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ABSTRACT
Given a standard image codec, we compress images that may
have higher resolution and/or higher bit depth than allowed in
the codec’s specifications, by sandwiching the standard codec
between a neural pre-processor (before the standard encoder)
and a neural post-processor (after the standard decoder). Us-
ing a differentiable proxy for the the standard codec, we de-
sign the neural pre- and post-processors to transport the high
resolution (super-resolution, SR) or high bit depth (high dy-
namic range, HDR) images as lower resolution and lower bit
depth images. The neural processors accomplish this with
spatially coded modulation, which acts as watermarks to pre-
serve the important image detail during compression. Exper-
iments show that compared to conventional methods of trans-
mitting high resolution or high bit depth through lower res-
olution or lower bit depth codecs, our sandwich architecture
gains ∼9 dB for SR images and ∼3 dB for HDR images at
the same rate over large test sets. We also observe significant
gains in visual quality.

Index Terms— deep learning, image compression, non-
linear transform coding, high dynamic range, super-resolution

1. INTRODUCTION

In this paper, we continue our study of the sandwich archi-
tecture [1], in which a standard image codec is sandwiched
between a neural pre-processor and a neural post-processor.
In particular, we apply the sandwich architecture to compres-
sion of super-resolution and/or high dynamic range images
using a standard codec with limited spatial resolution and/or
bit depth. In our previous work [1], which introduced the
sandwich architecture, we applied the sandwich architecture
to compressing 3-channel color images using a 1-channel
grayscale codec, and to compressing 3-channel normal map
images with nonlinear channel dependencies.

Works prior to [1] have either paired a neural pre-
processor with a standard codec (where the pre-processor for
e.g., performs denoising [2, 3, 4]) or paired a standard codec
with a neural post-processor (where the post-processor per-
forms deblocking or other enhancements [5, 6, 7]). However,
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(a) Originals

(b) Sandwich: (29.1 dB, 0.54 bpp), (32.1 dB, 0.33 bpp), (22.3 dB, 0.38 bpp)

(c) JPEG: (23.4 dB, 0.54 bpp), (23.9 dB, 0.34 bpp), (12.5 dB, 0.38 bpp)

(d) Post-Only: (24.6 dB, 0.54 bpp), (25.6 dB, 0.34 bpp), (11.7 dB, 0.38 bpp)

Fig. 1: Super-resolution sandwich of a low-res JPEG codec: Origi-
nal 256×256 source images and reconstructions by sandwich, JPEG
with linear upsampling, and JPEG with neural post-processing re-
spectively. Observe the substantial improvements obtained by the
sandwiched codec over JPEG and neural post-processing: Detail is
retained in the city visage, aliasing is reduced on the building fa-
cade and the texture. All with substantial dB improvements (+4.5
dB, +6.5 dB, +10.6 dB over neural post-processing) at the same rate.
The sandwiched codec is clearly a superior architecture.



to our knowledge no works prior to ours have sandwiched a
standard codec between two neural processors.

The advantage to having both a neural pre-processor and a
neural post-processor is that they can work in tandem to con-
vert source images to and from images of latent codes. The
images of latent codes can be better suited than the source
images themselves for surviving compression with the stan-
dard codec, in a rate-distortion sense, especially if the stan-
dard codec is not designed for the source image format or
type. Figures 1 and 2 illustrate the results of a scenario where
a low-resolution codec that transports 128 × 128 images is
sandwiched using a jointly trained neural pre-processor and
neural post-processor pair. The goal is to obtain high quality
256×256 reconstructions. As illustrated, this codec performs
substantially better in a rate-distortion sense not only com-
pared to the low-resolution codec equipped with a linear up-
sampler but also to one equipped with a neural post-processor.
This is because the sandwich architecture transports images
watermarked with spatial modulation patterns (Figure 3) such
that the modulation patterns are efficiently compressible with
the standards codec, and such that the decompressed modu-
lation patterns can be decoded by the post-processor into a
high-quality picture.

In the present paper, using a methodology similar to that
of [1], we apply the sandwich architecture to squeeze super
resolution (SR) content through codecs at a standard or lower
resolution (LR) and to squeeze 16-bit high dynamic range
(HDR) content through codecs with 8-bit standard or low
dynamic range (LDR). In both cases, the neural pre-/post-
processors learn to map/unmap the source images to/from
latent images containing neural codes that best preserve (in
a rate-distortion sense) the source image details when com-
pressed with the given codec.

Of course, it is possible to eliminate the standard codec
altogether, and replace it by simple uniform scalar quantiza-
tion and entropy coding of the latent codes at the bottleneck
of a neural network in an autoencoder configuration. This
is the essence of nonlinear transform coding (NTC), which
is the state of the art in end-to-end learned image and video
compression [8]–[16]. Presumably, end-to-end learned sys-
tems can be trained to compress classes of images with
arbitrary numbers of channels, spatial resolution, bit depth,
distribution, and loss. However, to our knowledge only a few
end-to-end learned systems have been able to outperform the
best standard codecs in PSNR at a given bit rate, and these
systems are computationally complex [17]. Hence a key
motivation for building around existing standard codecs is
to leverage the existing compression ecosystem, particularly
existing hardware and existing compression-aware network-
ing/routing, which may be able to perform the heavy lifting.

