
Gradient-Domain Processing within a Texture Atlas

FABIÁN PRADA and MISHA KAZHDAN, Johns Hopkins University, USA
MING CHUANG, PerceptIn Inc., USA
HUGUES HOPPE, Google Inc., USA

Geodesic distances
Line integral
convolutionStitching

Fig. 1. We process surface signals directly in the texture atlas domain, thereby exploiting the regularity of the 2D grid sampling. Example applications include
multiview stitching, computation of geodesic distance maps, and curvature-guided line integral convolution. (Black curves indicate chart boundaries.)

Processing signals on surfaces often involves resampling the signal over the

vertices of a dense mesh and applying mesh-based filtering operators. We

present a framework to process a signal directly in a texture atlas domain.

The benefits are twofold: avoiding resampling degradation and exploiting

the regularity of the texture image grid. The main challenges are to preserve

continuity across atlas chart boundaries and to adapt differential operators to

the non-uniform parameterization. We introduce a novel function space and

multigrid solver that jointly enable robust, interactive, and geometry-aware

signal processing. We demonstrate our approach using several applications

including smoothing and sharpening, multiview stitching, geodesic distance

computation, and line integral convolution.

CCS Concepts: • Computing methodologies → Computer graphics;

Additional Key Words and Phrases: signal processing, Laplacian filtering,

mesh parameterization, multigrid solver, domain decomposition

ACM Reference Format:
Fabián Prada, Misha Kazhdan, Ming Chuang, and Hugues Hoppe. 2018.

Gradient-Domain Processing within a Texture Atlas.ACMTrans. Graph. 37, 4,
Article 154 (August 2018), 14 pages. https://doi.org/10.1145/3197517.3201317

1 INTRODUCTION
In computer graphics, detailed surface fields are commonly stored

using a texture atlas parameterization. The approach is to partition

a surface mesh into chart regions, flatten each chart onto a polygon,

and pack these polygons into a rectangular atlas domain by

Authors’ addresses: Fabián Prada; Misha Kazhdan, Johns Hopkins University, 3400 N

Charles St, Baltimore, MD, 21218, USA, fabianprada@gmail.com, misha@cs.jhu.edu;

Ming Chuang, PerceptIn Inc. 4633 Old Ironsides Dr, Snata Clara, CA, 95054, USA,

mingchuang82@gmail.com; Hugues Hoppe, Google Inc. 601 N 34th St, Seattle, WA,

98103, USA, hhoppe@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2018/8-ART154 $15.00

https://doi.org/10.1145/3197517.3201317

recording texture coordinates at vertices. The resulting texture

map efficiently captures high-resolution content and is natively

supported by hardware rasterization. A key benefit is that texels lie

on a regular image grid, enabling efficient random-access, strong

memory coherence, and massive parallelism.

As reviewed in Section 2, most techniques for processing signals

on surfaces involve sampling the signal over a dense triangle mesh

and defining a discretization of the Laplace operator that adapts to

the nonuniform structure and geometry of mesh neighborhoods. We

instead explore a framework to perform gradient-domain processing

directly in a texture atlas domain, thereby (1) eliminating the need

for resampling and (2) mapping computation to a regular 2D grid.

Goal. Our gradient-domain processing objective is designed to

solve a broad class of problems. Given a texture-atlased triangle

mesh with metric h, and given target texture valuesψ , target texture
differential ω, and a screening weight α ≥ 0 balancing fidelity to

ψ and ω, the goal is to find the texture values ϕ that minimize the

energy

E(ϕ;h,α ,ψ ,ω) = α · ∥ϕ −ψ ∥2h + ∥dϕ − ω∥
2

h . (1)

Formulating this least squares minimization over the texel values

in a texture atlas poses several challenges:

• Using standard bilinear interpolation, texture maps represent

functions that do not (in general) align across chart boundaries.

As a result, continuity can only be enforced by constraining the

texture signal to have constant value along the seams.

• Evaluating the texture near chart boundaries requires the use

of both interior and exterior texels. Because exterior texels are
not associated with positions on the surface, defining discrete

derivatives across chart boundaries is non-trivial.

• Although texels lie on a uniform grid, their corresponding

locations on the surface are distorted by the parameterization.

The nonuniform metric must be taken into account.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201317
https://doi.org/10.1145/3197517.3201317

154:2 • Prada, Kazhdan, Chuang, and Hoppe

Approach. To address these challenges, we use an intermediate
representation involving continuous basis functions that approxi-
mate the bilinear basis. Specifically, we introduce:

• A novel function space spanned by basis functions that

reproduce the bilinear reconstruction kernel in the interior of a

chart and are continuous across chart boundaries.

• A basis for cotangent vector fields to represent the target texture

differential.

• Metric-aware Hodge stars for constructing the mass and stiffness

matrices in the discretization of Equation (1) over texels.

In effect, we form a linear system over the texel values of an ordinary

texture atlas, but using system matrix coefficients derived from an

approximating continuous function space.

To efficiently solve this system, we present a novel multigrid

algorithm that exploits grid regularity within chart interiors while

correctly handling irregularity across chart boundaries.

Our work does not address seamless texturing. Because the

output representation, like the input, is a general texture atlas

evaluated using bilinear hardware rasterization, continuity can only

be attained by blurring the signal along chart boundaries. However,

we find that formulating signal processing operations using an

intermediate continuous representation yields results in which chart

seams are usually imperceptible. Our strategy is more effective than

introducing inter-chart continuity constraints (Section 4.2).

We demonstrate the effectiveness of our approach in applications

including signal smoothing and sharpening, texture stitching,

geodesic distance computation, and line integral convolution.

2 RELATED WORK
We begin by reviewing foundational work in gradient-domain

image processing. Then we survey extensions to the processing

of signals on surfaces and the discretizations of the Laplace operator

that enable this. Finally, we discuss works that address inter-chart

continuity in texture atlases.

Gradient-domain image processing. The regularity of image grids

makes it easy to define discrete differential operators for filtering.

Applications include gradient-domain smoothing and sharpening

[Bhat et al. 2008], dynamic range compression [Fattal et al. 2002;

Weyrich et al. 2007], and image stitching [Agarwala et al. 2004; Levin

et al. 2003; Pérez et al. 2003]. Although much of the work focuses

on homogeneous filtering, seminal early work by Perona and Malik

[1990] demonstrates the power of incorporating anisotropy.

Gradient-domain processing on surface meshes. Applications in
geometry processing often take the surface signal to be the

coordinates of the embedding. Taubin [1995] introduces surface

smoothing using the combinatorial Laplacian. Desbrun et al. [1999]

extend this approach to perform isotropic smoothing using the

cotangent Laplacian. Later works incorporate anisotropy into the

formulation to support edge-aware smoothing [Bajaj and Xu 2003;

Chuang et al. 2016; Clarenz et al. 2000; Tasdizen et al. 2002].

Laplacian-based geometry processing is also used for more general

surface editing [Sorkine et al. 2004; Yu et al. 2004].

Discretizing the Laplace operator. Due to the irregular tesselation,

gradient-domain processing on surface meshes requires a geometry-

aware discretization of the Laplace operator. The cotangent

Laplacian [Dziuk 1988; Pinkall and Polthier 1993] is the standard

discretization for triangle meshes with linear elements, and

extensions have been proposed for general polygon meshes [Alexa

and Wardetzky 2011]. For parametric surfaces, the Jacobian of

the parameterization is used to define a Laplace operator through

pointwise evaluation [Stam 2003; Witkin and Kass 1991]. When

the parameterization is conformal, the Jacobian corresponds to an

isotropic scale, facilitating the definition of a pointwise operator [Lui

et al. 2005]. For implicit surfaces, the restriction of the 3D Laplacian

on the Cartesian grid is used to define the operator on the surface

[Bertalmio et al. 2001; Chuang et al. 2009; Osher and Sethian 1988].

Texture atlas parameterization. A large body of work has focused

on optimizing seam-placement and minimizing parametric distor-

tion [Lévy et al. 2002; Poranne et al. 2017; Sander et al. 2002, 2001;

Sheffer and Hart 2002; Zhang et al. 2005; Zhou et al. 2004]. In this

work we assume that the parameterization is given and should not

be changed.

Inter-chart continuity. Some earlier representations allow access

to texel values across chart boundaries. These include indirection

maps [Lefebvre and Hoppe 2006] which pad the chart boundaries

with pointers to texels on the opposite side of the seam, and the

Traveler’s Map [González and Patow 2009] which encodes the

affine transformation taking a seam texel to the corresponding

texel location on the opposite side of the seam. González and

Patow achieve seamless rendering by zippering the seams within

a pixel shader, in effect adding a thin fillet of triangles over which

standard bilinear sampling is replaced with linear sampling. Our

approach also introduces a triangulation to define a seamless

function space. We use refinement rather than zippering, allowing

us to represent the signal using all active texels (including those

immediately outside the chart). Our intermediate triangulation

is created to assist signal processing and does not redefine the

rendering representation.

