemannian Graph requires O(n logn)
time.

The most expensive subproblems then become:

1. For each point x;, determining the neighborhood Nbhd(x;), i.e. the O(1) set of points
within distance p+¢§. Asthere are n such neighborhoods, this problem would require
O(n?) time overall if done by brute force.

2. For each point p € R® at which dy(p) is evaluated, finding the nearest tangent plane
origin o;. The number of such evaluations is proportional to n. To see this, note
that the contour tracing cube sizeis set equal to p + ¢, and is thus proportional to the
average spacing between the points. Therefore the number of contour tracing cubes
occupied by the n data points is proportional to n. Thus this problem would also
require O(n?) if implemented by brute force.

Hierarchical spatial partitioning schemes such as octrees [55] and k-D trees [3] can
greatly speed up these spatial searching problems. Aswe assume uniform sampling density
in our data, a simpler scheme, based on uniform cubic partitioning, has worked effectively.
The axis-aligned bounding box of the points is partitioned by a cubical grid. Points are
entered into sets corresponding to the cube to which they bel ong, and these sets are accessed
through a hash table indexed by the cube indices (a similar scheme is described in Wyvill
etal. [76]). Itisdifficult toanalyzetheresultingimprovementsanalytically, but empirically,
the time complexity of the above problemsis effectively reduced from O(n?) to O(n).
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Specialization to range data If the data points are obtained from range images, there
exists some knowledge of surface orientation at each data point. Indeed, each data point is
known to be visible from at least one viewing direction®, so that, unless the surface grazing
angle islarge, a point’s tangent plane orientation can usually be inferred from the viewing
direction. The current algorithm can exploit this additiona information in the tangent
plane orientation step (Section 2.2.3). Let the Riemannian Graph be augmented with one
additional vertex v and n additional edges from  to each tangent plane vertex i. Assign
to each new edge (v, i) the cost 1 — |n; - vi| where 1; is the normal of Tp(x;) and v; is
the viewing direction at point x;. Then compute the MST of this new graph and propagate
orientation as before. This strategy was implemented but never used, as we were always
ableto correctly infer orientation without resorting to it.

Culling of outliers Another possible use for the principal component analysis of the
neighborhoods Nbhd(x;) is the culling of outlier data points. If the principal frame is not
sufficiently “flat” (i.e. if \* islarge) or if its origin o; is distant from x; (as measured in
principa frame coordinates), then Nbhd(x;) does not appear to lie on a2-manifold and the
point x; should be removed. It may be safer to remove data points than to proceed with
uncertain tangent plane estimates. But fortunately we did not have to filter our data, as it
was free of such outliers.

3 In aranger scanner based on triangulation, it is known that the surface point is visible from both the light
source and the camera.



Chapter 3
PHASE 2. MESH OPTIMIZATION

points X

optimized mesh

initial mesh
Mo
(phase 1)

Figure 3.1: Phase 2: optimization of the phase 1 mesh to fit the points X.

3.1 Introduction

Phase 1, described in the previous chapter, creates an initial surface approximation from a
set of points X, in the form of a dense mesh. Phase 2, the topic of this chapter, seeks to
improve the accuracy and conciseness of this mesh. This is achieved by solving a mesh
optimization problem, stated roughly as follows: Given acollection of data points X in R®
and an initial mesh Mg near the data, find amesh M of the same topological type as M, that
both fits the data well and has a small number of vertices. A “perfect” fit to the data would
involve interpolating the points. However, since X may be a noisy sampling, we do not
seek an interpolating surface, as such a surface would contain many unwanted folds and
undulations.
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In the example of Figure 3.1, from the set of 4,102 points and the initial mesh created
in phase 1, mesh optimization creates a new, more concise, more accurate mesh. Notice
that the sharp edges and corners indicated by the data points have been faithfully recovered
and that the number of vertices has been significantly reduced (from 886 to 163).

To solve the mesh optimization problem we minimize an energy function that captures
the competing desires of tight geometric fit and compact representation. Using the input
mesh My as a starting point, an optimization algorithm minimizes this non-linear energy
function by varying the number of mesh vertices, their positions, and their connectivity
(under the constraint that the topological type be maintained). In essence, the search space
of the optimization consists of all meshes of the same topological type as My. Although
we can give no guarantee of finding agloba minimum, we have run the method on awide
variety of data sets, and we have obtained good results in all cases, as demonstrated in
Section 3.4.

Most previous methods for surface fitting only consider surfaces of simple topological
type (e.g. rectangular or spherical domains), as described in Section 1.3.1.

In contrast, the mesh optimization algorithm allows fitting of a parametric surface of
arbitrary topological typeto a set of points. In addition to fitting the mesh, the optimization
also variesthe number of verticesand their connectivity, thereby locally tailoring the degrees
of freedom in the representation to the geometry of the data points.

The principal contributions of phase 2 are:

e It presentsan algorithm for fitting amesh of arbitrary topological typeto aset of data
points (as opposed to volume data, etc.).

e It casts mesh fitting as the minimization of an energy function that embodies the
competing goals of accuracy and conciseness.

e It defines a set of mesh transformations, and conditions under which they can be
applied, that allow consideration of all meshes of a given topological type.

e |t shows that the resulting non-linear optimization problem can be made tractable
through the use of a nested optimization algorithm and a set of approximations.

¢ |t demonstrates how the algorithm’s ability to recover sharp edges and corners can be
exploited to automatically segment thefinal meshinto smooth connected components.
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Another application of mesh optimization, that of finding concise piecewise linear
approximations to existing surfaces, is discussed in Chapter 5.

T space of meshes

poor
M (phasel)

accuracy | M,y

perfect |ideal

Sparse ) dense
conciseness

Figure 3.2: Trade-off between accuracy and conciseness in phase 2.

Trade-off between accuracy and conciseness Thetwo goalsof mesh optimization, those
of accuracy and conciseness, are competing goals, as illustrated in the graph of Figure 3.2.
An ideal surface representation would liein the lower left corner of this graph, asit would
both be concise and have perfect fit to the data. However, since we are only considering
piecewise linear surfaces (meshes), there is a bound on the accuracy that a representation
of a given size can achieve. The meshes M,,, My, and My, which lie on the boundary
of this “space of meshes’, are all in a sense optimal; they exhibit a trade-off between
accuracy and conciseness. |n mesh optimization, this trade-off between geometric fit and
compact representation is controlled via a user-selectable parameter c.,. A large value
of crep indicates that a coarse representation is to be strongly preferred over a dense one,
usually at the expense of degrading the fit.

Asan example, Figure 3.3 shows three optimized meshes obtained with different values
of Crep. At One extreme, the first mesh (obtained with a high value of cp) is concise but a
poor geometric fit; at the other extreme, the last mesh (obtained from alow value of Cyp) is
dense but much more accurate.
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Figure 3.3: Three optimized meshes obtained with different values of Crep.

3.2 Definition of the energy function

In the following discussion, it may be useful to refer back to Section 1.7.1 for notation and

terminol ogy.
Recall that the goal of mesh optimization isto obtain a mesh that both provides a good

fittothepointset X = {xy, ..., x,} and hasasmall number of vertices. Wefind asimplicial
complex K and a set of vertex positionsV = {vy, ..., vy} definingamesh M = (K, V) that
minimizes an energy function carefully chosen to meet our two stated goals:

E(K, V) = EdiSt(K7 V) + Erep(K) + Espring(Ka V) .

The first two terms measure the accuracy and conciseness of the mesh; the third term is
motivated below.
The distance energy Egig; iSequal to the sum of squared distances from the pointsto the
mesh,
n
Egist(K, V) = Zdz(xi, mv(|K])).

i=1
The representation energy E,, penalizes meshes with a large number of vertices. Itis
set to be proportional to the number m of vertices of K:

The optimization allows vertices to be both added to and removed from the mesh. When
avertex is added, the distance energy Egis; is likely to be reduced; the term E,¢, charges a



penalty to this operation so that vertices are not added indefinitely. Similarly, one wants
to remove vertices from a dense mesh even if Egis; increases slightly; in this case E, acts
to encourage the vertex removal. The user-specified parameter c., provides a controllable
trade-off between fidelity of geometric fit and parsimony of representation.

We discovered, as others have before us [37], that minimizing Egis; + Erep @ 0ne does not
produce the desired results. As an illustration of what can go wrong, Figure 3.4a shows
the result of minimizing Egis; alone. The estimated surface has several spikes in regions
where there isno data. These spikes are a manifestation of the fundamental problem that a
minimum of Egjs; + Erep may not exist. If, in the course of minimization, few points project
onto the neighborhood of a vertex, then the optimal position of this vertex may become
ill-defined, and the vertex may therefore wander arbitrarily far from the data.
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Figure 3.4: Minimization of E for fixed K without and with spring energy.

To guarantee the existence of aminimum [32], we add the third term, the spring energy
Espring- 1t places on each edge of the mesh a spring of rest length zero and spring constant
K:

Espring(KaV) = Z ””VJ' - Vk||2'
{j;k}eK
Minimizing E with the spring energy term produces a much more stable result, as shown
in Figure 3.4b.
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It is worthwhile emphasizing that the spring energy is not a smoothness penalty. Our
intent isnot to penalize sharp dihedral anglesinthemesh, since such features may be present
in the underlying surface and should be recovered. We view Egying as aregularizing term
that helps guide the optimization into a desirable local energy well. As the optimization
converges to the solution, the magnitude of Eg,ring Can be gradually reduced. We return to
thisissuein Section 3.3.5.

For some applications, the procedure should be scale-invariant, equivalent to defining
a unitless energy function E. To achieve invariance under Euclidean motion and uniform
scaling, the points X and the initial mesh Mg are uniformly pre-scaled to fit in a unit cube.
After optimization, a post-processing step can undo thisinitial transformation.

The energy function E(K, V) depends on two parameters ¢, and x. The parameter
Crep CONtrols the trade-off between conciseness and fidelity to the data and should be set by
the user. The parameter «, on the other hand, is a regularizing parameter that is chosen
automatically. The method for setting « is described in Section 3.3.5.

3.3 Minimization of the energy function

Our goal isto minimize the energy function
E(K, V) = Ed|3t(|<7 V) + Erep(K) + Esp|'ir|g(|<7 V)

over the set I of simplicial complexes K homeomorphic to the initial smplicial complex
Ko, andthevertex positionsV defining theembedding. Hereisan outlineof the optimization
algorithm, a pseudo-code version of which appearsin Figure 3.5. The details are deferred
to the next two subsections.

To minimize E(K, V) over both K and V, the problem is partitioned into two nested
subproblems. an inner, continuous minimization over V for fixed ssmplicial complex K,
and an outer, discrete minimization over K.

Section 3.3.1 describes an algorithm that solves the inner minimization problem. Its
goal isto find E(K) = miny E(K, V), the energy of the best possible embedding of the fixed
simplicial complex K, and the corresponding vertex positionsV, given an initial guess for
V. This corresponds to the procedure OptimizeVertexPositions in Figure 3.5.

Whereas the inner minimization is a continuous optimization problem, the outer min-
imization of E(K) over the simplicial complexesK € K (procedure OptimizeMesh) isa
discrete optimization problem. An algorithm for its solution is presented in Section 3.3.2.
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OptimizeMesh(Ko,Vo) {

K:=Kp

V := OptimizeVertexPositions(Kg,Vo)

— Solve the outer minimization problem.

repeat {
(K',V") := GenerateLegalMove(K,V)

" = OptimizeVertexPositions(K',V’)

if E(K', V') < E(K, V) then

(K\V) =K'V
endif
} until convergence
return (K,V)

}

— Solve the inner optimization problem
-  E(K) =miny E(K, V)
— for fixed simplicial complex K.
OptimizeVertexPositions(K,V) {
repeat {
— Compute barycentric coordinates by projection.
B := ProjectPoints(K,V)
— Minimize E(K, V, B) over V using conjugate gradients.
V := ImproveVertexPositions(K,B)
} until convergence
return V

}

GenerateLegalMove(K,V) {
Select alegal moveK = K.
Locally modify V to obtain V' appropriate for K'.
return (K',V')

Figure 3.5: An idealized pseudo-code version of the mesh optimization algorithm.
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3.3.1 Optimization over V for fixed K
(Procedur e OptimizeVertexPositions)

In this section, we consider the problem of finding a set of vertex positionsV that minimizes
the energy function E(K, V) for agiven simplicial complex K. As E,(K) does not depend
onV, thisamounts to minimizing Egisi(K, V) + Espring(K, V).