Given the desire to sandwich a standard codec between
neural pre- and post-processors, the crucial problem is to dif-
ferentiate through the standard codec when training the neural
pre- and post-processors using gradient descent to minimize

(a) Originals

(b) Sandwich: (31.4 dB, 0.58 bpp), (27.3 dB, 0.70 bpp), (28.2 dB, 0.57 bpp)

(c) JPEG: (24.7 dB, 0.60 bpp), (22.4 dB, 0.71 bpp), (21.7 dB, 0.58 bpp)

(d) Post-Only: (26.3 dB, 0.60 bpp), (23.2 dB, 0.71 bpp), (23.1 dB, 0.58 bpp)

Fig. 2: Super-resolution sandwich: Original 256 × 256 source im-
ages and reconstructions by sandwich, JPEG with linear upsampling,
and JPEG enhanced with neural post-processing respectively. With
the sandwich visually relevant ornaments/textures are preserved, im-
ages are sharper in a way that matches the originals, and text in the
scene is easier to read. Beyond significantly improved visual quality
the sandwich obtains substantial dB improvements (+5.1 dB, +4.1
dB, +5.1 dB over neural post-processing) at the same rate.

the loss. Thus a primary problem is to develop a differen-
tiable approximation to the standard codec, called a proxy for
the codec. As in [1], we use a proxy modeled after JPEG,
though in this paper we show that this relatively simply proxy
is sufficient for training pre- and post-processors that can be
used with more complicated standard codecs such as HEIC.

At the highest quality levels where the standard codecs
saturate, our results show that to compress a large variety of
high resolution images using a low resolution HEIC or JPEG
codec, the sandwich architecture has∼9 dB gain over bicubic
filtering and downsampling as the pre-processor, and Lanc-
zos upsampling as the post-processor. If neural processing
is used as the post-processor, the gain is still ∼7 dB (Figure
7). Furthermore, our results show that to compress a large
variety of 16-bit HDR images with 8-bit HEIC (JPEG), the



sandwich architecture has ∼5 dB (∼6 dB) gain over nearest-
neighbor bit truncation as the pre-processor, and midpoint re-
construction as the post-processor. If a neural post-processor
is used, the gain is still up to ∼4 dB (Figure 8). These gains
are made possible because the neural pre-processor is able to
construct neural codes to robustly transmit the needed image
detail, which the neural post-processor is able to reconstruct,
given sufficient training.

Section 2 reviews the sandwich architecture, including the
differentiable approximation. Section 3 shows how to apply
the sandwich architecture to SR and HDR imagery and dis-
cusses associated results. Section 4 concludes the paper.

Fig. 3: 128× 128 reconstructed bottleneck images for the super-
resolution sandwich results in Figures 1 and 2 [enlarged for clarity].
Observe that while the bottlenecks appear aliased, noisy etc., the
sandwich post-processor has correctly demodulated this noise in the
final pictures.

2. THE SANDWICH ARCHITECTURE

The sandwich architecture in operation is shown in Fig.4(a).
An original source image S with one or more full-resolution
channels is mapped by a neural preprocessor into one or more
channels of latent codes. Each channel of latent codes may be
full resolution or reduced resolution. The channels of latent
codes are grouped into one or more bottleneck images B suit-
able for consumption by a standard image codec. The bottle-
neck images are compressed by the standard image encoder
into a bit string of length R bits. The bit string is decom-
pressed by the corresponding decoder into reconstructed bot-
tleneck images B̂, incurring distortion d(B, B̂). The channels
of the reconstructed bottleneck images are then mapped by a
neural postprocessor into a reconstructed source image Ŝ.

The neural pre- and post-processors are shown in Fig. 5.
In our work, each is an MLP in parallel with a U-Net [18].
Both branches operate at full resolution but are resampled as
necessary to meet the resolution requirements of the codec.

The sandwich architecture in training is shown in Fig.4(b).
On a training set of full-resolution images {Sn}Nn=1, the pa-
rameters of the neural pre- and post-processors minimize the
loss function L = D+λR, whereD = (1/N)

∑
n d(Sn, Ŝn)

is the average distortion, R = (1/N)
∑

nRn is the average
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rate, and λ > 0 is a Lagrange multiplier chosen to balance
rate and distortion. Minimization of L is performed by back-
propagating the gradient of L with respect to the parameters.
For the purpose of computing these gradients, the standard
codec must be replaced by a codec proxy that is differentiable.