An alternative approach is to enforce inter-chart continuity by

projecting the surface signal onto the space of seam-continuous

functions [Liu et al. 2017]. This also supports texture evaluation

using standard hardware sampling. However, the projection can

give rise to visible smearing artifacts when the signal has a large

gradient parallel to a chart boundary, as discussed in Section 4.2.

Specialized atlas constructions. Another approach to attain inter-

chart continuity is to constrain the atlas to map clusters of mesh

faces to axis-aligned rectangular charts in the texture domain with

matching numbers of texels across chart boundaries [Carr and Hart

2002, 2004; Yuksel 2017]. Our work supports general texture atlases.

3 PRELIMINARIES
The input to our algorithm is an atlas parameterization of a 2-

manifold immersed in 3D. It consists of a triangle mesh (V ,T)
residing in the unit-square, an equivalence relation∼ onV indicating

if two boundary vertices correspond to the same point on the

manifold, and a map Φ : V → R3 giving the immersion.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

Gradient-Domain Processing within a Texture Atlas • 154:3

3.1 Texture atlas
The mesh atlas induces a partition of triangles into connected

components, each defining a chart domain Mi ⊂ [0, 1] × [0, 1]

formed by the union of its triangles. We let M =
⋃

Mi denote

the parameterization domain. We extend the map Φ : V → R3 to
the map Φ : M → R3 by linear interpolation within triangles. We

extend the equivalence relation ∼ toM by linear interpolation along

boundary edges, setting p ∼ q if there exists boundary edges (v1,v2)
and (w1,w2) and interpolation weight α ∈ [0, 1] such that v1 ∼ w1,

v2 ∼ w2, p = (1 − α)v1 + αv2, and q = (1 − α)w1 + αw2.

We say that points p,q ∈ M are on opposite sides of a seam if p ∼ q
and that a function ϕ : M → R is seam-continuous if it is continuous
onM and has the same values on opposite sides of a seam.

𝑀2

𝑀1 𝑀3

Given a W × H texture image, we

partition the unit square intoW × H cells

and compute the dual graph (shown in

black in the inset). As our goal is to define

a function space which mimics the bilinear

functions, we define the footprint of a node
to be the four incident quads (the support

of the bilinear kernel centered at the node).

We define a texel to be any node whose footprint overlaps M and

denote the set of texels byT. We assume that the footprint intersects

exactly oneMi and say a texel is interior if its footprint is contained
within a chart (green nodes) and boundary otherwise (red nodes).

1

3.2 Riemannian structure
To integrate functions over the triangulation, we require a Riemann-

ian metric h on M . This function associates to every point p ∈ M
a symmetric, positive-definite bilinear form on the tangent space,

hp : TpM ×TpM → R. We recall several facts about h:

• Given tangent vectors v,w ∈ TpM , the inner product of the

vectors is defined to be hp (v,w).

• Given cotangent vectors v∗,w∗ ∈ T ∗pM , the inner product of the

vectors is defined to be h−1p (v
∗,w∗).2

• Given a functionψ : M → R, the integral ofψ with respect to

the metric h is defined to be∫
M
ψ dh ≡

∫
M

√
|µ−1 ◦ h | ·ψ dµ ,

with µ the standard (2D) Euclidean metric.

In the context of gradient domain processing, the metric needs

only be integrable. Therefore we restrict ourselves to the set of

piecewise-constant metrics. That is, given the canonical coordinate

frame on the unit square containingM , and given a triangle t ∈ T ,
we consider metrics for which the matrix expression of hp is the

same for all p ∈ t .
Letting µ denote the standard (in this case, 3D) Euclidean metric,

we define the immersion metric д as:

дp (v,w) ≡ µΦ(p)

(
dΦ|p (v),dΦ|p (w)

)
, ∀v,w ∈ TpM .

1
Charts can always be translated by different integer offsets to ensure that the footprint

of a texel intersects exactly one chart.

2
Note that since a bilinear form on a vector space is equivalent to a linear map from the

vector space to its dual, the inverse is well-defined when the bilinear form is definite.

Texture Atlas

Quadratic (normalized)

Quadratic

Bilinear

(a) interior texel (b) boundary texel

Fig. 2. Visualization of finite-element basis functions. The top row shows
texture space with interior and boundary texels selected. Texel footprints
are highlighted in blue. The lower rows show the corresponding bilinear,
quadratic, and normalized-quadratic functions on the planar surface.

𝑇 𝑀 𝐶 ෠𝑇 𝑇 ⊕ ෠𝑇

Fig. 3. Illustration of the different triangulations and polygonizations.
Starting with a triangulation T , we compute the connected components
M , clip these to the texture lattice to get a quad-dominant tesselation C ,
compute a constrained Delaunay triangulation T̂ , and then compute the
mutual refinement T ⊕ T̂ of the initial and constrained triangulations.

Please see Table 3 in the appendix for a summary of the notation

used throughout the paper.

4 INTER-CHART CONTINUITY
Our goal is to associate a basis function to each texel t ∈ Tso that

a set of discrete texture values can be interpreted as a function that

can be evaluated anywhere onM .

Perhaps the simplest approach is to associate texel t ∈ Twith the

bivariate, first-order B-spline Bt centered at t. This conforms to the

bilinear rasterization performed by graphics hardware. While such

functions are well-behaved for interior texels, they are not seam-

continuous for boundary texels, dropping to zero on the opposite

side of the seam (Figure 2, second row).

4.1 Continuity by construction
Our approach is to define a basis {ϕt}t∈T consisting of seam-

continuous functions that approximate the bilinear kernels {Bt}.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

154:4 • Prada, Kazhdan, Chuang, and Hoppe

Φ(𝑀)
𝑀2

𝑀1
𝑀3

Fig. 4. Consistently clipping the M to the texture lattice and triangulating
(left) gives a triangulation of the surface Φ(M) without T-junctions (right).

Since the bilinear kernels are piecewise-quadratic polynomials, we

define the {ϕt} to be piecewise-quadratic as well.

We proceed in three steps: (1) computing a new triangulation T̂ of

the texture domain; (2) using T̂ to define a seam-continuous basis of

piecewise-quadratic functions {Q̃ ñ} onM ; (3) defining bilinear-like

texel functions {ϕt} as linear combinations of the {Q̃ ñ}.

(1) Triangulating the texture domain. We decompose the atlas

domain M into a set of polygonal cells C by tessellating M using

the texel lattice (Figure 3). For each vertex introduced along a seam,

we insert a corresponding vertex on the opposite side of the seam

(shown as dashed lines in Figure 4). Then, we compute a constrained

Delaunay triangulation T̂ of these polygons.

(2) Defining a quadratic seam-continuous function basis. We

associate a quadratic Lagrange basis function to each vertex and each

edge in the triangulation T̂
[Heckbert 1993]. These func-

tions form a partition of unity,

reproduce continuous piece-

wise quadratic polynomials, and are interpolatory, i.e., a function

centered at a node evaluates to 1 at that node and to 0 at all other

nodes. (The inset shows elements centered on a vertex and edge of

a triangle mesh.) We denote the set of nodes (vertices and edges) by

Nand the basis as {Qn}n∈N.

To obtain a seam-continuous function-space, we merge the {Qn}

across seams into a single function. Specifically, let Ñ = N/∼ be

the set of equivalence classes in Nmodulo seam-equivalence. (We

implicitly treat a node n ∈ N as a point on M , using the vertex

position if n is a vertex and the midpoint if n is an edge.) We

associate a seam-continuous function Q̃ ñ to each equivalence class

ñ ∈ Ñby summing the quadratic Lagrange elements associated to

nodes in the equivalence class:

Q̃ ñ =
∑
n∈ñ

Qn .

These functions also form a partition of unity, reproduce seam-

continuous piecewise quadratic polynomials, and are interpolatory.

(3) Defining a bilinear-like seam-continuous basis of texel functions.
Given a texel t ∈ T, we define the function ϕt : M → R to be the

linear combination of {Q̃ ñ}, with coefficients given by evaluating

the bilinear function Bt at the node positions:

ϕt(p) ≡
∑
ñ∈Ñ

(∑
n∈ñ

Bt(n)

)
· Q̃ ñ(p) .

By construction, the {ϕt} are seam-continuous since they are the

linear combinations of seam-continuous functions. Furthermore,

due to the interpolatory property of the Lagrange elements, the

function ϕt reproduces the bilinear function Bt whenever t is an

interior texel (Figure 2a). Generally, the functions ϕt and Bt agree

on the intersection ofM with the footprint of t.3 (Compare Figure 2b,

second and third rows.) Please see Claim 1 in the appendix.

The limitation of using the functions {ϕt} is that they do not form

a partition of unity. To address this, we normalize the coefficients

by the number of seams on which the node is located:

ϕt(p) ≡
∑
ñ∈Ñ

(
1

|ñ|

∑
n∈ñ

Bt(n)

)
· Q̃ ñ(p) ,

where |ñ| is the cardinality of the equivalence class ñ. Please see

Claim 3 in the appendix.