To evaluate the distance energy Egist(K, V), it is necessary to compute the distance of
each data point x; to the surface 7y (|K|). Each of these distancesisitself the solution to the
minimization problem

d?(xi, mv ([K])) = min ||x; — my (by) ||,
bi€|K]
in which the unknown is the barycentric coordinate vector b; € |K| C R™ of the projection
of x; onto M (Figure3.6). Thus, minimizing E(K, V) for fixed K isequivalent to minimizing
the new objective function

n
Z ||Xi — 7TV(bi)||2 + Espring(K; V)

i=1

n
S llxi — wv®P+ Y wllvi — vil|?
i=1

{ik}eK

E(K,V,B)

over the vertex positions V {v1,...,vn},vi € R® and the barycentric coordinates
B={bs,...,bn},bi € [K| CR™

V3

Figure 3.6: Distance of a point x; from the mesh.
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To solve this optimization problem (procedure OptimizeVertexPositions), the method
alternates between two subproblems:

1. For fixed vertex positions V, find optimal barycentric coordinate vectors B by pro-
jection (procedure ProjectPoints).

2. For fixed barycentric coordinate vectors B, find optimal vertex positionsV by solving
alinear least squares problem (procedure ImproveVertexPositions).

Because we find optimal solutions to both of these subproblems, E(K, V, B) can never
increase, and since it is bounded from below, it must converge.! In principle, one could
iterate until some formal convergence criterion is met. Instead, asis common, we perform
a fixed number of iterations. As an example, Figure 3.4b shows the result of optimizing
over the vertex positions while holding the simplicial complex fixed.

It is conceivable that procedure OptimizeVertexPositions returns a set V of vertices
for which the mesh is self-intersecting, i.e. my is nhot an embedding. While it is possible
to check a posteriori whether 7y isan embedding, constraining the optimization to always
produce an embedding appears to be difficult. This has not presented a problem in the
examples we have run.

3.3.1.1 Projection subproblem (Procedure ProjectPoints)

Theproblemof optimizing E(K, V, B) over the barycentric coordinatevectorsB = {by, ..., by}
while holding thevertex positionsV = {vy, ..., vy} and thesimplicial complex K constant,
decomposes into n separate optimization problems:
b; = argmin ||x; — 7v(b)]| -
be|K]|

In other words, b; is the barycentric coordinate vector corresponding to the point p €
mv(|K]) closest to x;.

A naive approach to computing b; isto project x; onto al faces of M, and then find the
projection with minimal distance. To speed up the projection, the faces of the mesh arefirst
entered into aspatial partitioning datastructure (similar to theone used in Wyvill et al. [76]).

1 Although the energy E must converge, that is not necessarily true of the vertex positions V. Theoretically,
it is possible that the iterative procedure follow a cyclic path in the space of vertex positions, converging
over E while not converging over V. However, we have not encountered such behavior in practice.



49

Then for each point x; only a nearby subset of the faces needs to be considered, so that
the overall projection step takes expected time O(n). For additional speedup we exploit
coherence between iterations. A point’sprojectionisassumedto lieinaneighborhood of its
projection in the previous iteration. Specifically, the point is projected onto the simplicial
neighborhood nbhd(f ; K) of the face f onto which it previously projected. Although thisis
aheuristic that can fail, it has performed well in practice.

3.3.1.2 Linear least squaressubproblem (Procedure ImproveVertexPositions)

Minimizing E(K, V, B) over the vertex positions V while holding B and K fixed isalinear
least squares problem. It decomposes into three independent subproblems, one for each of
the three coordinates of the vertex positions. We will write down the problem for the first
coordinate.

L et e be the number of edges (1-simplices) in K; notethat e isO(m). We can expressthe
least squares problem for the first coordinate as minimizing a linear system ||Av! — d?||
over vi, where the design matrix A is an (n +e) x m matrix and d! is an (n + e)-vector.
The first n rows of the least squares problem correspond to Egigt(K, V), so that row i of A
isb; and row i of d* isx;;. Thelast e rows correspond to the springs of Espring(K, V), s0
that each of these rows of A contains two non-zero entries with values/x and —/x inthe
columns corresponding to the indices of the edge’s vertices, and these rows of d* contain
zero. An important feature of the matrix A isthat it contains at most 3 non-zero entriesin
each row, for atotal of O(n + m) non-zero entries.

Theleast squares problem is solved using the conjugate gradient method (cf. Golub and
Van Loan[24]). Thisisan iterative method guaranteed to find the exact solution in as many
iterations as there are distinct singular values of A, i.e. in at most m iterations. Usually far
fewer iterations are required to get aresult with acceptable precision. For example, we find
that for m as large as 10, as few as 200 iterations are sufficient.

Thetwo time-consuming operationsin each iteration of the conjugate gradient algorithm
are the multiplication of A by an (n + e)-vector and the multiplication of A" by an m-
vector. Because A is sparse, these two operations can be executed in O(n + m) time.
Thus, an acceptable solution to the least squares problem is obtained in O(n + m) time
(with aconstant number of conjugate gradient iterations). In contrast, atypical noniterative
method for solving dense least squares problems, such as QR decomposition, would require
O((n + m)m?) time to find an exact solution.
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3.3.2 Optimization over K
(Procedure OptimizeMesh)

To solve the outer minimization problem, minimizing E(K) over K, we define a set of three
elementary mesh transformations, edge collapse, edge split, and edge swap, that change a
simplicial complex K into another simplicial complex K’ (see Figure 3.7).

initiadl
configuration

edge cbl lapse edge rspl it edrgrerswap
Figure 3.7: The three elementary mesh transformations defined in phase 2.

We define alegal move to be the application of one of these elementary transformations
to an edge of K that leaves the topological type of K unchanged. The set of elementary
transformations is complete in the sense that any ssmplicial complex in /C can be obtained
from Ky through a sequence of legal moves.?

Our goal then isto find such a sequence taking us from Ky to a minimum of E(K). We
do this using a variant of random descent: we randomly select alegal move, K = K'. If
E(K') < E(K), we accept the move, otherwise we select another move and repeat. We
use a slightly more sophisticated strategy for randomly selecting legal moves, described in
Section 3.3.3. More elaborate optimization schemes, such as steepest descent or simulated
annealing, are possible. We have obtained good results with the simple method of random
descent, so we have not yet implemented the other schemes.

2 Infact, Duchamp[32] showsthat edge collapse and edge split are sufficient; we include edge swap to allow
the optimization procedureto “tunnel” through small hillsin the energy function.
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Identifying legal moves An edge split transformation is always a legal move, as it can
never change the topological type of K. The other two transformations, on the other hand,
can cause a change of topological type, so tests must be performed to determineif they are
legal moves.

We define an edge {i, j} € K to be aboundary edge if it is a subset of only one face
{i,],k} € K, and a vertex {i} to be a boundary vertex if there exists a boundary edge
{i,j} e K.

An edge collapse transformation K =- K’ that collapses the edge {i,j} € K isa
legal moveif and only if the following conditions are satisfied (proven in joint work with
Duchamp [32]):

e For all vertices {k} adjacent to both {i} and {j} ({i,k} € K and {j, k} € K), {i, ], k}
isaface of K.

e If {i} and {j} are both boundary vertices, {i, j} isaboundary edge.

e K hasmorethan 4 verticesif neither {i} nor {j} are boundary vertices, or K hasmore
than 3 verticesif either {i} or {j} are boundary vertices.

An edge swap transformation K = K’ that replacestheedge {i,j} € K with {k, 1} € K’
isalegal moveif and only if {k, I} & K.

3.3.3 Strategy for selecting legal moves
(Procedure GenerateLegalMove)

The simple strategy of randomly selecting legal moves described in Section 3.3.2 can be
improved by exploiting locality. Instead of selecting edges completely at random, edges
are selected at random from a candidate set. This candidate set consists of all edges that
may lead to beneficial moves, and initially contains all edges.

To generate alegal move, we randomly remove an edge from the candidate set. Wefirst
consider collapsing the edge, accepting the moveif it islegal and reduces the total energy.
If the edge collapse is not accepted, we then consider edge swap and edge split in that
order. If one of the transformations is accepted, we update the candidate set by adding all
neighboring edges. The candidate set becomes very useful toward the end of optimization,
when the fraction of beneficial moves diminishes. The candidate set also providesasimple
termination criterion: terminate when the candidate set becomes empty.
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3.3.4 Exploiting locality

The idealized algorithm described so far is too inefficient to be of practical use. In this
section, we describe some heuristics that dramatically reduce the running time. These
heuristics capitalize on the observation that a local change in the structure of the mesh
leaves the optimal positions of distant vertices essentially unchanged.

Our discrete optimization procedure requires evaluation of E(K’) = miny: E(K’, V')
for a smplicial complex K’ obtained from K through a legal move. Ideally, we would
use procedure OptimizeVertexPositions of Section 3.3.1 for this purpose, as indicated in
Figure 3.5. In practice, however, thisis too slow. Instead, we use fast local heuristics to
estimate the effect of alegal move on the energy function.

Each of the heuristics is based on extracting a submesh in the neighborhood of the
transformation, along with the subset of the data points projecting onto the submesh. The
change in overall energy is estimated by considering only the contribution of the submesh
and the corresponding point set. This estimate is always pessimistic, as full optimization
would only further reduce the energy. Therefore, the heuristics never suggest changes that
would increase the true energy of the mesh.

Evaluation of edge collapse To evaluate a transformation K = K’ collapsing an edge
{i,j} into a single vertex {h} (Figure 3.7), we take the submesh to be the simplicial
neighborhood nbhd({h}; K) (as defined in Section 1.7.2), and optimize over the single
vertex position v, while holding all other vertex positions constant.

Because we perform only a small number of iterations (for reasons of efficiency), the
initial choice of vy, greatly influences the accuracy of the result. Therefore, we perform
three different optimizations, with vy, starting at v;, v;, and %(vi +v;), and use the one that
obtains the lowest energy.

The edge collapse should be allowed only if the new mesh does not intersect itself.
Checking for this would be costly; instead we settle for a less expensive heuristic check.
If, after the local optimization, the maximum dihedral angle of the edgesin nbhd({h}; K’)
is greater than some threshold, the edge collapse is rejected.

Evaluation of edge split The procedure is similar to that for edge collapse, with the
submesh defined to be the neighborhood nbhd({h}; K’) about the new vertex {h}, and the
initial position of v, chosen to be 3(vi +vj).
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Evaluation of edgeswap To evaluate an edge swap transformation K = K’ that replaces
anedge{i,j} € Kwith{k, 1} € K’, weconsider two local optimizations, onewith submesh
nbhd({k}; K’), varying vertex vy, and one with submesh nbhd({1}; K’), varying vertex v,
(Figure 3.8). The changein energy istaken to best of these?® Asisthe casein evaluating an
edge collapse, we reject the transformation if the maximum dihedral angle after the local
optimization exceeds a threshold.

Figure 3.8: Two local optimizationsto evaluate an edge swap mesh transformation.

3.3.5 Setting of the spring constant

We view the spring energy Egyring S a regularizing term that hel ps guide the optimization
process to a good local minimum. The spring constant x determines the contribution of
this term to the total energy. We have obtained good results by making successive calls to
procedure OptimizeMesh, each with a different value of «, according to a schedule that
gradually decreases k.

As an example, to obtain the final mesh in Figure 3.9d starting from the phase 1 mesh
in Figure 3.1, we successively set « to 1072, 103, 104, and 10~ (see Figures 3.9a-3.9d).
This same schedule was used in al the examples.

3 An obviousalternativeis to optimize simultaneously over both vy and vy, but thiswould slightly complicate
the implementation.



(c) Minimum of E with x = 1074 (d) Minimum of E with x =108

Figure 3.9: Successive minimizations of E with decreasing spring constant ~ schedule.
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3.4 Reaults

From the point sets shown in Figure 2.11 and the initial meshes produced by phase 1 shown
intheleft column of Figure 3.10, phase 2 produces the optimized meshes shown in the right
column of Figure 3.10.