The differentiable codec proxy is shown in Fig. 6. The
proxy is modeled after JPEG, but suffices to represent more
complex codecs such as HEIC in our experiments. The codec
proxy clips all values in the real-valued bottleneck images to
a fixed dynamic range, such as [0, 255]; quantizes them to
integers; performs the DCT on each 8 × 8 block; quantizes
the DCT coefficients to learnable stepsize ∆; estimates the
bit rate of the quantized coefficients; and performs the inverse
DCT on each block.

Within the codec proxy, the quantizer is the differentiable
quantizer proxy, Q(X) = X + stop gradient(W ), where
W = ∆round(X/∆) − X is the true quantization error and
stop gradient(W ) equalsW but stops the gradient ofW from
being back-propagated [19]. Further, the bit rate is estimated
by a differentiable rate proxy, where the number of bits to
compress bottleneck image B to stepsize ∆ is estimated to be

R(B) = a
∑
k,i

log
(

1 +
∣∣∣x(k)i

∣∣∣ /∆) , (1)

where x(k)i is the ith coefficient of the kth block of DCT co-
efficients, and a is chosen such that R(B) is the rate at which
JPEG codes the image B with uniform stepsize ∆.



3. EXPERIMENTAL RESULTS
We now apply the sandwich architecture to super resolution
(SR) and high dynamic range (HDR)1. The source images are
RGB and have dimensions of H × W × 3. The standard
codecs operate in 4:4:4 mode. The sandwiched codec does
not use a color transform. The compared to codecs use the
RGB↔ YUV transform when it is beneficial for them in an
R-D sense: In the SR scenario standard codecs use the color
transform, in HDR they encode RGB directly.

In the SR problem, the source images have source bit
depth d = 8. Bottleneck images have lower spatial resolu-
tion, H/2 ×W/2 × 3. In the HDR problem, the source im-
ages have dynamic range

[
0, 2d − 1

]
, where d is the source

bit depth. The bottleneck images have dimensions that match
the source images: H ×W × 3. However, the dynamic range
of the bottleneck images is [0, 255], since the codec proxy
does not pass any information outside of this range and hence
encourages the pre-processor to produce images in this range.

While it is possible to combine the HDR and SR prob-
lems, here we study them separately. We measure the distor-
tion between S and Ŝ as the RGB PSNR,

PSNR = 10 log10

((
2d − 1

)2
(3HW )/

∥∥∥S − Ŝ∥∥∥2) . (2)

3.1. Super-Resolution
We used the CLIC dataset [20] to train and evaluate the
networks. Shown results are over 500 evaluation images
(256 × 256) randomly cropped from the eval portion of the
dataset. Figures 1, 2, and 3 show qualitative and objective
results on a set of images. We compare with a post-processor-
only network consisting of a U-Net identical to the sandwich
neural post-processor but trained for post-processing only.
The substantial improvement obtained by the sandwich over
the post-processor only network clearly points to the impor-
tance of the neural pre-processor and the joint training of
the networks. Figure 7 shows the combined rate-distortion
performance over the entire eval set using JPEG and HEIC
as the underlying codec. The networks are identical between
codecs, with no retraining for HEIC. The substantial improve-
ments of the sandwiched architecture are clearly observed.

3.2. High Dynamic Range
For HDR simulations, we use the HDR+ dataset [21]. Orig-
inal images are 16-bit, standard codecs are 8-bit. Figure
8 illustrates the performance of the sandwich architecture
in comparison to standard codecs as well as to JPEG post-
processed with the state-of-the-art Dequantization-Net [22]
(trained on the same dataset). The maximum PSNR one can
obtain by losslessly encoding the most significant 8-bits is
illustrated as LDR saturation. The standard codecs alone,
or with only a post processor [22] all saturate at that level.

1The reader is referred to [1] for utilized network parameters. Source
code will be released with the presentation version of this paper.
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Fig. 7: RD performance of the super-resolution sandwich.
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Fig. 8: RD performance of the HDR sandwich.

Observe that the sandwiched codecs rise above the saturation
line, highlighting the importance of the preprocessor. Un-
fortunately the software implementing the standard codecs
precluded the transmission of higher rates. Neither our JPEG
nor HEIC implementation was able to go beyond ∼3 bpp on
average. For all R-D curves the highest rate point is where
the software cuts off. Using codec implementations accom-
plishing higher rates, the gains of the sandwich are expected
to increase further2.

4. CONCLUSION
The proposed sandwich architecture extends the use of stan-
dard codecs to resolutions and bit-depths beyond regimes
allowed by the specification of the standard codec. As the
results of this paper show, the architecture retains standard,
hardware, and network layer compatibility while generating
significant quality improvements.

2For the presentation version of this paper, we will look for codec imple-
mentations that allow higher rate points.
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[13] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston,
“Variational Image Compression With a Scale Hyperprior,” in
6th Int. Conf. on Learning Representations (ICLR), 2018.
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