This still associates a seam-continuous, piecewise quadratic

function to each texel and reproduces the bilinear functions at

interior texels. However, for a boundary texel t, the functions ϕt
and Bt no longer agree on the intersection ofM with the footprint

of t. (See Figure 2b, bottom row.)

4.2 Comparison with soft continuity constraints
We compare our construction of a continuous function space {ϕt}
to the approach of Liu et al. [2017] which enforces continuity on the

traditional bilinear basis by introducing a soft constraint EC . For
a general function ϕ, the energy EC (ϕ;h) measures the integrated

squared difference between the values of ϕ on opposite sides of a

seam. We can include this continuity energy into Equation (1) as an

additional term:

E(ϕ;h,α ,ψ ,ω) + α · λ · EC (ϕ;h) ,

where λ modulates the importance of continuity across the seam.

Figure 5 shows examples of signal diffusion using two different

screening weights (Section 7.1), comparing the results obtained

using the bilinear basis with soft constraints to the results obtained

using our continuous basis. Renderings are obtained using the

texture mapping hardware, with basis coefficients used as texel

values. For large-time-scale diffusion
4
(top), a low continuity weight

results in insufficient cohesion between charts, and colors do

not diffuse across chart boundaries. For short-time-scale diffusion

(bottom), a high continuity weight encourages the function to be

constant along the seam, resulting in perceptible color “smearing”.

Our continuous basis provides correct results for both scenarios and

does not require any parameter tuning.

5 DISCRETIZING DIFFERENTIAL OPERATORS
Performing gradient domain processing requires choosing a basis for

representing the target vector field and discretizing the derivative

operator. Following the Discrete Exterior Calculus approach [Crane

et al. 2013a], we do this in two steps. We first define a cotangent

vector field basis and a discrete derivative operator, both of which

depend only on the triangulation connectivity. Then, we define the

3
A rare exception is if the footprint of a texel contains nodes that are on opposite sides

of a seam, e.g., at the poles of the sinusoidal projection.

4
Note that when solving a diffusion equation, i.e., ω = 0, the screening weight is

inversely proportional to the time-scale of diffusion.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

Gradient-Domain Processing within a Texture Atlas • 154:5

Continuous basisInput Discontinuous basis + soft constraint

𝜆 = 10−2 𝜆 = 102𝜆 = 1

𝛼 → 0

𝛼 → ∞

Fig. 5. We compare diffusion using the standard bilinear basis with soft constraints (middle) to diffusion using our continuous basis (right), showing results for
large (α → 0) and short (α →∞) time-scales. With soft constraints, we must tune the continuity weight λ as no single value works for all cases. With our
continuous basis, no such tuning is required.

metric-dependent Hodge stars, giving inner-products on the spaces

of scalar functions and vector fields. We combine these to obtain

the system matrices for gradient domain processing.

We highlight the importance of capturing the surface metric

by comparing the solution to the single-source geodesic distance

problem (Section 7.3) using the 2D Euclidean metric µ of the texture
domain and using the immersion metric д of the surface mesh. As

seen in Figure 6, the 2D Euclidean metric (left) produces concentric

and uniformly spaced circles in the texture domain, but these do

not correspond to geodesic circles on the surface due to parametric

distortion. In contrast, ourmetric-aware approach (right) generates a

set of distorted contours in the texture domain that map to uniformly

spaced geodesic circles on the surface.

5.1 Metric-independent discretization
We use the Whitney basis to represent cotangent vector fields (i.e.,

1-forms). Each basis element is associated to an unordered pair of

adjacent texels and is defined as the symmetric difference of the

product of the scalar function at one texel times the differential

of the scalar function at the other. Because the functions {ϕt}
form a partition of unity, we obtain a discretization of the exterior

derivative, given in terms of finite differences [Bossavit 1988].

Whitney Basis. Let “≺” be some precedence operator on texels,

and let Adenote the set of adjacent texels, i.e., pairs of texels whose

basis functions have overlapping support:

A≡
{
(s, t) ∈ T×T

�� s ≺ t and supp(ϕs) ∩ supp(ϕt) , ∅
}
.

Given the scalar function basis {ϕt} and denoting the exterior

derivative as d , the Whitney 1-form basis {ωa} is defined as:

ωa = ϕs · dϕt − dϕs · ϕt, ∀a = (s, t) ∈ A.
Discrete exterior derivative. We denote by d ∈ R |T|× |A| thematrix

giving the signed incidence of texels along adjacent texel pairs:

dr(s, t) =

−1 if r = s

1 if r = t

0 otherwise

∀r ∈ Tand (s, t) ∈ A.

2D metric Immersion metric

Fig. 6. We compare geodesic distances obtained using the 2D Euclidean
metric (left) and the immersion metric (right).

We recall that since the {ϕt} form a partition of unity, the matrix d
gives the discretization of the exterior derivative in the bases {ϕt}
and {ωa}. That is, for a given scalar basis function ϕt we have:

dϕt = dϕt ·

(∑
s∈T

ϕs

)
− ϕt · d

(∑
s∈T

ϕs

)
=

∑
s∈T

(dϕt · ϕs − ϕt · dϕs)

=
∑
a∈A

dta · ωa .

5.2 Metric-dependent discretization
Given a Riemannian metric h, we would like to compute the Hodge

0-star ⋆0h ∈ R
|T|× |T|

and Hodge 1-star ⋆1h ∈ R
|A|× |A|

:(
⋆0h

)
s, t
=

∫
M

√
|µ−1 ◦ h | · ϕs · ϕt dµ ,(

⋆1h

)
a,b
=

∫
M

√
|µ−1 ◦ h | · h−1(ωa,ωb) dµ .

We compute the integrals by using the canonical coordinate

frame for [0, 1] × [0, 1] ⊃ M and combining the two triangulations

described earlier: the parameterized surface triangulation T and the

triangulation T̂ obtained by tessellatingM using the texel lattice.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

154:6 • Prada, Kazhdan, Chuang, and Hoppe

By assumption, the matrix expression for h is constant on each

triangle in T . By construction, the basis functions {ϕt} and {ωa}

are polynomial on each triangle in T̂ . Thus, computing a mutual

refinement T ⊕ T̂ of the two triangulations (Figure 3) and summing

the integrals over the faces of T ⊕ T̂ , the computation of the Hodge

stars reduces to integrating polynomials over 2D polygons.

We compute the integrals over each face in the refinement by

triangulating the face and using 11-point quadrature [Day and

Taylor 2007], which is exact for polynomials up to degree six. (Since

{ϕt} are piecewise quadratic polynomials and {ωa} are piecewise

cubic, computing ⋆0h requires integrating fourth-order polynomials

and computing ⋆1h requires integrating sixth-order polynomials.)

5.3 Defining the linear system
In our applications, we are interested in computing functions

minimizing the quadratic energy E(ϕ;h,α ,ψ ,ω) from Equation (1).

Using the Euler-Lagrange formulation and discretizing with respect

to the function basis, the coefficients of the minimizer ®x∗ ∈ R |T|

are given as the solution to the linear system

(α ·Mh + Sh) · ®x
∗ = α ·massh (ψ) + divh (ω) .

HereMh and Sh are the mass and stiffness matrices, given by:
5

Mh ≡ ⋆
0

h and Sh ≡ d⊤ ·⋆1h · d ,

and massh (ψ) ∈ R
|T|

and div(ω)h ∈ R
|T|

are obtained by

integrating against the (differentials of the) basis functions:

massh (ψ)t ≡

∫
M

√
|µ−1 ◦ h | · ϕt ·ψ dµ ,

divh (ω)t ≡

∫
M

√
|µ−1 ◦ h | · h−1

(
dϕt,ω

)
dµ .

Whenψ or ω can be expressed as a linear combination of basis

functions (e.g., in smoothing and sharpening, stitching, and line

integral convolution applications), the constraints simplify:

ψ =
∑
t∈T

®xt · ϕt ⇒ massh (ψ) = Mh · ®x , (2)

ω = d

(∑
t∈T

®yt · ϕt

)
⇒ divh (ω) = Sh · ®y , (3)

ω =
∑
a∈A

®za · ωa ⇒ divh (ω) = d⊤ ·⋆1h · ®z . (4)

Whenψ orω cannot be expressed as a linear combination of basis

functions (e.g., in computing single-source geodesic distances), we

approximate the integrals using quadrature.

6 MULTIGRID
The applications we consider are formulated as solutions to

sparse symmetric positive-definite linear systems. On domains

with irregular connectivity like triangle meshes, these type of

systems are commonly solved either through direct methods, like

sparse Cholesky factorization, or through iterative methods, like

conjugate gradients. Both approaches have limitations within

5
In practice Sh is computed directly by integrating the dot products of the differentials

of the scalar functions {dϕt}. This is more efficient because |A| ≈ 4 |T| and more

stable because the integrands are only second-order polynomials.

an interactive system: Cholesky factorization requires expensive

precomputation and the back-substitution is inherently serial, while

iterative methods like conjugate gradients converge too slowly.