Asthese examplesreveal, by ssimply minimizing the energy function E, the density and
shapes of elementsin the meshes adapts to the curvature of the underlying surface:

e Vertices are dense in regions of high Gaussian curvature, whereas a few large faces
span the flat regions.

e Long edges are aligned in directions of low curvature, and the aspect ratios of the
triangles adjust to local curvature.

e Edgesand vertices are placed near sharp features of the underlying surface.

These effects are rather surprising, since the underlying surface is unknown and can
only be estimated from the discrete set of sample points. To re-emphasize, no heuristicsare
introduced to reap these benefits; they are simply by-products of the energy minimization
process.

Parameter settingsand quantitativeresults All examplesusethe spring constant sched-
uleof {1072,10-3,10-4 10~8} asdescribed in Section 3.3.5. Table 3.1 showstheimprove-
ments in conciseness and accuracy obtained from mesh optimization, and lists execution
times (on an SGI Indigo workstation).

Surface segmentation Mesh optimization allows the detection of sharp features in the
underlying surface. Using a simple thresholding method, the optimized mesh can be
segmented into smooth components. To this end, we build a graph in which the nodes
are the faces of mesh. Two nodes of this graph are connected if the two corresponding
faces are adjacent and their dihedral angleis smaller than a given threshold. The connected
components of this graph identify the desired smooth segments.

As an example, Figure 3.11a shows the segmentation of the optimized mesh into 11
components. After segmentation, a smoothly shaded surface can be created by estimating
vertex normals from neighboring faces within each component, as in Figure 3.11b. Note
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Table 3.1: Phase 2 parameter settings and optimization results.

Fig. Object # pts Conciseness Accuracy Time

n Crep m (# vertices) Egist min.

phase 1 | phase 2 % phasel | phase?2 %

31 mechpart 4,102|10°° 886 163| 5|1.7210 148610 4|354| 12
3.10ab | oilpmp 30,937 | 10—°| 19,002 891| 2158310249310 2| 12| 107
3.10cd | distcap 12,745[10°| 6,253 685 9113011405073 32| 40
3.10ef | mannequin | 12,772 10-°| 7,834| 689| 11|4.741 233910 3| 14| 36
3.10gh | knot 10,000 [ 10—°| 2,689 975| 3115210 1|3.081 3| 49| 25
3.10ij | teapot 26,103 [ 10~°| 2,986 623| 511910 1|3170 3| 60| 63
3.10kl | cat 1,000 [ 10~° 232 181|1.3|1.93 0 1| 10910 3|177 2
6.2ac | curvel 200|102 75 13| 686110347903 18 .1
6.2bd | curve2 200 [ 102 62 9| 7|1121071|8331x2| 13 A

(a) Segmented mesh (11 components) (b) Shaded rendering

Figure 3.11: Segmentation of the optimized mesh into smooth components and shaded
rendering of the segmented surface.
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how the silhouette of the rendered surface betrays that the surface is not smooth. The next
chapter presents a method for reconstructing a piecewise smooth surface from the points.

3.5 Discussion

Alternate solution to non-linear least squares problem In Section 3.3.1 we described
how to solve the continuous non-linear least squares problem using an algorithm that
alternates between projection of the pointsand linear |east squares (LL S). Another common
approach to solving such a problem is to use conjugate gradients, such as the Polak-Ribiere
algorithm [51]. Comparing the two, we observed that the conjugate gradient approach has
a dlightly better convergence rate, but that our aternating projection/LLS method reduces
E much more quickly in the first few iterations.

In our procedure, the non-linear least squares problem appears twice:

1. Intheinitial global fitting of mesh mesh (the call to OptimizeVertexPositions on
(Ko,Vo) in the pseudo-code of Figure 3.5).

2. Inthe evaluation of the local heuristics described in Section 3.3.4.

Since evaluating the local heuristics requires a quick estimate for E(K'), we have found
the alternating projection/LL S method to be better suited.

On the other hand, the initial global fitting of the mesh is only done once, so for it we
can afford to perform a greater number of optimization iterations. We therefore favor the
faster convergence rate of the conjugate gradient method, which we will now discuss.

The conjugate gradient method is straightforward once we derive evaluation functions
for the energy function E(V) and its gradient,

OE OE
VE(V) = (8—\/'1—> .

A
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To compute VE(V) at a given set of vertex positions V, we project the data points x;
onto the mesh (Section 3.3.1.1) to obtain the barycentric coordinates b; of their closest
points on the mesh. By symbolic differentiation, we then obtain:

a_E — 8Edist + aEspring
an v an v an v
n
= Y —2i(xi — (b)) + Y —2k(vic— V).
i=1 {ik}eK
Sincethe vectors by, .. ., by, are sparse, and since the number of edgesin K is O(m), both

E(V) and VE(V) can be computed in O(n + m) time given afast projection method.

It is interesting to note that E(V) is continuous but not differentiable. Indeed, it may
happen that some points do not project uniquely onto the mesh, in which case VE(V) will
be undefined. However, this seldom occurs, and if it does, our projection procedure makes
an arbitrary choice which leads to one of several “possible” valuesfor VE(V).



Chapter 4

PHASE 3:
PIECEWISE SMOOTH
SUBDIVISION SURFACE OPTIMIZATION

points X

piecewise smooth
surface

optimized mesh
(phase 2)

Figure 4.1: Phase 3: from a piecewise linear to a piecewise smooth representation.

4.1 Introduction

As detailed in the previous two chapters, phases 1 and 2 of the surface reconstruction
procedure create an accurate, concise piecewise linear surface approximation to a set of
points. Phase 3, described in this chapter, finds an even more accurate and more concise
piecewise smooth surface (Figure 4.1). A key ingredient in phase 3, and a principal
contribution of thisthesis, is the introduction of a new class of piecewise smooth surfaces
based on subdivision.
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The generalization to smooth surfaces in phase 3 is a natural and necessary extension
of phase 2. Many objects of interest are piecewise smooth; that is, their surfaces consist of
smoothly curved regions that meet along sharp curves and at sharp corners. Modeling such
objects as piecewise linear surfaces typically requires alarge number of triangles, whereas
curved surface models can provide both a more accurate and a more concise representation
of the true surface. It is critical, however, to use a surface representation capable of
explicitly modeling sharp features. Using an everywhere smooth surface representation
to model sharp features typically results in a greater number of surface elements, poor
geometric fit, and unwanted surface artifacts, asillustrated in Figure 4.2. Additionally, the
surface representation should be capable of modeling surfaces of arbitrary topological type.

Figure 4.2: Poor geometric fit when using an everywhere smooth surface. (Egigt IS 6 times
larger than in Figure 4.3b.)

The most popular smooth surface representations are tensor product NURBS. However,
NURBS can only represent surfaces of arbitrary topological type by partitioning the model
into a collection of individual NURBS patches. Adjacent patches must then be explicitly
stitched together using geometric continuity conditions[20]. A large number of parameters
(the B-spline coefficients) are therefore introduced, most of which are constrained by the
continuity conditions. As a consequence, fitting NURBS surfaces in genera requires
high-dimensional constrained optimization.

Subdivision surfaces, first introduced by Doo/Sabin [14] and Catmull/Clark [11], offer
a promising alternative. As will be detailed in Section 4.2, a subdivision surface S(M)
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Is defined as the limit of a subdivision process applied to a control mesh M, as indicated
in Figures 4.5a4.5d. Subdivision surfaces are capable of modeling everywhere smooth
surfaces of arbitrary topological type using a small number of unconstrained parameters.

Our new surface representation is a generalization of the subdivision surface scheme
introduced by Loop [33]. Loop’s scheme, like all subdivision schemes to date, produces
tangent plane continuous surfaces of arbitrary topological type. A principal contribution of
our work isto show that it is possible to locally modify Loop’s subdivision rules to model
sharp features such as creases and corners. Our piecewise smooth subdivision scheme also
model sboundary curves, asshown for instancein the spout of the Utah teapot (Figure4.15j).

We can now rephrasethegoal of phase 3 as: Starting with the optimized mesh (piecewise
linear surface) produced by phase 2, find a concise control mesh M (Figure 4.3a), of the
same topol ogical type asthe phase 2 mesh, defining a piecewise smooth subdivision surface
S(M) (Figure 4.3b) that accurately fits the points.

(8) Tagged control mesh M (b) Subdivision surface S(M)

Figure 4.3: Example of subdivision surface optimization.

As in phase 2, we set up an energy minimization problem that trades off conciseness
and fit to the data. Both the energy function and the optimization algorithm of phase 3 are



similar to those of phase 2, but with two major differences:

e The distance energy Egiss measures distance of the points not to the piecewise linear
control mesh M, but to the piecewise smooth subdivision surface S(M) defined by M.

e In addition to varying the number of verticesin the control mesh, their connectivity,
and their positions, the phase 3 optimization algorithm also varies the number and
locations of sharp features. The automatic detection and recovery of sharp features
in the surface is an essential part of phase 3.

The search space of the subdivision surface optimization consists of all piecewise
smooth subdivision surfaces of a given topological type. Asillustrated in Figure 4.4, this
search space is a superset of the space of meshes considered in phase 2.

poor } space of meshes
phase 1
g
accuracy
phase 27
.~ space of piecewise
deal phase 3 ~ smooth surfaces
perfect | 10ea — _
Sparse , dense
CONCIseness

Figure 4.4: Trade-off between accuracy and conciseness in phase 3.

We introduce subdivision surfaces and review some of their properties in Section 4.2.
Our piecewise smooth subdivision surface schemeis presented in Section 4.3. The phase 3
optimization problem and algorithm are described in Sections 4.4 and 4.5.
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4.2 Background on subdivision surfaces

A subdivision surface is defined by repeatedly refining a control mesh as indicated in
Figures 4.5a-4.5d. The first and most popular subdivision surface schemes, introduced by
Doo/Sabin [14] and Catmull/Clark [11], are based on quadrilateral meshes, and generalize
biquadratic and bicubic tensor product B-splines, respectively. A subdivision scheme based
on triangles is most convenient for our purposes. We use a generalization of the triangular
scheme introduced by Loop [33], as it is the simplest known scheme leading to tangent
plane smooth surfaces.

4.2.1 Loop’ssubdivision surface scheme

Loop’s subdivision scheme is a generalization of C? quartic triangular B-splines. As
illustrated in Figure 4.5, the subdivision surface S(M) associated with a control mesh
M = (K, V) isdefined as the limit of arefinement process applied to M:

M, M!=RM), M?=R(RM)), ....

The refinement procedure R proceeds by splitting each triangular face into four subfaces.
The vertices of the refined mesh are then positioned using weighted averages of the vertices
in the unrefined mesh. Formally, starting with the initial control mesh M = M°, each
subdivision step carriesamesh M" = (K", V") into arefined mesh M™* = (K™, v'*1) where
the vertices V'™ are computed as affine combinations of the vertices of V". Some of the
vertices of V™! naturally correspond to vertices of V'—these are called vertex points; the
remaining vertices in V™! correspond to edges of the mesh M"—these are called edge
points. Let v" denote a vertex of V' having neighbors v7, ..., v{ as shown in Figure 4.6.
Such avertex issaid to havevalencen. Let vI*! denotethe edge point of V' corresponding
to the edge v'v!, and let v"*! be the vertex point of V™! associated with v". The positions
of v and vI*! are computed according to the subdivision rules

r+1 Oz(n)vr + VE oot Vrr1

Vo (M +n
r O[r r r (4'1)
vt = I ST =

where subscriptsaretaken modulon, andwherea(n) = 220 witha(n) = 3 - @+2008n/0)f

Affine combinations such as those in Equation 4.1 can be nicely visualized by diagrams
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R(M)

(b) Mesh M1

(a) Control mesh M

R>(M)

(d) Limit surface S(M)

R(R(M))

(C) Mesh M2

Figure 4.5: Example of Loop’s subdivision surface scheme.
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Figure 4.6: The neighborhood around a vertex v" of valencen.

called masks, as shown in Figure 4.7.