To support interactivity, we implement a multigrid solver that

exploits the regularity of the texture domain. The challenge in doing

so is handling the irregularity that arises at the seams. We resolve

this by using domain-decomposition [Smith et al. 1996], partitioning

the degrees of freedom into interior, where we leverage regularity,
and boundary, where the system is small enough to be handled by

a direct solver. We start by describing the implementation of the

multigrid solver and then discuss performance.

6.1 Hierarchy construction

𝑀1

Our input is a texture grid where charts

are separated sufficiently so that the foot-

print of each texel intersects a single chart.

The set of texels in the input grid defines

the finest resolution of our hierarchy. We

construct the coarser levels by generating

a multiresolution grid for each chart inde-

pendently, as shown in the inset. We select

a texel in the finest resolution (level 0) as the origin (shown in red

in the inset), and define the texels Tl
at the l-th hierarchy level as

the subset of finest-level grid nodes with indices (2lm, 2lk) whose

[−2l , 2l] × [−2l , 2l] footprints intersect the chart. Extending the

definitions from Section 3, we classify texels at coarser levels of

the hierarchy as interior or boundary by checking whether their

footprint is entirely contained within a chart.

ൗ1 4

ൗ1 4ൗ1 4

ൗ1 4 ൗ1 2

ൗ1 2

ൗ1 2

ൗ1 2

1

Each texel of the hierarchy indexes a basis

function. Texels at the finest resolution are

associated with the continuous basis {ϕt}
introduced in Section 4. We implicitly construct

the coarse function spaces using the Galerkin

approach, defining a prolongation matrix Pl

that expresses basis functions at coarser level l + 1 as linear

combinations of (at most) 9 basis functions at level l . The coefficients

are given by the bilinear up-sampling stencil, (see inset). The

restriction matrix is defined as Rl ≡ (Pl)⊤. Then, given a matrix

A defined at the finest resolution, we recursively construct the

restriction of this matrix to the coarser levels of the hierarchy, setting

A0 = A and Al+1 = Rl · Al · Pl .

6.2 Solution update

To solve the system A · ®x = ®b (with known constraints
®b and

unknown coefficients ®x), we update the estimated solution by

performing a V-Cycle [Briggs et al. 2000]. Starting at the finest

resolution, we recursively relax the solution and restrict the residual

to the next coarser level. At the coarsest resolution, we solve the

small system using a direct solver. Then, we recursively add the

prolonged correction to the estimated solution at the next finer level,

and apply further relaxation.

To perform the V-cycle efficiently, we rearrange variables in

blocks of interior (i) and boundary (b) texels, and rewrite the linear

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

Gradient-Domain Processing within a Texture Atlas • 154:7

Interior texel neighbors Boundary texel neighbors

Fig. 7. Visualization of the neighbors of an interior texel (left) and a
boundary texel (right). The selected texel is highlighted in blue and the
neighbors are highlighted in black.

R.1 for l = 0, . . . ,L − 1

R.2 ®r li ←
®bli − A

l
ib · ®x

l
b // boundary-relative residual

R.3 ®x li ← GaussSeidelRelax(Al
ii , ®r

l
i , ®x

l
i , n)

R.4 ®r lb ←
®blb − A

l
bi · ®x

l
i // interior-relative residual

R.5 ®x lb ← Solve (Al
bb , ®r

l
b)

R.6
®bl+1 ← Rl ·

(
®bl − Al · ®x l

)
// restricted residual

C.1 ®xL ← Solve(AL , ®bL)

P.1 for l = L − 1, . . . , 0

P.2 ®x l ← ®x l + Pl · ®x l+1 // prolonged correction

P.3 ®r lb ←
®blb − A

l
bi · ®x

l
i // interior-relative residual

P.4 ®x lb ← Solve(Al
bb , ®r

l
b)

P.5 ®r li ←
®bli − A

l
ib · ®x

l
b // boundary-relative residual

P.6 ®x li ← GaussSeidelRelax(Al
ii , ®r

l
i , ®x

l
i , n)

Fig. 8. Our V-cycle algorithm with domain-decomposition updates interior
and exterior texels separately in both restriction and prolongation phases.

system Al · ®x l = ®bl at each level as(
Al
ii Al

ib
Al
bi Al

bb

) (
®x li
®x lb

)
=

(
®bli
®blb

)
.

We update the solution at interior texels by locking the boundary

coefficients, adjusting the constraints to account for the solution

met at the boundary, and performing multiple passes of Gauss-

Seidel relaxation over the interior coefficients. Leveraging the grid-

regularity of texel adjacency (Figure 7, left), relaxation of interior

texels can be done efficiently using multi-coloring (parallelization)

and temporal-blocking (memory coherence) [Weiss et al. 1999].

As boundary texels have irregular adjacency patterns (Figure 7,

right), Gauss-Seidel relaxation is less efficient. However, because

the number of boundary texels is small, these can be updated

using a direct solver at interactive rates. This time we lock interior

coefficients, adjust the constraints to account for the solution met in

the interior, and perform a direct solve for the boundary coefficients.

Our V-cycle algorithm (Figure 8) performs the interior relaxation

before the boundary solution in the restriction phase, and after

in the prolongation phase. (Solve(A, ®b) computes the solution to

the system A · ®x = ®b using a direct solver and GSRelax(A, ®b, ®x ,n)
performs n Gauss-Seidel relaxations with ®x as the initial guess.)

Julius-1C Julius-4C Julius-28C

Fig. 9. We compare the performance of normal-map sharpening (β = 3)
using atlases with 1, 4, and 28 charts, showing the input normal-maps (top)
and the sharpened results after one V-cycle (bottom).

6.3 Performance
We analyze the performance of our multigrid solver by sharpening

normal-maps over three different chartifications of the Julius model,

shown in Figure 9. Sharpening is done by solving the gradient-

domain problem in Equation (1), setting h = д, α = 10
4
,ψ equal to

the input normal map, and ω = 3 ·dψ , and using a multigrid system

with L = 4 hierarchy levels and n = 3 Gauss-Seidel relaxations per

level. The solutions for the boundary texels and for the full system at

the coarsest level are obtained using CHOLMOD [Chen et al. 2008].

These tests are performed on a quad-core i7-6700HQ processor.

Runtime. Figure 10 shows the runtime decomposition for a single

V-cycle using double precision. We plot the aggregate times for

interior relaxation, boundary solution, solution at the coarsest level,

and restriction and prolongation.Memory coherence and parallelism

make the average cost of relaxing an interior texel significantly

lower than solving for a boundary texel. Thus, a V-cycle becomes

less efficient as the atlas becomes more fragmented. The cost of

solving at the coarse level and the cost of applying restriction and

prolongation is a small fraction of the overall runtime. Evaluating

using texture maps with 0.2M, 0.8M, 3.2M, and 12.8M texels, we

found that performance scales almost linearly with the number of

texels, with improved parallelism at higher resolutions due to the

increased per-thread workload.

Comparison to direct solvers. Table 1 compares the performance

of our multigrid system with two direct solvers: CHOLMOD [Chen

et al. 2008] and PARDISO [Petra et al. 2014a,b]. All solvers are run

in double precision. For each one, we report three timings:

• Initialization: For direct solvers, this is the symbolic factoriza-

tion of the fine system A0
. For multigrid, this is the symbolic

factorization of the boundary and coarse systems {Al
bb} and A

L
.

• Update: For direct solvers, this is the numerical factorization of

A0
. For multigrid, this is the numerical factorization of {Al

bb}

and AL
as well as the computation of the intermediate linear

systems {Al+1 = Rl · Al · Pl }.

• Solution: For direct solvers, this is back-substitution updating

the three coordinates separately. For multigrid, this is a single

(parallelized) V-Cycle pass updating the coordinates together.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

154:8 • Prada, Kazhdan, Chuang, and Hoppe

0 0.01 0.02 0.03 0.04 0.05

Interior relaxation Boundary solution Coarse solution Restriction/Prolongation
Julius-1C

(792k+8k)

Julius-4C
(778k+22k)

Julius-28C
(753k+47k)

Runtime (seconds)

Fig. 10. Breakdown of V-cycle computations times: The numbers of interior
and boundary texels at the finest resolution are specified under each model
name. Interior relaxation is ∼ 8× faster than boundary solution (per texel).

Model CHOLMOD PARDISO Our multigrid

Julius-1C 3.8 : 1.2 : 0.2 2.8 : 0.8 : 0.2 0.4 : 0.1 : 0.04

Julius-4C 4.0 : 1.4 : 0.2 2.9 : 0.8 : 0.3 0.5 : 0.2 : 0.04

Julius-28C 4.0 : 1.3 : 0.2 3.1 : 0.9 : 0.3 0.6 : 0.4 : 0.06

Table 1. For each solver, we list, from left to right, the time for initialization,
update, and solution (in seconds). The construction of the mass and stiffness
matrices is the same for all solvers, and takes between 1 and 3 seconds.