1/\1 1/ \1

AV NV

1 1

Figure 4.7: Vertex and edge subdivision masks for Loop’s subdivision surface scheme.

4.2.2 Computing surface points and tangent vectors

Loop’s surfaces in particular, and subdivision surfaces in general, are defined only as the
limit of an infinite refinement process. In most cases closed form expressions for the
limit surfaces are not known, but somewhat surprisingly, various properties of subdivision
surfaces, such as exact points on the surface and exact tangent planes, can nonetheless be
computed [26].

To study the properties of subdivision surfaces, it is convenient to write Equation 4.1 in
matrix form as

r+1 _ r+l r+1\T r r T
(v v vy Sn(v', v, V)

SO VY, L, vO)T (4.2
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where superscript T denotes matrix transpose [14]. For Loop’'s subdivision scheme, the
matrix S, called the local subdivision matrix, has the form

EEONE S N I

3 3 1 0 O 1

sh°°p=% 3 1 3 1 0 0
3 1 o 0 -- 1 3

Asr — oo, each point v" approaches a point onthelimit surface. Equation 4.2 suggests
that the limit point can be obtained by analyzing the eigenstructure of the local subdivision
matrix. Indeed, the limit point can be expressed as an affine combination of the initial

vertex positions [26]:
lov0 + Elvg + .. -Envg

go + gl + ... gn
where (¢, ..., ) is the dominant left eigenvector of S,. For Loop’s surfaces this affine
combination can be expressed as the position mask shown in Figure 4.8a[33].

o0 —

/\\ /\\ /\\
‘”””/ /\/ /\/

(a) position mask (b) tangent masks

Figure 4.8: Position and tangent masks for Loop’s subdivision scheme, where w(n) = %(’:])
and where ¢; = cos(2ri/n).

Eigenanalysis of the local subdivision matrix can also be used to establish smoothness.
It can be shown, for instance, that L oop’s surfaces are indeed tangent plane continuous[33,
52]. Moreover, Halstead et al. [26] show that the tangent vectorsto the limit surface at v°
can be computed using the two left eigenvectors of S, corresponding to the second largest
eigenvalue (this eigenvalue has multiplicity 2). For Loop’s surfaces the vectors

— 0 0 0
111 - C1V1 + C2V2 +...0+ Cnvn (4 3)

u = szg + Cgvg +..0+ Clvg,
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with ¢; = cos(2ri/n) span the tangent plane of the limit surface. Their cross product
therefore gives an exact normal vector to the surface which is useful, for example, to
create Phong-shaded renderings such as those shown in Figure 4.15. The formulas given
in Equation 4.3 can be visualized as the tangent masks shown in Figures 4.8b.

Eigenanalysis will again be used in Section 4.3.2 to study the properties of piecewise
smooth subdivision surfaces.

4.3 Piecewise smooth subdivision surfaces

Attempting to fit smooth surfaces to non-smooth objects often produces unacceptable
results. As an example, fitting an everywhere smooth subdivision surface to the points of
the mechanical part produces the surface shown in Figure 4.9b. The control mesh for this
surface, shown in Figure 4.9a, is rather unwieldy.

(a) Control mesh (b) Subdivision surface

Figure 4.9: Result of optimizing an everywhere smooth subdivision surface.

To accurately model objects with tangent discontinuities, we develop new subdivision
rulesthat introduce aset of commonly occurring sharp featuresthat wecall creases, corners,
and darts, asillustrated in Figure 4.10. A crease is a curve along which the surface is C°
but not C*; acorner is apoint where three or more creases meet; finally, adart isapoint on
the interior of a surface where a crease terminates. Although this list of sharp featuresis
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not exhaustive (for instance, we cannot model a cone or two coincident darts), it has proven
sufficient for the examples we have encountered.

Subdivision surfaces produced by the new rules are tangent plane smooth everywhere
except along creases and at corners. A detailed theoretical analysis of the behavior along
creases and at cornersisbeyond the scope of thisthesisand will be presented by Schweltzer
and Duchamp [64]. In Section 4.3.2 we summarize the relevant results of the analysis.

4.3.1 Subdivisionrules

To model creases, corners, and darts using subdivision surfaces, a subset L of edgesin the
simplicial complex K istagged as sharp. We refer to the pair (K, L) as atagged simplicial
complex. The subdivision masks are modified so that tangent plane continuity across sharp
edgesisrelaxed. Boundary curves are produced by tagging all boundary edges of the mesh
assharp.! In the subdivision process, edges created through refinement of a sharp edge are
tagged as sharp.

Subdivision rules at crease vertices must be chosen carefully in order for the surface to
have a well-defined tangent plane on each side of the crease. Similar considerations apply
to corners and darts. It should be noted that the specific subdivision masks we use are by
no means unique. Indeed, thereis considerable flexibility in selecting them. The maskswe
present here are simple and have worked well in practice, but further research should be
done to explore other alternatives.

We classify vertices into five different types based on the number and arrangement of
incident edges. A smooth vertex is one where the number of incident sharp edgess is zero;
adart vertex hass = 1; acrease vertex hass = 2; and a corner vertex hass > 2. Crease
vertices are further classified as regular and non-regular depending on the arrangement of
smooth edges. A crease vertex isregular if and only if there are exactly 2 smooth edges on
each side of the crease (or on the one side if on a boundary).

Figure 4.11 shows our vertex and edge subdivision masks. Asindicated in the figure,
vertex subdivision masks are chosen based on the type of the vertex. We use three different
types of edge subdivision masks. A smooth edge (one not tagged as sharp) is subdivided
using the smooth edge subdivision mask. The mask used to subdivide a sharp edge depends
on the types of the incident vertices as shown in Table 4.1. When applying the non-

YIn related work, Nasri [44, 45] developed a method to model boundary curves in a Doo-Sabin subdivision
procedure by augmenting the control mesh rather than by modifying the subdivision masks.



71

(b) Mesh after one refinement step

(a) Tagged control mesh

(d) Piecewise smooth limit surface

(c) Mesh after two refinement steps

Figure 4.10: Example of our piecewise smooth subdivision surface scheme. Sharp edges

L C K aredrawn as bold line segments.
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symmetric edge subdivision mask 3, the regular crease vertex incident to the edge receives
the weight 5.

! 1 0
/\ 0\|/0 o\l/o
Ot(n) 6 1
/ \/I\O 0/\0
0

smooth or  regular or non-regular corner vertex
dart vertex crease vertex

1/ \1 O/ \0 0/ \0
NN VANV
(1) smooth edge (2) regular (3) non- gular

crease edge crease

Figure 4.11: Vertex and edge subdivision masks for our piecewise smooth scheme. Bold
lines denote sharp edges.

Table 4.1: Assignment of sharp edge subdivision masks as a function of the types of the
two incident vertices. Masks are numbered as shown in Figure 4.11.

dart | reg. | non-reg. | corner
crease | crease

dart 1 1 1 1
regular crease 1 2 3 3
non-regular crease | 1 3 2 2
corner 1 3 2 2

Those familiar with B-spline curve subdivision may recognize that the crease subdivi-
sion masks have been designed so that the sharp edges converge to uniform cubic B-splines
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except near non-regular crease and corner vertices. The zeros in these crease subdivision
masks completely decouple the behavior of the surface on one side of the crease from the
behavior on the other side.

Sinceall subdivision masksareconvex combinations(i.e. their entriesare non-negative),
the piecewise smooth subdivision surface retains the convex hull property—meaning that
the surface is contained within the convex hull of its control vertices. This property, shared
by other surface representations like tensor product B-splines, is useful for algorithms that
use a divide-and-conquer strategy.

4.3.2 Computing surface points and tangent vectors

As explained in Section 4.2.2, limiting points and tangent planes can be computed using
masks. These masks are determined by the elgenstructure of local subdivision matrices,
which depend on the type of the vertex (smooth, dart, regular and non-regular crease, and
corner).

Smooth and dart vertices: At smooth and dart vertices, our local subdivision matrix is
identical to Loop’s subdivision matrix. The position and tangent masks are therefore
asinFigure4.8.

Creasevertices: Sincethezerosinthe crease subdivision masks(Figure4.11) decouplethe
behavior of the surface on one side of the crease from the behavior on the other side,
we can decouple the analysis, focusing on alocal subdivision matrix that describes
the behavior on one side of the crease. As indicated earlier, boundary curves are
modeled as one-sided creases.

In the following, we assume that the vertices v, ..., v0 surrounding one side of a
crease vertex v° are indexed as shown in Figure 4.12d. We aso assume that no
two non-regular crease vertices are adjacent to each other; this assumption always
holds after one iteration of subdivision, since all newly introduced vertices are either
smooth or regular crease vertices.
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Figure 4.12: Position and tangent masks for crease vertices.

At aregular crease vertex, the valence is 4 and the local subdivision matrix is

greg crease —

| =
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A wwho
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The dominant left eigenvector of this matrix yields the position mask (4,1,0,0, 1)
shown in Figure 4.12a, meaning that

1
v = 6(4VO +v9+v9)

isapoint on the limit crease.?

Similarly, when the crease vertex is non-regular, the local subdivision matrix has the
form

Snon-reg crease —
n

ol =

w w w o
o - O B
= W O O
w = O O
O O O
o O o o
o O O B

30000O0 ---5

2 This equation is consistent with the observation that, away from non-regular crease vertices, the crease is
auniform cubic B-spline curve.
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and we obtain the position mask shown in Figure 4.12b.

For crease vertices of valence4 or higher, the subdivision rules described in the previ-
ous section give rise to well-defined tangent planes on both sides of the crease [64] 3
As for smooth vertices, tangent masks are again determined by the two left eigen-
vectors corresponding to the 2nd and 3rd largest eigenvalues. For both regular and
non-regular crease vertices, a tangent along the crease is obtained by the tangent
mask shown in Figure 4.12c. To compute a tangent vector transverse to the crease,
we use the tangent mask shown in Figure 4.12d, where the weights are defined as
follows [64]. At aregular crease vertex, the valence is 4 and the mask is given
by (Wo,...,Ws) = (—2,—1,2,2,—1). At a non-regular crease vertex, for n > 4,
Wo =0, w; =w, =3snf, andw; = (2cosf — 2)(sin(i — 1)f) fori =2,...,(n — 1)
where ¢ = 7/(n — 1); for n = 3, (Wp,...,w3) = (—=1,0,1,0); finally, for n = 2,
(Wo, W1, W2) = (-2, 1,1).

Corner vertices. The subdivision masks at a corner vertex are much like those at a crease
vertex. If the corner vertex has s sharp edges, the local subdivision matrix decouples
into s separate matrices (or s — 1 matrices if the corner vertex lies on a boundary),
each describing a smooth region of the surface. After the first subdivision step, since
the crease vertices adjacent to a corner vertex are always regular crease vertices, each
such matrix has the form

W W w o«
o - O1 O
= W O O
w = O O
= O O O
o O O O
o O O O

corner
Sh

ool )

300000 .-+ 5

Since the corner vertex is stationary during subdivision, it is itself a point on the
surface; equivalently, (1,0, ..., 0) is the dominant |eft eigenvector of S, The sec-
ond largest eigenvalue has multiplicity 2 and the two corresponding left eigenvectors
define the tangent masks (1, —1,0, ...,0) and (1, 0,0, ..., —1).

3 The techniques used to prove smoothness do not apply to vertices of valence 2 and 3, although numerical
experiments suggest that tangent planes are well-defined in these cases too.
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4.4 Definition of the energy function

Asoutlinedin Section4.1, theinput to phase3isan unstructured collection X = {xy, ..., x,}
of datapointstogether with the mesh obtained from phase 2. Phase 3 seeksto find aconcise
tagged mesh M = (K, L, V) defining a piecewise smooth subdivision surface S(M) that
accurately fits X. We use the mesh produced by phase 2 as the initial estimate (Ko, Vo),
and let theinitial set Ly of sharp edges contain the edges whose dihedral angles are above
athreshold (e.g. 40 degrees).

Note that the goals of phase 3 are the same as those of phase 2: to find a surface that
both provides a good fit to a set of points and has concise representation. Asin phase 2
(Section 3.2), we cast the problem as one of minimizing an energy function that captures
the competing goals of conciseness and accuracy.

The energy function is given by

E(K7 L: V) = Edist(Ka L: V) + Crepm + Csharpe

where

e Egiy isthetotal squared distance from the points to the subdivision surface;
e CpM isapenaty onthe number m of vertices,

® Csharp€ iS@penalty on the number e of sharp edges.

Asinphase 2, the parameter c,¢, controlsthe trade-off between conciseness and fidelity
to the dataand should be set by the user. The parameter csnarp controlsthe trade-off between
smoothness of the surface and fidelity to the data. Setting Csharp = Crep/S has worked well
in all our examples.

We minimize the energy function over the space M of tagged meshes M = (K, L,V)
where K is of the same topological type as the phase 2 mesh, and L is the subset of sharp
edges of K. The goal isto find the tagged mesh in M that minimizesE.

Note the absence of a“spring energy” term, which was introduced in phase 2 to guide
the mesh optimization algorithm into a good local energy well. For the type of data we
have used, such an energy term has been unnecessary in phase 3.



77

4.5 Minimization of the energy function

The energy minimization algorithm closely parallels the one used in phase 2 (Section 3.3).
We decomposethe problem into two nested subproblems: aninner, continuousoptimization
over the control vertex positionsV for fixed (K, L), and an outer, discrete optimization over
(K, L).

4.5.1 Optimization over V for fixed (K, L)

In the inner minimization, we hold the tagged simplicial complex (K, L) fixed and consider
the continuous non-linear optimization over V. We want to determine

E(K,L) = rr\]/inEdist(Ka L, V) + CrepM + Csparp€ ,

the minimum energy for fixed (K,L). Since m and e are fixed, this is equivalent to
minimizing the distance energy over the vertex positions V. Inthe following, V istreated
asanm x 3 matrix whose rows contain the (x, y, z) coordinates of the vertices.

Computing the distance energy Egist involves projecting the data points x; onto the
subdivision surface S(M). Thisisnot feasible in practice as the surface is defined only as
the limit of an infinite process. Instead, we project onto a piecewise linear approximation
M" to S(M) obtained by subdividing the original mesh r times to produce a refined mesh
M" = R"(M), and then pushing al the vertices of M" to their limit positions using the
position masks. (Typically weuser = 2.) Since each of the vertices of M" can be written
as an affine combination of the vertices V of M (using the subdivision rules), and since
the position masks are affine, by composition each of the vertices of M" can be written
as an affine combination of the vertices V. That is, each vertex v* of M" can be written
as v' = yV, where the entries of the row vector y can be computed by composing the
effects of r-fold subdivision followed by application of a position mask. Moreover, since
M is piecewise linear, every point on M'—not just the vertices—can be written as an affine
combination of the vertices V.

For each data point x;, let z; be the closest point on M". As argued above, z; can be
written asy;V, meaning that Eg,; can be expressed as

n
Eaiss = ) [Ixi — yi V.
i=1
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Thisexpression for Egis; isquadraticin V. Hence, for fixed y;, optimizing over V isalinear
least squares problem. Moreover, the vectorsy; are sparse since the subdivision rules are
local.

This suggests an iterative minimization scheme alternating between the following steps:

1. For fixed V, compute the projections y;V of the data points x; onto M".
2. Forfixedys, -, yn, Optimize Egis; Over V.

Step 2, which is a sparse linear least squares problem, can be solved using a sparse,
iterative conjugate gradient method, as described in Section 3.3.1. Since the rows of the
design matrix (the y;’s) have approximately 12 non-zero entries on average (vs. 3 in phase
2), the sparse conjugate gradient solution is more expensive than that in phase 2, but only
by a constant factor.

4.5.2 Optimization over (K, L)

Our agorithm for solving the outer minimization problem, minimizing E(K, L), again
closely parallels the phase 2 algorithm of Section 3.3.2.

We define aset of four elementary mesh transformations, edge collapse, edge swap, edge
split, and edge tag, taking a tagged simplicial complex (K, L) to another tagged simplicial
complex (K’, L"), as shown in Figure 4.13. The first three transformations were discussed
in Section 3.3.2. The fourth transformation, edgetag, isatoggle that either adds an edge to
the set L of sharp edges, or removes one from it. Asin phase 2, these four transformations
are complete in the sense that they form a transitive set of transformations on the set of
tagged simplicial complexes (of a given topological type).

A legal move isthe application of one of these elementary transformationsto an edge of
K that |eaves the topological type of K unchanged. The criterion for determining whether
amoveislega was given in Section 3.3.2. Our god isto find a sequence of legal moves
taking us from an initial tagged simplicial complex (Ko, Lo) to one for which a minimum
of E isachieved.

As in phase 2, this is accomplished via a variant of random descent: We form a
candidate set, initially consisting of all edges of Ko. We randomly select an edge from the
candidate set and try the four elementary transformationsin turn until we find alegal move
(K,L) = (K',L") with E(K’,L") < E(K,L). If none is found, we remove the edge from
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initial configuration

ed(;:jeeellapse edge split edge S\Nap edgetag

Figure 4.13: The four elementary mesh transformations defined in phase 3.

the candidate set; otherwise, we accept the move and expand the candidate set to include
edges whose vertices were affected by the transformation. The processisrepeated until the
candidate set is empty.

Due to the expense of computing E(K’, L) for each speculative move, the idealized
algorithm just described is too inefficient to be of practical use. We therefore replace the
exact computation of E(K’, L") by an approximate one.

45.2.1 Approximate evaluation of E(K’, L")

Our approximate computation of E(K’, L") issimilar to that used in phase 2 (Section 3.3.4).
It is based on the observation that applying a local change to the control mesh (K, L, V)
leaves the optimal positions of distant control vertices essentially unchanged. Thus, when
speculating upon an elementary transformation, we only optimize over the positions of
control vertices in a neighborhood of the affected edge, and recompute projections of
data points originally projecting onto the neighborhood of M" supported by these control
vertices.

More precisely, when speculating upon an elementary transformation T : (K,L) —
(K', L"), we optimize over the set of local vertices V; indicated in Figure 4.14. Our choice
of V1 isbased on experience; other choices are certainly possible.

Varying V4 changes M" only in the simplicial neighborhood N} = nbhd?(V}; K’) (as
defined in Section 1.7.2), with diminishing effect near the boundary of N;. Consequently,
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neighborhood of K

%@@%

collapse split swap

Figure 4.14: Set of control vertices Vi C K’ over which to optimize for each elementary
mesh transformation T.

to evaluate the change to Eg when varying Vi, we need only consider the data points
originally projecting onto Nt. Let X; C X denote this set.

We approximate E(K’, L") by iterating over the two steps of (1) recomputing projections
for points X; onto N, and (2) optimizing over the control vertex positions V7.

453 Implementation issues

As mentioned in Section 4.5.1, to project onto the subdivision surface S(M), we use a
piecewise linear approximation, namely the mesh M" obtained after r subdivisionswith its
vertices pushed to their limit positions.

If the tagged simplicial complex (K, L) is held fixed, each vertex v{ of M" is an affine
combinationy;V of theverticesV of M, where the combination y; is obtained by composing
r applications of the subdivision masks and the position mask. Since each y; is sparse, it
can be precomputed and stored at the vertex v; as a hash table indexed by verticesof V.

Thus, each iteration of the aternating procedure summarized in Section 4.5.1 involves
projecting the data points onto M", computing new vertex positions V by solving a linear
system, and updating the vertex positions v; by re-evaluating the affine combinations y;V.

On the other hand, the approximate evaluation of E(K', L) used when speculating a
mesh transformation T is more involved since, as (K, L) is modified, any precomputed
affine combinations in the neighborhood of T become invalid. Moreover, those affine
combinations are precisely the ones needed to carry out the local optimization over control
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vertices V4. Therefore, a new piecewise linear approximation (M") to the subdivision
surface must be computed for the neighborhood of T. Our approach is as follows:

1. Make a copy of the neighborhood nbhd®(V7; K) of M;
2. Apply the transformation T to that neighborhood;

3. Subdivide that neighborhood r times and push its vertices to their limit positions.
The position of each vertex in the subdivided mesh can be represented as an affine
combination of vertices in nbhd®(V4; K'). Note that many vertices in these affine
combinations are constant, since we will only vary vertices V;. We can therefore
apply constant-folding to simplify the combinations.

4. Trim the resulting subdivided mesh to nbhd?(V4; K’). (In Step 1 we extracted the
larger neighborhood to correctly compute the boundary of nbhd?(V4; K').)

4.6 Results

From the point setsin Figure 2.11 and the phase 2 meshes shown in Figure 3.10, phase 3
produces the surfaces shown in Figure 4.15. The left columns show the optimized tagged
control meshes, where the sharp edgesL are drawn as bold line segments; the right columns
show the piecewise smooth subdivision surfaces associated with these control meshes.

M odeling surfaces such as the one shown in Figure 4.15b using NURBS would be cum-
bersome and would likely require significant user intervention. In contrast, our subdivision
surface approach is both simple and automatic. Also note how the teapot (Figure 4.15))
is modeled as a single subdivision surface of genus 1 (the handle of the teapot makes it
homeomorphic to a torus), without resort to explicit continuity constraints or trimming
curves. We further develop this comparison in Section 4.7.

Another advantage of optimization using a piecewise smooth model isthat the resulting
surface not only fits the data more accurately than a piecewise linear model, it is also a
better predictor of the true underlying surface. As avalidation test, we sampled a different
set of 10,000 pointsfrom the swept surface (knot) used to generate Figure 4.15h. Asshown
in Table 4.2, even though the subdivision control mesh (Figure 4.15g) has a fifth as many
vertices as the mesh from phase 2 (Figure 3.10h), the subdivision surface fits the new set of
points with about one fourth the distance energy.
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(a) Phase 3 tagged control mesh (b) Phase 3 subdivision surface
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Figure 4.15: Results of phase 3 (subdivision surface optimization), using the point setsin
Figure 2.11 and the phase 2 meshesin Figure 3.10.




(g) Phase 3 tagged control mesh (h) Phase 3 subdivision surface

(i) Phase 3 tagged control mesh (j) Phase 3 subdivision surface

(k) Phase 3 tagged control mesh () Phase 3 subdivision surface
Figure 4.15: (continued)
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Table 4.2: Validation results for phase 3.

Crep m Eist
# vertices | original points | new points
phase2 | 10°° 975 .00308 .00934
phase3 | 107> 363 .00042 .00054
104 205 .00232 .00264

Table 4.3: Phase 3 parameter settings and optimization results.

Fig. Object n Crep m (#vertices) Edist Time
ph2 | ph3 | ph2 | ph3 % phase2 | phase3 g%g hrs

43a |mechpart | 4,102|10 510 °]163[112]15/4.860 4153w 4|32| 1.3
4.15ab [oilpmp  [30,937|10-5]10-5]891|656| 1.4 4.93 w3[4.14 v 3| 1.2| 105
4.15cd | distcap  |12,745|1075| 105 685|507 | 1.4 4.05 03| 3.85 03| 11| 5.2
4.15¢f | mannequin | 12,772 1075|105 689|430| 1.6/3.39 0 3| 1.64 0 3| 21| 56

4.15gh | knot 10,000|10 510 4| 975|205] 48]3.08 v 3] 232w 3| 13| 27
4.15ij | teapot 26,103|1075| 1074|623 |152| 4.1|3.17 v 3| 2.62 03| 1.2| 7.4
4.15K! | cat 1,000| 105|105 | 181 | 153| 1.2 1.09 =3 |8.17 v4| 1.3| 0.8

Parameter settings and quantitative results In most examples, the representation con-
stant Cyep Was set to 10~°, the samevaluethat was used in phase 2. Asindicatedin Table 4.3,
the control meshes obtained from phase 3 are more concise than those of phase 2, and at the
same time, the subdivision surfaces fit the points more accurately than the meshes of phase
2. Because the point sets used for Figures4.15gh and 4.15i] are sampled without error from
piecewise smooth surfaces, we could afford to increase ¢, to produce very concise control
meshes, while still reducing Egjg.