Slick Filigree Camel
Girl Bimba Julius-1C
Julius-4C Julius-28C Ballerina
David Head Mime Bunny
Fertility

10−16

10−8

100
RMS error

0 V-cycles30 60 90

R
M

S(
5

)

10−6

10−3

𝑃99(ℰ𝐶)
0 3

R
M

S(
5

)

10−6

10−3

𝑃99(ℰ𝐴)
0 3

Fig. 11. Analysis of convergence: We show the RMS error as a function of
the number of V-cycles, for the different models in this paper (top), and we
plot the RMS after five V-cycles, as a function of the distortion (bottom).
The two models with slowest convergence, Filigree and Slick, are also the
ones whose parameterizations are least conformal.

As Table 1 shows, direct solvers incur heavy initialization and

update costs due to the factorization (symbolic and numerical,

respectively) of large system matrices. In contrast, our approach

only requires factorization of small matrices – the ones associated

to the boundary nodes and the one at the coarsest resolution. Our

multigrid approach also updates the solution at interactive rates,

five times faster than a direct solver. In practice, we have found that

it takes between two and four V-cycles to obtain a solution that is

indistinguishable from a direct solver’s solution.

6.4 Convergence
We assess the convergence of our solver by analyzing how RMS

error decreases with the number of V-cycles. Figure 11 (top) shows

plots of the RMS error for the models shown in the paper, using the

same linear system (h = д, α = 10
4
, ω = 0, and ψ set to random

0 10 20 30 40
V-cycles

10−16

10−8

100

1C-ARAP
1C-ARAP-MOEB
1C-ARAP-ANISO
1C-ARAP-28C

1C-ARAP 1C-ARAP-ANISO1C-ARAP-MOEB 1C-ARAP-28C

RMS error

Fig. 12. Four different atlases for the Julius head (top), and the associated
convergence plots (bottom).

texture), at the same resolution (texture images are rescaled to have

800K texels), with ground-truth obtained using a direct solver.

For all models the RMS error decays exponentially up to machine

precision. To better understand the different convergence rates, we

analyze the effects of parametric distortion on the solver.

Distortion. To measure distortion, we scale each 3D model so

that its surface area equals the area of the triangulation in the

parametric domain and then consider the singular values of the

affine transformations mapping 3D triangles into 2D. As in the work

of Smith and Schaefer [2015], we use a symmetric Dirichlet energy

that equally penalizes singular values and their reciprocals. Unlike

the earlier work, we define this energy in log-space:

ED (σ1,σ2) = log
2(σ1) + log

2(σ2).

An advantage of this formulation is that we can express the energy

as the sum ED = EA + EC of authalic and conformal energies:

EA(σ1,σ2) =
1

2

(
log(σ1) + log(σ2)

)
2

=
1

2

log
2(σ1 · σ2)

EC (σ1,σ2) =
1

2

(
log(σ1) − log(σ2)

)
2

=
1

2

log
2(σ1/σ2).

To better understand how distortion affects convergence rates,

we plot the RMS error after five V-cycles against the 99-th percentile

distortion in Figure 11 (bottom). Surprisingly, convergence is weakly

correlated with area (authalic) distortion. Rather, it is the deviation

from conformality, as reflected by larger values of EC , that correlates

strongly with slower convergence.

We corroborate this empirical observation by computing an as-

rigid-as-possible [Liu et al. 2008] parameterization of the Julius

head (1C-ARAP). Then, we obtain new charts by applying a Möbius

transformation (1C-ARAP-MOEB), applying an anisotropic scale

(1C-ARAP-ANISO), and partitioning into 28 charts (1C-ARAP-28C).

Note that 1C-ARAP, 1C-ARAP-MOEB, and 1C-ARAP-28C have the

same conformal distortions while 1C-ARAP, 1C-ARAP-ANISO, and

1C-ARAP-28C have the same authalic distortions.

Figure 12 shows the convergence plots for the four different

atlases. As the figure shows, neither the application of a Möbius

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

Gradient-Domain Processing within a Texture Atlas • 154:9

0 20 40 60 80
V-cycles

10−16

10−8

100
Julius-28C (0.2M)
Julius-28C (0.8M)
Julius-28C (3.2M)
Julius-28C (12.8M)

RMS error

Fig. 13. Convergence of our solver for a single texture atlas using texture
images with 0.2M, 0.8M, 3.2M, and 12.8M texels.

transformation nor the introduction of new seams significantly af-

fects the convergence rate of the solver. In contrast the introduction

of anisotropy significantly degrades the solver’s performance.

Note that though it does not necessarily improve convergence,

reducing area distortion is still important for ensuring that the

discretization samples the function space uniformly.

Resolution. We also analyze the performance of our multigrid

solver as a function of resolution. Fixing the parameterization, we

up-sample the texture map and consider the convergence of the

multigrid solver at different resolutions.

Figure 13 shows representative results for four different resolu-

tions of the Julius-28C atlas. As the figure shows, though the RMS

error decays exponentially, the convergence rate slows as resolu-

tion is increased. We do not have a satisfying explanation for this

behavior and intend to continue studying this in the future.

Single precision solver. Using single precision, we obtain a roughly
2× speedup for the interior relaxation and for the restriction

and prolongation stages, though numerical precision limits the

achievable accuracy. The error reduction is similar to that of double

precision for the first 5-8 iterations, at which point the single

precision solver plateaus to an RMS error of roughly 10
−5
.

Triangle quality. Though convergence efficiency depends on the

parametric distortion, it is less dependent on the quality of the

triangulation. For example, if there is no distortion, the discretization

of the linear system depends only on the parameterization of the

chart boundaries and not on the shapes of the triangles.

7 APPLICATIONS
We demonstrate the versatility of our approach by considering a

number of applications of gradient-domain processing. For each of

these, the solution is obtained by solving for the minimizer

ϕ∗ = argmin

ϕ
E(ϕ;h,α ,ψ ,ω) ,

with h the metric, α the screening weighting, ψ the target scalar

field, and ω the target differential.

We use single precision and, with the exception of the last

application, results are obtained using our multigrid solver, with

L = 4 hierarchy levels, n = 3 Gauss-Seidel iterations per level, and

using CHOLMOD to solve for the boundary nodes and coarsest

resolution system. Immersions are scaled so the surface has unit

area (because the effects of α and h are scale-dependent). All

parameterizations, with the exception of those shown in Figure 12,

are obtained using UVAtlas [Microsoft 2018]. Please see Table 2 in

the appendix for performance statistics.

Source code for our texture-space gradient-domain processing can

be found at https://github.com/mkazhdan/TextureSignalProcessing/.

7.1 Isotropic filtering
A signalψ is smoothed and sharpened by solving for a new signal

with scaled differential. Following the approach of Bhat et al. [2008],

we compute a filtered signal ϕ∗ as the minimizer

ϕ∗ = argmin

ϕ
E(ϕ;д, 104,ψ , β · dψ) ,

with β the differential scaling term (andд the immersionmetric). Set-

ting ®x to the coefficients of the input signal and using Equations (2)

and (3), the coefficients ®x∗ of the minimizer are given by(
10

4 ·Mд + Sд
)
· ®x∗ =

(
10

4 ·Mд + β · Sд
)
· ®x .

When β < 1, the differential of the input signal is dampened and

the signal is smoothed. When β > 1, the differential is amplified,

and the signal is sharpened. Figure 9 shows results of sharpening

a normal map and Figure 14 shows results of smoothing and

sharpening a color texture.

Local filtering. Selective removal or enhancement of signal detail

is obtained by allowing β to vary spatially. Figure 15 shows an

example of local filtering where an input texture (a) is filtered to

produce both sharpening and smoothing effects (c). The spatially

varying modulation mask (b) prescribes that the furrow should be

amplified (red) while the bags under the eyes should be removed

(blue). We represent β as a piecewise constant function, with a value

associated to each cell c ∈ C . The minimizer is given by(
10

4 ·Mд + Sд
)
· ®x∗ =

(
10

4 ·Mд +
∑
c ∈C

βc · Sд,c

)
· ®x ,

where Sд,c is the stiffness matrix with integration restricted to c ,(
Sд,c

)
s,t =

∫
c

√
|µ−1 ◦ д | · д−1(dϕs ,dϕt) dµ ,

and βc is the differential modulation factor at c .
We designed an interactive system for texture filtering using a

spray-can interface to prescribe local modulation weights β . We

precompute the matrices Sд,c . Then, at run-time, the user-specified

modulation weights are transformed into linear constraints and our

multigrid solver generates the new texture values at interactive rates,

approximately 18 frames per second on the ballerina model (740k

texels). Please refer to the accompanying video for a demonstration.

7.2 Texture stitching
Previous works in image and geometry processing merge multiple

signals by formulating stitching as a gradient-domain problem

[Agarwala et al. 2004; Levin et al. 2003; Pérez et al. 2003]. These

approaches use the input signals to compute differences between

pairs of adjacent elements and solve for a global signal that matches

the differences in a least squares sense. Here, we describe how to

use our framework to stitch together textures obtained by imaging

a static object from multiple viewpoints.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

https://github.com/mkazhdan/TextureSignalProcessing/

154:10 • Prada, Kazhdan, Chuang, and Hoppe

Smoothing

𝛽 = 0

Sharpening

𝛽 = 2

Fig. 14. We smooth (left) and sharpen (right) a texture by solving linear systems that dampen and amplify the local color variation.