The phase 3 execution times were obtained on an SGI Indigo workstation. In al
test cases we Set Cgharp = Crep/5 and the number of subdivision iterations (referred to in
Section4.5.1) r = 2.
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4.7 Discussion

Comparison with NURBS fitting For the application of surface reconstruction, the
phase 3 optimization method offers several advantages over traditional NURBS fitting
techniques. These advantages are summarized in Table 4.4. Although one could imagine
using aNURBS representationin ageneral optimization setting like ours, several difficulties
would arise, as discussed below.

Table 4.4: Comparison of traditional NURBS fitting methods with the phase 3 approach.

traditional piecewise smooth
NURBS fitting subdiv. surface optimization
network set of 4-sided patches one connected mesh
trimming curves required none
continuity C% and G? congtraints continuity built-in
optimization constrained, high-dim. unconstrained, low-dim.
degrees of freedom | fixed patch network local adaptation
sharp features fixed manually inferred automatically

As an example, let us consider how a NURBS fitting approach would reconstruct the
piecewise smooth surface shown in Figure 4.3b. To fit models with sharp features such as
the creases and corners of that surface, current parametric patch fitting schemes require the
user to first specify a network of 4-sided faces, each corresponding to a parametric tensor
product Bézier or NURBS surface patch. Often, to accommaodate the intricate geometry of
creases and boundaries, trimming curves are introduced that selectively remove regions of
the patches. Figure 4.16 shows an example of such a patch network, where the different
patches have been pulled apart for clarity. Note how trimming curves would have to be
used to introduce holes in the faces of the cube.

Because the surface is defined as a network of patches, continuity constraints must
be introduced to make the pieces fit together continuously (C°) and often smoothly (G*).
Although general G! smoothness constraints are non-linear, sufficient conditions can often
beexpressed aslinear constraints. Neverthel ess, aNURB Sfitting schemein general requires
a constrained optimization method. The presence of trimming curves further complicates
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Figure 4.16: Partial segmentation of a surface into smooth patches for NURBS fitting.

the problem, since these curves are typically obtained as approximationsto surface-surface
intersection solutions, and are therefore difficult to incorporate in a general optimization.
In current methods, the patch network is specified manually, thereby fixing the locations
of sharp features and restricting the distribution of degrees of freedom. While it may be
possible to develop a scheme for optimizing over the connectivity of a quadrilateral patch
network, this seems to be more difficult than with meshes. One difficulty is that concave
quadrilateral faces can lead to folds in the surface.

In contrast, let us see how the same surface isfit with our piecewise smooth subdivision
surface representation. The surface is now associated with a single connected mesh. Since
the subdivision surface scheme can represent surface boundaries and creases intrinsically,
the surface need not be partitioned and trimming curves are unnecessary. Since the sub-
division surface is continuous everywhere and tangent plane smooth everywhere except at
intended sharp features, continuity constraints are not required. Thus, as demonstrated in
Section 4.5, fitting subdivision surfaces leads to an unconstrained, low-dimensional opti-
mization. The simplicity of the representation allowed the devel opment of an optimization
algorithm able to fine tune the distribution of degrees of freedom (control mesh vertices)
in order to locally adapt to surface shape. Finaly, as the set of sharp edges in the control
mesh is easily made a variable of the optimization, the procedure is able to automatically
infer the presence of sharp featuresin the surface.
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Initial set of sharp edges Subdivision surface optimization requires an initial set Ly of
sharp edges. In all the exampleswe let Ly consist of all edges in the phase 2 mesh whose
dihedral angles exceed the threshold value of 40 degrees. Two other obvious alternatives
areto let Ly be empty or to let it contain all edges of K.

In practice letting Lo be empty starts the optimization too far from the global minimum.
Theinitial global optimizationover V for (Kg, Lo) disruptsthe control mesh asin Figure4.9a,
and the optimization algorithm cannot recover.

Wealsotriedthealternativeof letting Lo containall edgesof K. Thisapproachiselegant
sincetheinitial subdivision surface hasthe same geometry asthe phase 2 surface* However,
this approach seems to unnecessarily slow down the optimization, and occasionally leads
to poor energy minima.

M ore accur ate approximation to the subdivision surface To project a point onto the
subdivision surface, instead of using a global piecewise linear approximation (M"), we
could obtain a more precise projection using recursive root-finding. In such a scheme, we
would first perform iterations of local subdivision. As the mesh is subdivided, we need
only keep the neighborhood defining the region of the subdivision surface onto which the
point projects. (The convex hull property of subdivision surfaces could be exploited here.)
Local subdivision is equivalent to midpoint bisection search, and has linear convergence.
After a few subdivision steps, the local neighborhood usually becomes regular, with all
vertices being smooth and of valence 6. Since the subdivision surface defined by aregular
neighborhood has a closed form expression (it is a quartic box-spline), numerical root-
finding (e.g. Newton-Raphson) can then be used to converge superlinearly to within
machine precision.

Wider variety of sharp surfacefeatures Thethreetypes of features we define (corners,
creases, and darts) are derived from the simple strategy of tagging mesh edges. New
subdivision rules could be developed to model a wider variety of features (e.g. cones,
multiple darts meeting at a smooth vertex, darts meeting at a corner, and corners along
boundaries). An obvious approach is to tag not only edges, but also vertices and faces of
the mesh.

4 Thisistrue except at boundary vertices of valence 2, which are crease vertices under the current subdivision
rules and are therefore not interpolated by the subdivision surface.



Chapter 5
SURFACE APPROXIMATION

concise
piecewise linear
approximation

(3.3KB)

tessellation of
aNURBS surface
(123 KB)

concise
piecewise smooth
approximation
(2.2KB)

Figure5.1: Approximation of aNURBS surface by concise piecewise linear and piecewise
smooth surfaces. The surface describes a gas turbine engine component (tessellation
courtesy of Pratt & Whitney). Size of representation is expressed in kilobytes.

5.1 Introduction

For practical reasons, complex surface representations must often be approximated using
low-order elements. For instance, displaying a smooth surface on a graphics workstation
usually involves approximating the surface by planar elements that can be fed into a
graphics pipeline.  Similarly, performing finite element analysis on a surface typically
requires approximating the surface by polynomial elements of low degree.

A piecewise linear approximation to a parametric surface can easily be obtained by
triangulating its parametric domain and evaluating the surface at these vertices, a process
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called tessellation. Similarly, the triangulation of an implicit surface istypically generated
using a contour tracing algorithm in which surface points are computed exactly by root-
finding.

However, common methodsfor tessellation and contour tracing naturally produce dense
representations. Dense modelsare also the natural result of many other geometric modeling
problems, such as approximation of offset surfaces, constructive solid geometry (CSG)
operations, and surface-surface intersection. Although dense representations may be easiest
to generate, they are of course inconvenient, since they require more space to store and
take longer to transmit, render, and analyze. Thus there has been extensive work in
various application areas to attempt to reduce the size of the output in regions where it
IS unnecessary. For instance, many methods adapt the density of the representation using
heuristic estimates of curvature [6, 56, 71]. However, in general these heuristic methods
are tedious to implement and produce results that are far from optimal.

Another approach to finding a concise surface approximation is to first generate a
dense approximation, and then simplify it. One advantage of this approach is that the
same algorithm can be used for all the problem areas mentioned above. The optimization
algorithmsfrom phases 2 and 3 of the surface reconstruction procedure can be used for this
purpose, as demonstrated in Figure 5.1.

We first show that mesh optimization (phase 2) can be used for mesh simplification—
finding piecewise linear approximations to piecewise linear surfaces (Section 5.2). More
generally, mesh optimization can be used to find piecewiselinear approximationsto arbitrary
surfaces (Section 5.3). Finally we show that subdivision surface optimization (phase 3) can
be used to further reduce representation size by finding piecewise smooth approximations
to arbitrary surfaces (Section 5.4).

5.2 Mesh simplification

Mesh simplification refers to the problem of reducing the number of faces in a dense mesh
while minimally perturbing the shape. The problem can also be stated as that of finding a
concise piecewise linear approximation to a piecewise linear surface. Asan example, from
the dense mesh in Figure 5.1, we want to obtain the much coarser one shown on the upper
right.
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5.2.1 Previouswork

Some notable papers discussing the mesh simplification problem are Schroeder et al. [60],
Turk [71], Rossignac and Borrel [53], and Lounsbery et al. [35].

The motivation of Schroeder et al. [60] isto simplify meshes generated by “marching
cubes’ that may consist of millions of triangles. In their iterative approach, the basic
operation isremoval of avertex and re-triangulation of the hole thus created. The criterion
for vertex removal in the simplest case (interior vertex not on edge or corner) isthe distance
from the vertex to the plane approximating its surrounding vertices. It isworthwhile noting
that this criterion only considers deviation of the new mesh from the mesh created in the
previous iteration; deviation from the original mesh does not figure in the strategy.

The goal of Turk [71] is to reduce the amount of detail in a mesh while remaining
faithful to the original topology and geometry. His basic strategy is to distribute points
on the existing mesh that are to become the new vertices, create a “mutual” triangulation
containing both old and new vertices, and finally remove the old vertices. The density of
the new verticesis chosen to be higher in areas of high curvature.

Rossignac and Borrel [53] describe a ssmple and efficient simplification method that
generalizes to arbitrary simplicial complexes. Their approach is to partition space into
cubical bins, enter all vertices of the model in these bins, unify vertices within each bin
into asingle representative vertex, and finally, appropriately collapse affected simplices. A
unique aspect of their approach isthat the topological type of the model may change in the
process; for instance, a cylinder of small radius may be reduced to a simple line segment
(1-smplex) inthe simplified model. Their techniqueis effective at removing small detail in
representationswith awiderange of scale. In adetailed representation of acar, for instance,
screws, rivets, and other small items would likely be removed altogether. However, the
method isless successful on models of uniform scale, asit ignores geometric qualitieslike
curvature. Asasimple example, it would keep most vertices within a planar triangulation.

Lounsbery et al. [35] extend the notion of multiresol ution analysisto surfacesof arbitrary
topological type. They present ahierarchical representation for subdivision surfaces (andin
particular, meshes), using locally supported basis functions that have many of the qualities
of wavelets. Their method allows the fast simplification of meshes, but cannot be applied
initscurrent form to the general problem of mesh simplification, asit requiresthe original
mesh to have subdivision connectivity—the original mesh must be the result of uniform
subdivision of asimple base mesh.
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5.2.2 Mesh simplification using mesh optimization
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Figure 5.2: Example of mesh simplification using mesh optimization.

Our mesh simplification approach applies the mesh optimization algorithm (described in
Section 3.3) as follows: Sample data points X from the initial mesh and use the initial
mesh as the starting point My for mesh optimization. To obtain X, we first sample a set
of points randomly from the original mesh using uniform random sampling over area; that
is, the average number of sample points in a triangle is proportional to the area of the
triangle. Next, we add the vertices of the mesh to this point set. Finally, to more faithfully
preserve the boundaries of the mesh, we sample additional points from boundary edges.
Note that there is no need to run phase 1, since the initial mesh isin fact the surface U to
be approximated. The distance energy Egis involving the points X isin effect a metric that
measures deviation of the final mesh from the original.

As an example (Figure 5.2), from a dense mesh of 2,032 verticest and a set of 6,752
points sampled from this mesh, mesh optimization obtains a coarser mesh of 487 vertices.

1 The mesh is an approximation to a minimal surface (courtesy of Celso Costa, David Hoffman, William
Meeks 111, and James T. Hoffman).
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Although the size of the representation has been greatly reduced, the mesh is still a good
geometric approximation due to the judicious placement of its vertices.

The principal advantage of our mesh simplification method compared to previous tech-
niguesisthat we cast mesh simplification as an optimization problem: we find a new mesh
of lower complexity that is as close as possible to the original mesh. This is recognized
as a desirable property by Turk (Section 8, p. 63): “Another topic is finding measures of
how closely matched a given re-tiling is to the original model. Can such a quality measure
be used to guide the re-tiling process?’. Optimization automatically retains more vertices
in areas of high curvature, and leads to faces that are elongated along directions of low
curvature, another property recognized as desirable by Turk.