(a) input (b) mask (c) filtered

Fig. 15. We design a user interface for local filtering. In the middle we
visualize the differential modulation mask used for this example, showing
attenuation (smoothing) in blue and amplification (sharpening) in red.

Our input is a texture-atlased surface, together with a collection

of partial textures {ψk } and a segmentation mask ζ . Figure 16 shows
an example with three partial textures. The partial textures sample

the color of visible texels from each camera’s viewpoint, and the

segmentation mask specifies the camera providing the best view.

(The quality of a view is determined by visibility as well as the

alignment of the surface normal to the camera’s view direction.)

A naive solution is to create a composite textureψ by using the

camera with the best view to assign a texel’s color. As shown in the

middle left of Figure 16, this reveals abrupt illumination changes at

the transitions between regions covered by different cameras.

These discontinuities are removed by solving for a texture that

preserves the differential within the partial textures and is smooth

across the boundaries. To achieve this, we set the target texel

difference to zero for texel pairs residing on different partial textures:

®zd ≡

{
ψ (t) −ψ (s) if ζ (s) = ζ (t)

0 otherwise

∀d = (s, t) ∈ A.

In regions not seen by any camera, differences are also set to zero

to encourage a smooth fill-in. We construct the associated one-form

ω =
∑

d ®zdωd, and solve for the signal with matching differential:

ϕ∗ = argmin

ϕ
E(ϕ;д, 102,ψ ,ω) .

Setting ®x to the coefficients of the composite and using Equations (2)

and (4), the coefficients ®x∗ of the solution are given by(
10

2 ·Mд + Sд
)
· ®x∗ = 10

2 ·Mд · ®x + d⊤ ·⋆1д · ®z .

Results of gradient-domain stitching are shown in Figures 1

(left) and 16 (middle right), where lighting differences between the

cameras are removed, while details in the interior are preserved.

Camera 3Camera 1 Camera 2
Partial textures Segmentation

mask

Composite Stitching

Fig. 16. Given a set of partial textures and a segmentation mask (top
row), we stitch the partial textures into a single texture. Direct compositing
produces a result that reveals the different lighting conditions (bottom left).
Using gradient-domain stitching, the result is robust to illumination change
between the cameras (bottom right).

7.3 Single-source geodesic distances
Wedemonstrate the robustness of our approach by computing single-

source geodesic distances using the Geodesics-in-Heat method

[Crane et al. 2013b]. The approach computes distances to a source

point p ∈ M by solving two successive systems. The first solves for

a short-time-scale diffusion of an impulse δp at the surface point:

ψ ∗ = argmin

ψ
E(ψ ;д, 103,δp , 0) . (5)

The second solves for the function whose differential best matches

the (negated) normalized differential of the diffused impulse:

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

Gradient-Domain Processing within a Texture Atlas • 154:11

ϕ∗ = argmin

ϕ
E

(
ϕ;д, 0, •,−

dψ ∗

|dψ ∗ |

)
. (6)

(Setting α = 0, the target scalar field has no effect.)

In the texture domain, we associate the impulsewith a texel t ∈ T,

defining the vector ®x whose coefficients is one at the t-th texel and

zero for all others. Using Equation (2) we obtain the coefficients of

the smoothed impulse by solving (103 ·Mд + Sд) · ®x∗ = 10
3 ·Mд · ®x .

The coefficients ®y∗ ∈ R |T| of the geodesic function are obtained

by solving the system Sд · ®y∗ = −divд(dψ/|dψ |). Leveraging the

smoothness ofψ , we use one-point quadrature to approximate the

values of divд(dψ/|dψ |). Assuming a connected surface, the solution

is unique up to a constant factor and we offset the solution so that

the distance is 0 at the source: ®y∗ ← ®y∗ − ®y∗
t
.

Figure 17 (top) shows the distance function for a source point

selected on the cheek of the bunny. Note that after three V-cycles

(second row), the result is indistinguishable from the result obtained

with a direct solver (third row).

This application is unusual in that the constraint to the second

linear system depends on the solution to the first, and hence evolves

with the V-cycle iterations. Nonetheless, Figure 17 (bottom) shows

that the RMS error for both ®x∗ and ®y∗ decays exponentially.
We also validated the efficiency of our multigrid solver in an

interactive application in which a user picks a source texel and

the application displays the estimated geodesic distances after each

multigrid pass.When a source texel is selected the smoothed impulse

and distance functions are initialized to zero. Then, at each frame,

one V-cycle is performed for the impulse diffusion system and a

second is performed for the distance estimation (using the solution

from the first V-cycle to define the constraints for the second). We

achieve an interactive rate of 17 frames per second on the bunny

model (670k texels). Please refer to the accompanying video for a

demonstration.

7.4 Line integral convolution
Lastly, we consider the application of line integral convolution

[Cabral and Leedom 1993] to surface vector field visualization.

Teitzel et al. [1997] achieve this by tracing streamlines over the

triangulation and averaging a random signal over these paths,

obtaining a signal defined over the mesh. Palacios and Zhang [2011]

interactively project the field onto the view-plane, obtaining a

signal in screen-space. We show that surface-based line integral

convolution can be computed in the texture domain by using

gradient-domain processing with an anisotropic metric.

Given a vector field ®u, we first define a metric h ®u that shrinks

distances along ®u and stretches them along the perpendicular

direction. Then, we diffuse a random texture ψ along the stream-

lines by solving

ϕ∗ = argmin

ϕ
E(ϕ;h ®u , 1,ψ , 0) .

Given a vector field ®u which is constant per triangle in the

canonical coordinate frame ofM and given tangent vectors v,w ∈
TpM , we define the anisotropic metric by setting

h ®u,p (v,w) ≡ дp
(
v, ®u⊥(p)

)
· дp

(
w, ®u⊥(p)

)
+ ϵ · дp (v,w) ,

1 V-Cycle

3 V-Cycles

Direct solution

R
M

S
Er

ro
r

V-Cycles

Impulse diffusion Geodesic distance

0 10 20 30 40
10−16

10−8

100

Fig. 17. Geodesic distance computation. The inset closeups show the source
in the red region and the farthest point in the blue region. With a single
V-cycle, the result is already similar to the exact solution from a direct solver
(RMS= 5.2 ·10−3). With three V-cycles, the result is almost indistinguishable
(RMS= 2.7 · 10−4). Despite the evolving right-hand side of the system, our
multigrid solver exhibits exponential decay in the RMS error.

with ®u⊥ the vector-field perpendicular to ®u (relative to д) and
ϵ · дp (v,w) a regularizing term ensuring that h ®u,p is non-singular.

Figure 1 (right) and Figure 18 show visualizations of surface

curvature. For these we define ®u by scaling principal curvature

directions by the absolute difference in principal curvature values.

This application highlights the robustness of our finite-elements

discretization, which provides high-quality vector-field visualiza-

tions despite significant distortion in the metric.

8 CONCLUSION AND DISCUSSION
We have presented a framework for gradient-domain processing

directly in a texture atlas, avoiding the need for resampling.

The framework introduces novel function spaces and Hodge

stars to enable seamless, metric-aware computations. A multigrid

algorithm leverages the grid regularity, in conjunction with domain

decomposition, to attain interactive performance over megapixel

domains. We apply the framework to a variety of applications.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

154:12 • Prada, Kazhdan, Chuang, and Hoppe

Input

Max curvature diffusion

Min curvature diffusion

Fig. 18. We perform line integral convolution by modifying the surface
metric to diffuse a random signal (top) along the directions of principal
curvature (middle and bottom).

Limitations. Standard multigrid is known to converge slowly for

inhomogeneous or anisotropic systems. In practice, we find that

our multigrid solver converges efficiently when the metric h is

(approximately) a scalar multiple of the 2D Euclidean metric µ. This
is the case for the applications in Sections 7.1–7.3 because texture

atlasing tends to construct parameterizations that preserve lengths,

up to global scale. For line integral convolution (Section 7.4) the

prescribed metric distortion is so severe that multigrid exhibits poor

convergence and we instead use a direct solver.

Determining the coefficients of the system matrix (Section 5)

involves the computation and traversal of triangulations (Section 4)

which is time-consuming in our current implementation.

Our implementation also does not support singular parameteriza-

tions (e.g., at the poles of the equirectangular map) because defining

the system matrices requires inverting the metric tensors. Even

near-singular maps could lead to issues of numerical precision, but

we have not encountered this problem in practice.