5.2.3 Datadependent triangulations

In arelated problem called data dependent triangulation, the goal is to fit meshes to data
defined as a function over the plane (z = f(x,y)) (see Dyn and Rippa [16] for a review).
This problem can be viewed as a specialized instance of mesh simplification, in which the
meshes are restricted to project one-to-one onto the xy plane.

A common instance of the data dependent triangulation problem involves the modeling
of elevation data. Digital elevation data typically takes the form of a dense rectangular
grid of height values. Such data can be visualized as a surface by defining a dense mesh
over the set of 3D data points. To obtain a more concise mesh, some simplification
methods [10, 15, 63] select as vertices only a subset of the points and obtain an accurate
surface by optimizing over the connectivity of these vertices. More recent work allows for
movement of the mesh vertices and simplification of the mesh based on computed estimates
of curvature [56].

Sincethisproblem isan instance of the mesh simplification problem, we can apply mesh
optimization. As an example, from aterrain mesh of 1200 x 1200 vertices?, we obtain the
much coarser mesh (6,848 vertices) shown in Figure 5.3. This represents a factor of 200
in compression. As a by-product of our energy minimization approach, the mesh vertices
have clustered near features of theterrain, so that viewed from afar, the two surfaces appear
similar (Figure 5.4).

2 The mesh vertices correspond to height val ues on agrid of onedegreein |atitude by one degreein longitude
in the Mojave desert.
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Figure 5.3: Result of mesh optimization on a dense grid of elevation data. Altitude is
exaggerated by afactor of 20.

2.6in2.95in

e

(a) Origina mesh of 1,440,000 vertices  (b) Optimized mesh of 6,848 vertices

Figure 5.4: Comparison of shaded original and optimized meshes.
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An important issue in the use of mesh optimization for function reconstruction is the
definition of the distance metric. In mesh optimization, we measure distance of a point
x; = (X, Vi, zi) tothesurface S = {(x,y, f (x, y))} asEuclidean distance to the closest point on
the surface, or d(x;, S). On the other hand, in function reconstruction, distance is measured
by projecting onto the surface along the z axis, or (z; — f(xi, yi)). The implications of this
subtle difference on the optimization problem and algorithm require further investigation.

5.3 Piecewiselinear approximation

pointson a
surface U

concise
piecewise linear
approximation to U

aninitial
mesh
near U

Figure 5.5: Piecewise linear approximation.

In the previous section we described how mesh optimization can be used to find a concise
piecewise linear approximation to a dense mesh. More generally, mesh optimization can
be used to find a concise piecewise linear approximation to an arbitrary surface U. For this
purpose, we require two inputs, as shown in Figure 5.5:

1. adense set of pointsthat lie exactly on U,

2. aninitial mesh approximating U.
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Another way to supply these two inputsis to smply provide a dense tessellation of U
whose vertices lie exactly on U. Such atessellation is easily obtained from a parametric
surface by evaluating the surface at grid pointsin the parametric domain, or from animplicit
surface by executing a contour tracing algorithm in which isosurface vertices are computed
exactly (using root-finding). Note that the surface need not have a closed form formula; for
instance, we can find tessellations of offset surfaces, CSG surfaces, etc.

As an example, Figure 5.5 shows the piecewise linear approximation of a NURBS
surface given atessellation of 6,475 vertices. We invoke mesh optimization on the dense
mesh, using its vertices as the set of points X, to obtain a concise mesh of 161 vertices.

We have experimented with CSG surfaces (Figure 3.1), NURBS surfaces (Figure 3.10j),
swept surfaces (Figure 3.10h), surfaces of revolution (Figure 5.6b), implicit surfaces (Fig-
ure 5.6d), and procedurally-defined models (Figure 5.6f). As these examples illustrate,
using an optimization with a measure of distance between the surface U and the approxi-
mation has a number of benefits:

e Vertices are dense in regions of high Gaussian curvature, whereas a few large faces
span the flat regions.

e Long edges are aligned in directions of low curvature, and the aspect ratios of the
triangles adjust to local curvature.

e Edgesand verticesof thesimplified mesh are placed near sharp featuresof theoriginal
mesh.

It should be emphasized that no heuristics are necessary to obtain these benefits; they
are simply by-products of the energy minimization process.



96

12
7 =
X = =D
\\ Z75
X~ N LCRH
Wz ‘ﬂ‘ﬂ’ﬂr
i Y
\tr b
W vmm"‘(
20008 A
WA "AV‘
i ‘
JSNSN
Wi~ s \
S~ — ~

f

£

=

7—

“I
i d (v
N
| »X#i&g

< 5511/' ’
A ‘%‘ />
2 WY
gy

(c) Tessellation of implicit surface (d) Concise PL approximation

VAV

(e) Points from a surface defined procedu- (f) Concise PL approximation

rally
Figure 5.6: Results of piecewise linear approximation. Point sets X are the vertices of the

tessellations. (Mickey courtesy of Steve Mann.)
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5.4 Piecewise smooth approximation

pointson a concise tagged
surface U control mesh
M
_— S(M),
aninitial a piecewise smooth
nrgareﬂ& approximationto U

Figure 5.7: Piecewise smooth approximation.

Phase 3 (subdivision surface optimization) can be used to find a concise piecewise smooth
approximation to an arbitrary surface U. Asin the previous section, we begin with a set of
pointson U and an initial mesh. We then run phases 2 and 3 of the surface reconstruction
procedure.

Asan example, Figure 5.7 showsthe approximation of aNURBS surface, given adense
tessellation. The output is a piecewise smooth subdivision surface, whose control mesh is
more sparse than the PL approximation from Figure 5.5 (now 108 verticesinstead of 161).
Also note that the optimization agorithm automatically inferred the sharp features in the
surface.

We have experimented with CSG surfaces (Figure 4.3), NURBS surfaces (Figure 4.15)),
swept surfaces (Figure 4.15h), surfaces of revolution (Figure 5.8b), implicit surfaces (Fig-
ure 5.8d), and procedurally-defined models (Figure 5.8f).

In the surface of Figure 5.8d, the corners of the original surface are smoothed out in
the reconstruction. The reason is that the current set of subdivision rulesin our piecewise
smooth scheme (Section 4.3.1) allow a sharp corner on a boundary only if an incident
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(a) Concisetagged control mesh (b) Subdivision surface approximation

(d) Subdivision surface approximation

(f) Subdivision surface approximation
Figure 5.8: Results of piecewise smooth approximation. The inputs were the dense
tessellations shown in Figure 5.6.
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interior edge istagged as sharp. A possible remedy isto modify the subdivision rulesto let
boundary vertices of valence 2 be corner vertices. We have not explored that modification.

5.5 Discussion

The problem of surface approximation belongs to the larger field of approximation theory.
However, most of the approximation work to date has addressed function approximation,
and can therefore only deal with surfaces defined as functions over simple domains (often
1D domains). In our context, little is known about approximation of manifolds of arbitrary
topological type. Our approach does not advance theoretical matters, as we do not make
any statements concerning asymptotic convergence rates of our surface approximations.
However, we do offer a practical solution to arather difficult problem.

Obtaining a sample of points When sampling points on a surface for the purpose of
surface approximation, the parameterizations of the points (their barycentric coordinates)
should be recorded along with their positions. Doing so avoids the need to initially project
the points. More importantly, it alows the ssimplification of models that have co-incident
surfaces. When several components of a surface share a surface region, points sampled
from that region might, if projected, be associated with only one of the components, leaving
the other components with no sample points there.

M esh generation for analysis  Our approximating meshesusually havefar fewer triangles
than the original ones, making them attractive for analysis (e.g. finite element anaysis).
However, in such analyses, the singularity of the solution system is strongly influenced
by the geometric aspect ratios of the elements. It would therefore be advantageous to
discourage the presence of long skinny triangles, which make the system ill-conditioned,
by adding an additional penalty term to the energy function.

Simplification of complex models The surface approximation techniques developed in
this chapter are effective at simplifying models at a given scale. However, dealing with
more complex modelsinvolves many issues beyond the scope of thiswork. For instance, an
interactive walk-through of a Boeing 777 CAD model involves millions of parts on awide
range of scales (e.g. from afuselage down to individual bolts). To reduce the complexity,
it is essential to organize these parts into hierarchical structures that can be displayed at
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different levels of detail. Surface approximations for parts and groups of parts should
be alowed to change topologically at various levels (as in the method of Rossignac and
Borrel [53]). Another approach, or one to use in conjunction with the above, is to encode
geometric detail of distant surfaces using texture maps.



Chapter 6
SUMMARY AND FUTURE WORK

We have described a surface reconstruction procedure consisting of three major phases
(Figure6.1). Thegoal of phase 1 isto robustly determinethe topological type of the surface
(including the presence of boundaries), and to find an approximation of its geometry, in
the form of amesh. In phase 2 we defined an energy function embodying the two goals of
accuracy and conciseness, and described an optimization algorithm for finding a new mesh
of the same topological type minimizing this energy. Finally in phase 3 we introduced a
new surface representation (piecewise smooth subdivision surfaces) allowing the convenient
modeling of sharp surface features, and we showed how such surfaces could be optimized
using an extension of the phase 2 algorithm. The surface reconstruction procedure was
demonstrated on a number of examples including real laser range data. In addition, we
also showed how the phase 2 and 3 optimization algorithms could be used effectively for
surface approximation.

(a) Phase 1 surface (b) Phase 2 surface (c) Phase 3 surface

Figure 6.1: Example summarizing the 3 phases of surface reconstruction.
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6.1 Analysisof thereconstruction method

Asshownin Table 6.1, the accuracy and conciseness of the surface model was successively
improved in each phase. It is interesting to note that the shift to smooth surfaces in
phase 3 did not provide as drastic an improvement for noisy sampled data as it did for
exact data. However, these numbers do not reflect the fact that the piecewise smooth
surfacesarelikely to be much better predictors of the underlying surfacesthan the piecewise
linear approximations. In other words, the piecewise linear approximations may happen
to accurately fit the finite set of sample points, but yet be inaccurate representations of
the underlying surfaces. As an example, Table 6.2 shows the distance energies of the
approximations of the “knot” surface as measured using a different set of sample points.

Table 6.1: Comparison of accuracy and conciseness of the surfaces after each phase.
Accuracy is measured by the residual sum of sguares Eg;s;; conciseness is measured by the
number of kilobytes required to store the representation in compressed form.

measured data exact points
oilpmp distcap knot
E gist size (KB) Egist size (KB) Egist size (KB)
point set - 212 - 131 - 112
phasel | 0.05830 373 | 0.13000 153 | 0.15200 67
phase2 | 0.00493 20 | 0.00405 15 | 0.00308 21
phase 3 | 0.00414 14 | 0.00385 10 | 0.00232 4

Table 6.2: Validation results: Eg;s to another point set sampled on U.

original points | new points
phase 1 0.15200 0.15300
phase 2 0.00308 0.00934
phase 3 0.00232 0.00264
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6.2 Specialization to curvereconstruction

Thethree phases of the reconstruction procedure can easily be adapted to the reconstruction
of curvesin R?. We have implemented phases 1 and 2 for curve reconstruction. Although
adapting phase 3 would be equally straightforward (as will be outlined below), we have not
yet done so.

As an example, Figure 6.2 shows the reconstruction of curves from two sets of 200
pointsin the plane.

The phase 1 algorithmisessentially the same as described in Chapter 2, with only minor
differences. Instead of tangent planes, tangent lines are estimated from the data points.
Instead of marching over cubes in R?, the contour tracing algorithm marches over squares
in R2. Asthe phase 1 results of Figures 6.2aand 6.2b show, the algorithm is able to handle
considerabl e noise when the sampling isdense. Note that the curve reconstruction problem
is fundamentally simpler than surface reconstruction as there are only two topologically
distinguishable curves. open curves and closed curves.

Phase 2 adapts easily to the optimization of piecewise linear 1-dimensional manifolds
(polylines) in R4, d > 2. To optimize over 1-dimensiona simplicial complexes K, the
algorithm considers edge collapse and edge split transformations. From the dense curves
obtained above, phase 2 producesthe optimized curvesof Figure6.2cand 6.2d. AsTable3.1
indicated, accuracy and conciseness are improved in both curves.

Phase 3 adapts easily to the optimization of piecewise smooth subdivision curves.
Although we have not yet implemented this, we could do so as follows: We would tag
vertices as either smooth or corner, and consider three transformations. edge collapse, edge
split, and vertex tag. The curve would converge to a uniform cubic B-spline away from
corners with the following three simple subdivision masks: a (1, 1) edge mask, a (1, 6, 1)
smooth vertex mask, and a (0, 1, 0) corner vertex mask. The limit masks would simply
be: a (1,4, 1) smooth position mask, a (0, 1, 0) corner position mask, a (—1, 0, 1) smooth
tangent mask, and (1, —1, 0), (0, —1, 1) corner tangent masks.

Alternatively, phase 3 could represent piecewise smooth curves using non-uniform cubic
B-splines. Discontinuities (endpoints and corners) would be introduced at selected vertices
by triplication of knot values.

These proposed piecewise smooth curve optimization schemes are similar to the para-
metric curve fitting method of Plass and Stone [49]. Their method also casts fitting as
non-linear optimization and produces piecewise smooth, rather than everywhere smooth
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(a) Low noise sample and phase 1 recon- (b) High noise sample and phase 1 recon-
struction (75 vertices) struction (62 vertices)

(c) Phase2 optimized polyline (13 vertices)  (d) Phase 2 optimized polyline (9 vertices)

Figure 6.2: Two examples of curve reconstruction from points in R? (number of curve
verticesin parenthesis).
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models. However, unlike our approach, they do not optimize globally over representation
Size and presence of sharp features.

6.3 Futurework on surfacereconstruction

There are a number of avenues for future work in extending the surface reconstruction
method:

Further experimentation with non-uniform, sparse, and noisy data Asdiscussed in
Section 2.1, to obtain aproper reconstruction, several assumptionsmust be made concerning
the sampling process that generates the data points. Several shortcomings of our method
can be observed when the data is not uniform, dense, and accurate:

Non-uniform data: Although the reconstruction method can handle some non-uniformity
in the point sample surprisingly well (e.g. Figures2.11e and 4.15f), it isnot designed
for data sampled at varying resolutions. Phase 1 requires an estimate of the sampling
density (p + 9), and this parameter is currently user-specified and global. In phases
2 and 3, since the distance energies Egi; Wweigh all points equally, the optimizations
seek to balance residual distances uniformly over all points without regard to scale.
If the points are sampled from several objects (possibly of different sizes), it would
therefore be beneficial to partition the pointsinto subsets associated with each object,
and to process each subset independently, in a scale-invariant fashion as is already
donein phases 2 and 3.

Contour data (e.g. Figure 2.10a) is often anisotropic—the distance between points
within acontour istypically smaller than the distance between contours. When phase
2isappliedto thistype of data, many facesin the optimized meshes orient themselves
to lie within the planes containing the contours, as such geometric configurations
provide “excellent fit”; similar problems occur in phase 3. The underlying problem
liesin the definition of our energy function, whose minimum in this case simply does
not correspond to a desirable surface. Although the point set shown in Figure 2.11a
also originates from contour data, its anisotropy is much less pronounced and we
were able to obtain a good reconstruction.
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Sparse data: When the data is sparse, that is, when there are few points relative to the
amount of detail on the underlying surface, phase 3 often infers a desultory set of
sharp features. For instance, from a sparse sample of 1,000 points (Figure 2.5b)
sampled from amesh of 700 faces (Figure 2.5a), phase 3 produced the rel atively poor
reconstruction shown in Figure 4.15|; however, significant improvements would be
difficult with so little data.

Noise: In many of our examples, the data points were obtained by a physical scanning
process (with finite precision), so the data points contain some amount of noise.
We were fortunate in that the magnitude of this noise was relatively small. Further
experiments with noisier data may reveal the need in phase 3 for aregularizing term
like the phase 2 spring energy term.

Statement of correctness Phase 1 has produced surfaces of the correct topological type
in al our examples. It would be desirable to develop formal guarantees on the correctness
of the reconstruction, given constraints on the sample and the original surface as hinted in
Section 2.1. Onemight consider generalizing results of sampling theory, such asformul ating
a Nyquist-like theorem for manifold reconstruction. However, even simple cases like the
reconstruction of functions of two variables (z = f (X, y))—in which the topological type of
the surface is known—are not fully understood. Moreover, sampling theory results usually
assume that the original signal is band-limited in frequency. Most surfaces of interest are
not everywhere smooth and would therefore violate such assumptions.

Speedup of the algorithm Analysis in Section 2.4 concluded that phase 1 requires
roughly O(n logn) time. Although we cannot make any precise statements concerning time
complexity in phases 2 and 3, empirical evidence suggests that their execution times grow
roughly as O(n), consistent with the fact that the optimization problems are either local or
involve sparse linear systems, and that we use spatial partitioning techniques to perform
geometric searches in constant time.

However, for the sizes of data setswe considered (n < 100, 000), execution time of the
reconstruction method isdominated by phases2 and 3; theratios of execution timesof phase
1 tophase 2 to phase 3areroughly 1 : 50 : 300. Significant speedupswould be required for
commercial applications. Implementation of the algorithm on parallel architectures should
also be considered.



107

On-linealgorithm Thedevelopment of an on-linealgorithm would allow for incremental
reconstruction as datais acquired.

Symmetric distance metric  The energy functions of phases 2 and 3 lack a measure of
distance from the surface to the points—our distance energy Egist only measures distance
from the points to the surface. In practice this does not pose a problem, except at surface
boundaries, where the reconstructed surface sometimes extends beyond the boundary indi-
cated by the points. Theregularizing spring energy term Egying Of phase 2 either counteracts
or reinforces this deficiency, depending on whether the surface near the boundary is convex
or concave, respectively.

Ideadlly, one would want to define an energy functional that measures distance in both
directions, but we see no way to incorporate such a symmetric distance functional into our
scheme. The main difficulty isthat measuring distance from a surface to the pointsinvolves
an areaintegral, instead of a discrete sum asin Egjg.

Control over maximum error The current distance energy minimizes a least squares
functional, or L? norm. Inindustrial applications, specification is often done through toler-
ances, so it would be desirable to optimize over maximum error, or an L> norm. Alternative
optimization algorithms should be developed to alow direct control over maximum error.

Control over representation size  Currently, the trade-off between accuracy and concise-
nessin phases 2 and 3 is specified by the user through the parameter c.,. An advantage of
thismode of specificationisthat, for afixed value of ¢, the representation size of resulting
models adapts to the complexity of their geometry. (Almost all examples in Chapters 3
and 4 use the same value of Crep, = 107°.)

An aternative, equally useful approach would be to let the user specify the desired
representation size (e.g. the number of vertices), and let the method try to find the best
fitting model of that size.

Output of NURBS surfaces Since most CAD systems do not yet support subdivision
surface representations, the phase 3 procedure could be extended or used as a starting point
for the generation of NURBS surfaces. The automatic detection of sharp featuresin phase
3 may simplify the task of segmenting the surface into NURBS patches.
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Inference of higher level primitives It may be desirable to detect and precisely recover
geometric surface primitives, such as planar and quadric regions. Current subdivision
surface schemes, including ours, do not have quadric precisions (i.e. they cannot model
spheres and cylinders exactly). New research on subdivision surfaces may yet solve that
limitation. Ideally, one would want to not only recover such primitives, but also infer higher
level structure, such as constructive solid geometry (CSG) descriptions.

6.4 Futurework on reconstruction of more general mani-
folds

Thisthesishasaddressed the problem of reconstructing “ surfaces’—orientabl e 2-dimensional
manifolds embedded in R3. Asdiscussed in Section 6.2, our scheme can be adapted to re-
construct curves (1-dimensiona manifolds). Futureresearch should explorethe reconstruc-
tion of more general manifolds, such as non-orientable manifolds and higher dimensional
manifolds, as well as non-manifold sets.

Non-orientable manifolds Our reconstruction method may be generalized to allow re-
construction of non-orientable manifolds. In phase 1, although a non-orientable manifold
cannot be defined asthe zero set of aglobally defined signed distance function, it ispossible
to use such adescription locally. Instead of globally orienting the tangent planes as we do
now, it may be possible to determine their relative orientations on a cube by cube basis.
That is, when generating the contour within a cube, the tangent planes contributing to the
function values at the cube’s vertices can be oriented relative to each other by considering
only alocal neighborhood of the Riemannian Graph.

In phases 2 and 3, the current implementation requires the surfaces to be orientable
only because of the current half-edge data structure used to represent meshes [75]. Using
adifferent data structure would remove this restriction.

Higher dimensional manifolds In principle, the phase 1 algorithm can be extended to
reconstruct manifolds of co-dimension one in spaces of arbitrary dimension; that is, to
reconstruct (k — 1) dimensional manifoldsin k dimensional space. The case of k = 2 (curve
reconstruction in the plane) was demonstrated in Section 6.2.

The phase 2 and 3 algorithms can trivially optimize 2-dimensional meshesin spaces of
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higher dimension (e.g. R*). However, unlike phase 1, these algorithms do not generalize
easily to manifolds of higher dimension. A major difficulty isthat of dealing with higher
dimensional ssimplicial complexes. Defining a complete set of simplicial complex trans-
formationsto allow optimization over 3-dimensional simplicial complexes may be difficult
(if a all feasible). Another research area is that of generalizing subdivision schemes to
volumes and, more generally, hypersurfaces.

Non-manifolds It may useful to reconstruct non-manifold surfaces, such asthree surface
sheets meeting along an edge, aswell as setsof varying dimensionality, such assurfaceswith
“hair”, or combinations of volumes and surfaces. It is doubtful that the phase 1 algorithm
can be extended to these ends. Edelsbrunner’s a-shape approach is most encouraging in
this regard.

6.5 Futurework related to 3D scanning

The field of 3D scanning is likely to grow significantly in the next few decades, thereby
motivating a number of pertinent research problems, including:

Automatic generation of scan paths In most current 3D scanning systems, the path
taken by the scanhead is either predetermined or specified manually by an operator. When
an object to be scanned has complicated geometry, finding a scan paths that completely
sampleitssurface can betediousand error-prone. Techniquesshould therefore be devel oped
that, possibly given a partial set of scanned points (for instance, those of Figure 2.11c),
automatically determine which surface regions require further sampling, and how to go
about scanning them.

Hand-held scanners Most of the weight and expense in current scanning systemsisin
the machinery required for the precise positioning of the scanhead relativeto the object; this
machinery isthe equivalent of a coordinate measuring machine. To allow the development
of more portable and inexpensive scanning systems, an alternative is to only coarsely
position the scanhead and to let software perform the task of accurately registering the
data[5, 72].

Furthermore, for hand-held scannersto become commercially successful, reconstruction
algorithmsshould be real-time and on-line. Even the current phase 1 execution timeswould
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require improvementsin speed of several orders of magnitude.

Modeling of surfaceproperties Several 3D scannerscapturenot only (X, y, z) coordinates
on a surface, but also information about its color—for instance (r, g, b) color coordinates.
This color data should be reconstructed in addition to the geometry of the surface.

One approach isto reconstruct asurface from the (x, y, z) data points, define scalar basis
functions on the resulting surface, and finaly fit the (r, g, b) color data using these basis
functions. While there has been extensive research in the approximation of scalar functions
over manifolds of simple topological type, extending this work to manifolds of arbitrary
topological type is still a relatively unexplored area. The recent “surfaces on surfaces’
work [2, 46] addresses this problem.

Another approach isto view this problem asthe reconstruction of asurfacein R®, where
the data points have coordinates (x,y, z,r, g, b).

In either case, solving the problem is not as straightforward as it may seem, because
color on a surface can have numerous discontinuities (consider the color of this page of
text). While our piecewise smooth subdivision schemes can represent non-C! functions,
color reconstruction requires a non-C° representation.

By color we have been referring to the light reflected from an object under a given set
of lighting and viewing conditions. More generaly, one may want to recover lighting-
independent surface reflectance properties, so that the model can then be simulated in other
lighting environments. Specialized instruments have been designed to measure bidirec-
tional reflectance distribution functions (BRDF's) [ 74], but one can envision inferring such
reflectance information directly from 3D scanner data.
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