Future work. We hope to extend our approach in several ways:

• complete the DEC picture by defining a sparse Hodge 2-star,

enabling vector-field processing in the texture domain;

• consider more tailored prolongation matrices (as in algebraic

multigrid) to extend our multigrid solver to the context of

anisotropic filtering;

• extend our implementation to support interactive update of the

system matrices (e.g., for processing signals on a deforming

surface) by leveraging the constancy of the texture atlas;

• achieve temporally coherent filtering of time-varying signals on

fixed-connectivity or evolving meshes.

ACKNOWLEDGMENTS
This work is supported by the NSF award 1422325. We thank

Microsoft for the Slick, Girl, Ballerina, and Mime datasets. We thank

the Stanford University Computer Graphics Laboratory for the

Bunny and David models. We thank the AIM@SHAPE-VISIONAIR

Shape Repository for the Julius, Bimba, Camel, Fertility, and Filigree

models.

REFERENCES
Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn,

Brian Curless, David Salesin, and Michael Cohen. 2004. Interactive digital

photomontage. ACM Trans. Graphics 23 (2004), 294–302.
Marc Alexa andMaxWardetzky. 2011. Discrete Laplacians on general polygonal meshes.

ACM Trans. Graphics 30 (2011), 102:1–102:10.
Chandrajit Bajaj and Guoliang Xu. 2003. Anisotropic diffusion of surfaces and functions

on surfaces. ACM Trans. Graphics 22 (2003), 4–32.
Marcelo Bertalmio, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. 2001.

Variational problems and partial differential equations on implicit surfaces. J.
Computational Physics 174 (2001), 759–780.

Pravin Bhat, Brian Curless, Michael Cohen, and Lawrence Zitnick. 2008. Fourier analysis

of the 2D screened Poisson equation for gradient domain problems. In 10th European
Conf. Computer Vision. 114–128.

Alain Bossavit. 1988. Whitney forms: a class of finite elements for three-dimensional

computations in electromagnetism. IEE Proc. A (Physical Science, Measurement and
Instrumentation, Management and Education, Reviews) 135 (1988), 493–500.

William Briggs, Van Emden Henson, and Steve McCormick. 2000. A multigrid tutorial
(2nd ed.). Society for Industrial and Applied Mathematics.

Brian Cabral and Leith Casey Leedom. 1993. Imaging vector fields using line integral

convolution. In 20th Annual Conf. Computer Graphics and Interactive Techniques.
263–270.

Nathan Carr and John Hart. 2002. Meshed atlases for real-time procedural solid

texturing. ACM Trans. Graphics 21 (2002), 106–131.
Nathan Carr and John C. Hart. 2004. Painting detail. ACM Trans. Graphics 23 (2004),

845–852.

Yanqing Chen, Timothy Davis, William W. Hager, and Sivasankaran Rajamanickam.

2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and

update/downdate. ACM Trans. Math. Softw. 35 (2008), 22:1–22:14.
Ming Chuang, Linjie Luo, Benedict Brown, Szymon Rusinkiewicz, and Misha Kazhdan.

2009. Estimating the Laplace-Beltrami operator by restricting 3D functions.

Computer Graphics Forum (SGP ’09) (2009), 1475–1484.
Ming Chuang, Szymon Rusinkiewicz, and Michael Kazhdan. 2016. Gradient-domain

processing of meshes. J. Computer Graphics Techniques 5 (2016), 44–55.
Ulrich Clarenz, Udo Diewald, and Martin Rumpf. 2000. Anisotropic geometric diffusion

in surface processing. In Conf. Visualization ’00. 397–405.
Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013a. Digital

Geometry Processing with Discrete Exterior Calculus. In ACM SIGGRAPH 2013
Courses. 7:1–7:126.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013b. Geodesics in heat: A

new approach to computing distance based on heat flow. ACM Trans. Graphics 32
(2013), 152:1–152:11.

David Day and Mark Taylor. 2007. A new 11 point degree 6 cubature formula for the

triangle. Sixth International Congress on Industrial Applied Mathematics (ICIAM07)
and GAMM Annual Meeting 7 (2007), 1022501–1022502.

Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan Barr. 1999. Implicit fairing of

irregular meshes using diffusion and curvature flow. In ACM SIGGRAPH Conf. Proc.
317–324.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

Gradient-Domain Processing within a Texture Atlas • 154:13

Gerhard Dziuk. 1988. Finite elements for the Beltrami operator on arbitrary surfaces.
Springer, 142–155.

Raanan Fattal, Dani Lischinski, and Michael Werman. 2002. Gradient domain high

dynamic range compression. ACM Trans. Graphics 21 (2002), 249–256.
Francisco González and Gustavo Patow. 2009. Continuity mapping for multi-chart

textures. ACM Trans. Graphics 28 (2009), 109:1–109:8.
Paul Heckbert. 1993. Introduction to finite element methods. In ACM SIGGRAPH 1993

Courses.
Sylvain Lefebvre and Hugues Hoppe. 2006. Appearance-space texture synthesis. ACM

Trans. Graphics 25 (2006), 541–548.
Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss. 2003. Seamless image stitching

in the gradient domain. In European Conf. Computer Vision. 377–389.
Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares

Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21
(2002), 362–371.

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven Gortler. 2008. A Local/Global

Approach to Mesh Parameterization. In Symposium on Geometry Processing. 1495–
1504.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam Gingold. 2017. Seamless:

Seam Erasure and Seam-aware Decoupling of Shape from Mesh Resolution. ACM
Trans. Graph. 36 (2017), 216:1–216:15.

Lok Lui, Yalin Wang, and Tony Chan. 2005. Solving PDEs on Manifolds with Global

Conformal Parameterization. In Proc. Third Int. Conf. on Variational, Geometric, and
Level Set Methods in Computer Vision. 307–319.

Microsoft. 2018. UVAtlas: isochart texture atlasing .

https://github.com/Microsoft/UVAtlas. (2018).

Stanley Osher and James Sethian. 1988. Fronts propagating with curvature-dependent

speed: Algorithms based on Hamilton-Jacobi formulations. J. Computational Physics
79 (1988), 12–49.

Jonathan Palacios and Eugene Zhang. 2011. Interactive Visualization of Rotational

Symmetry Fields on Surfaces. IEEE Trans. Visualization and Computer Graphics 17
(2011), 947–955.

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. ACM
Trans. Graphics 22 (2003), 313–318.

Pietro Perona and JitendraMalik. 1990. Scale-space and edge detection using anisotropic

diffusion. Trans. on Pattern Analysis and Machine Intelligence 12 (1990), 629–639.
Cosmin Petra, Olaf Schenk, and Mihai Anitescu. 2014a. Real-time stochastic optimiza-

tion of complex energy systems on high-performance computers. Computing in
Science & Engineering 16, 5 (2014), 32–42.

Cosmin G. Petra, Olaf Schenk, Miles Lubin, and Klaus Gäertner. 2014b. An augmented

incomplete factorization approach for computing the Schur complement in

stochastic optimization. SIAM J. on Scientific Computing 36 (2014), C139–C162.

Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and

their conjugates. Experimental Mathematics 2, 15–36.
Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.

2017. Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping.

ACM Trans. Graph. 36 (2017), 215:1–215:11.
Pedro Sander, Steven Gortler, John Snyder, and Hugues Hoppe. 2002. Signal-specialized

Parametrization. In Proc. 13th Eurographics Workshop on Rendering. 87–98.
Pedro Sander, John Snyder, Steven Gortler, and Hugues Hoppe. 2001. Texture Mapping

Progressive Meshes. In Proc. 28th Annual Conf. on Computer Graphics and Interactive
Techniques. 409–416.

Alla Sheffer and John Hart. 2002. Seamster: Inconspicuous Low-distortion Texture

Seam Layout. In Proc. Conf. on Visualization ’02. 291–298.
Barry Smith, Petter Bjørstad, and William Gropp. 1996. Domain decomposition: Parallel

multilevel methods for elliptic partial differential equations. Cambridge Univ. Press.

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.

ACM Trans. Graph. 34 (2015), 70:1–70:9.
Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa, Christian Rössl, and Hand-

Peter Seidel. 2004. Laplacian surface editing. In Symposium on Geometry Processing.
175–184.

Jos Stam. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graphics
(SIGGRAPH ’03) 22 (2003), 724–731.

Tolga Tasdizen, Ross Whitaker, Paul Burchard, and Stanley Osher. 2002. Geometric

surface smoothing via anisotropic diffusion of normals. In Conf. Visualization ’02.
125–132.

Gabriel Taubin. 1995. A signal processing approach to fair surface design. In ACM
SIGGRAPH Conf. Proc. 351–358.

Christian Teitzel, Roberto Grosso, and Thomas Ertl. 1997. Line Integral Convolution on

Triangulated Surfaces. In Conf. World Society for Computer Graphics 1997. 572–581.
Christian Weiss, Wolfgang Karl, Markus Kowarschik, and Ulrich Rüde. 1999. Memory

characteristics of iterative methods. In 1999 ACM/IEEE Conf. Supercomputing.
Tim Weyrich, Jia Deng, Connelly Barnes, Szymon Rusinkiewicz, and Adam Finkelstein.

2007. Digital bas-relief from 3D scenes. ACM Trans. Graphics 26 (2007), 32:1–32:7.
AndrewWitkin andMichael Kass. 1991. Reaction-diffusion textures. InACM SIGGRAPH

Conf. Proc. 299–308.

Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-

Yeung Shum. 2004. Mesh editing with Poisson-based gradient field manipulation.

ACM Trans. Graphics 23 (2004), 644–651.
Cem Yuksel. 2017. Mesh color textures. In High Performance Graphics. 17:1–17:11.
Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface

Parameterization and Texture Mapping. ACM Trans. Graph. 24 (2005), 1–27.
Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. 2004. Iso-charts: Stretch-

driven Mesh Parameterization Using Spectral Analysis. In Symposium on Geometry
Processing. 45–54.

APPENDIX
Claim 1. The unnormalized and normalized texel functions ϕt and

ϕt reproduce the bilinear function Bt whenever t is an interior texel.

Proof. Let Q : M → R be a continuous, piecewise quadratic

function onM (i.e., quadratic on each triangle t̂ ∈ T̂). Because the
functions {Qn} are quadratic Lagrange elements onM , if we linearly

combine them with weights obtained by evaluating Q at the nodes

n ∈ N, we reproduce the function Q :

Q(p) =
∑
n∈N

Q(n) ·Qn(p), ∀p ∈ M .

Now if t is an interior texel, the nodes in the support of Bt cannot

lie on a seam. Specifically, let n ∈ N be a node and [n] ∈ Ñ be

the equivalence class containing n. If Bt(n) , 0 then [n] = {n}.

Therefore, for any n in the support of Bt, we have:

Q̃[n] ≡
∑

m∈[n]

Qm = Qn.

Thus, for an interior texel t ∈ Twe get:

ϕt(p) ≡
∑
ñ∈Ñ

(∑
n∈ñ

Bt(n)

)
· Q̃ ñ(p) =

∑
n∈N

Bt(n) ·Qn(p) = Bt(p) ,

so that ϕt reproduces Bt. Since for an interior texel twe have

ϕt ≡
∑
ñ∈Ñ

(
1

|ñ|

∑
n∈ñ

Bt(n)

)
· Q̃ ñ =

∑
ñ∈Ñ

(∑
n∈ñ

Bt(n)

)
· Q̃ ñ ≡ ϕt ,

the function ϕt also reproduces Bt. □

Lemma 2. For any equivalence class ñ ∈ Ñ, the sum of the bilinear
basis functions evaluated at elements of ñ equals the cardinality of ñ:∑

t∈T

∑
n∈ñ

Bt(n) = |ñ|.

Proof. Since the {Bt} form a partition of unity onM we have:∑
t∈T

∑
n∈ñ

Bt(n) =
∑
n∈ñ

∑
t∈T

Bt(n) =
∑
n∈ñ

1 = |ñ|.

□

Claim 3. The functions {ϕt} form a partition of unity onM :∑
t∈T

ϕt(p) = 1, ∀p ∈ M .

Proof. Let B ∈ R |Ñ|× |T| be the matrix whose (ñ, t)-th entry is

the coefficient of Q̃ ñ in the expression of ϕt:

ϕt =
∑
ñ∈Ñ

Bñt · Q̃ ñ.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

154:14 • Prada, Kazhdan, Chuang, and Hoppe

Since the functions {Q̃ ñ} form a partition of unity on M , the

condition that the functions {ϕt} form a partition of unity onM is

equivalent to the condition that the sum of the {ϕt} is equal to the

sum of the {Q̃ ñ}. Or, equivalently, that the rows of B sum to one:∑
t∈T

Bñt = 1.

Let B ∈ R |Ñ|× |T| be the matrix whose (ñ, t)-th entry is the

coefficient of Q̃ ñ in the expression of ϕt. By construction, we have:

Bñt ≡
∑
n∈ñ

Bt(n) .

We can define B by normalizing the entries of B by their row-sums.

By Lemma 2, the ñ-th row-sum of B is the cardinality of ñ:∑
t∈T

Bñ, t =
∑
t∈T

∑
n∈ñ

Bt(n) = |ñ| .

Thus, normalizing B by its row-sums we can define

Bñ, t ≡
∑
n∈ñ

1

|ñ|
· Bt(n) .

Or equivalently,

ϕt ≡
∑
ñ∈Ñ

(
1

|ñ|

∑
n∈ñ

Bt(n)

)
· Q̃ ñ.

While one could perform this normalization in other ways (e.g., by

setting ϕt = ϕt/
∑
sϕs), normalizing by the row-sum is particularly

simple and ensures that the functions {ϕt} are linear combinations

of the {Q̃ ñ}, e.g., piecewise quadratic. □

Name Fig. Resolution Texels Charts V-cycle

Slick 1 1024 × 1024 734K 29 38

Filigree 1 1024 × 1024 701K 168 64

Camel 1 2048 × 2048 2837K 32 —

Girl 5 1024 × 1024 722K 36 39

Bimba 6 1024 × 1024 724K 1 23

Julius-1C 9 1018 × 1018 800K 1 23

Julius-4C 9 1089 × 1089 800K 4 30

Julius-28C 9 522 × 522 200K 28 14

Julius-28C 9 1055 × 1055 800K 28 39

Julius-28C 9 2127 × 2127 3200K 28 121

Julius-28C 9 4266 × 4266 12800K 28 409

Ballerina 14 1024 × 1024 740K 87 49

David head 15 1024 × 1024 749K 14 34

Mime 16 1024 × 1024 727K 35 41

Bunny 17 1024 × 1024 670K 9 29

Fertility 18 2048 × 2048 2770K 11 —

Table 2. Processing statistics, including the resolution of the texture image,
the number of texels, the number of charts, and the time for a single V-cycle
pass (in milliseconds). As line integral convolution requires a direct solver,
we do not provide V-cycle times for the Camel and Fertility models.

Symbol Summary description

p,q ∈ M points in parameterization domain

v,w ∈ TpM tangent vectors at p ∈ M
v∗,w∗ ∈ T ∗pM cotangent vectors at p ∈ M

Φ :M → R3 surface parameterization

µp : TpM ×TpM → R 2D Euclidean metric at p ∈ M
дp : TpM ×TpM → R immersion metric at p ∈ M
hp : TpM ×TpM → R Riemannian metric at p ∈ M
t ∈ T triangle in initial triangulation of M
c ∈ C cell in grid-polygonization of M
t̂ ∈ T̂ triangle in the grid-triangulation of M

r,s, t∈ T,Tl
texels (at level l)

a, b∈ A adjacent texel pairs

n∈N vertices / edges in T̂
ñ∈ Ñ Nmodulo seam-equivalence

ϕ,ψ ∈ Ω0(M) scalar functions

ω ∈ Ω1(M) cotangent vector field / 1-form

{Bt} ⊂ Ω0(M) bilinear basis

{Qn} ⊂ Ω0(M) quadratic Lagrange basis

{Q̃ ñ} ⊂ Ω0(M) seam-continuous quadratic Lagrange basis

{ϕt} ⊂ Ω0(M) bilinear-like basis

{ϕt} ⊂ Ω0(M) like {ϕ t} but forming a partition of unity

{ωa} ⊂ Ω1(M) 1-form basis

d : Ω0(M) → Ω1(M) differential operator

d∈ R |A|× |T| differential matrix

⋆0h ∈ R
|T|× |T|

Hodge 0-star matrix

⋆1h ∈ R
|A|× |A|

Hodge 1-star matrix

Mh ∈ R
|T|× |T|

mass matrix

Sh ∈ R |T|× |T| stiffness matrix

massh : Ω
0(M) → R |T| discrete mass operator

divh : Ω
1(M) → R |T| discrete divergence operator

Pl ∈ R |T
l+1 |× |Tl |

prolongation matrix

Rl ∈ R |T
l |× |Tl+1 |

restriction matrix

®x , ®y ∈ R |T| 0-form coefficients

®z ∈ R |A| 1-form coefficients

E : Ω0(M) → R gradient-domain energy

EC : Ω0(M) → R seam continuity energy

α ∈ R≥0 screening weight

β ∈ R≥0 gradient modulation

l ∈ {0, . . . ,L} level in the multigrid hierarchy

n ∈ N Gauss-Seidel iterations

Table 3. Summary of notation.

ACM Trans. Graph., Vol. 37, No. 4, Article 154. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Texture atlas
	3.2 Riemannian structure

	4 Inter-chart continuity
	4.1 Continuity by construction
	4.2 Comparison with soft continuity constraints

	5 Discretizing differential operators
	5.1 Metric-independent discretization
	5.2 Metric-dependent discretization
	5.3 Defining the linear system

	6 Multigrid
	6.1 Hierarchy construction
	6.2 Solution update
	6.3 Performance
	6.4 Convergence

	7 Applications
	7.1 Isotropic filtering
	7.2 Texture stitching
	7.3 Single-source geodesic distances
	7.4 Line integral convolution

	8 Conclusion and discussion
	Acknowledgments
	References

