
[bookmark: _GoBack]Appearance-Space Texture Synthesis
	Sylvain Lefebvre
	Hugues Hoppe

	Microsoft Research

	[image:]

	[image:]

	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	Exemplar
	Transformed
	Isometric synthesis
	Anisometric synthesis
	Synthesis in atlas domain
	Textured surface
	Radiance-transfer syn.

Online ID: papers_0175
Page 9 of 8

[bookmark: _Ref30496168][bookmark: _Ref101250925]Figure 1: Transforming an exemplar into an 8D appearance space improves synthesis quality and enables new real-time functionalities.

Abstract
The traditional approach in texture synthesis is to compare color neighborhoods with those of an exemplar. We show that quality is greatly improved if pointwise colors are replaced by appearance vectors that incorporate nonlocal information such as feature and radiance-transfer data. We perform dimensionality reduction on these vectors prior to synthesis, to create a new appearance-space exemplar. Unlike a texton space, our appearance space is low-dimensional and Euclidean. Synthesis in this information-rich space lets us reduce runtime neighborhood vectors from 55 grids to just 4 locations. Building on this unifying framework, we introduce novel techniques for coherent anisometric synthesis, surface texture synthesis directly in an ordinary atlas, and texture advection. Remarkably, we achieve all these functionalities in real-time, or 3 to 4 orders of magnitude faster than prior work.
Keywords: exemplar-based synthesis, surface textures, feature-based synthesis, anisometric synthesis, dimensionality reduction, RTT synthesis.
	

Introduction
We describe a new framework for exemplar-based texture synthesis (Figure 1). Our main idea is to transform an exemplar image from the traditional space of pixel colors to a space of appearance vectors, and then perform synthesis in this transformed space (Figure 2). Specifically, we compute a high-dimensional appearance vector at each pixel to form an appearance-space image , and map onto a low-dimensional transformed exemplar using principal component analysis (PCA) or nonlinear dimensionality reduction. Using as the exemplar, we synthesize an image of exemplar coordinates. Finally, we return which accesses the original exemplar, rather than .
The idea of exemplar transformation is simple, but has broad implications. As we shall see, it improves synthesis quality and enables new functionalities while maintaining fast performance.
	

	[bookmark: _Ref124055640]Figure 2: Overview of synthesis using exemplar transformation.

Several prior synthesis schemes use appearance vectors. Heeger and Bergen [1995], De Bonet [1997], and Portilla and Simoncelli [2000] evaluate steerable filters on image pyramids. Malik et al [1999] use multiscale Gaussian derivative filters, and apply clustering to form discrete textons. Tong et al [2002] and Magda and Kriegman [2003] synthesize texture by examining inter-texton distances. However, textons have two drawbacks: the clustering introduces discretization errors, and the distance metric requires costly access to a large inner-product matrix. In contrast, our approach defines an appearance space that is continuous, low-dimensional, and has a trivial Euclidean metric.
The appearance vector at an image pixel should capture the local structure of the texture, so that each pixel of the transformed exemplar provides an information-rich encoding for effective synthesis (Section 3). We form the appearance vector using:
Neighborhood information, to encode not just pointwise attributes but local spatial patterns including gradients.
Feature information, to faithfully recover structural texture elements not captured by local error.
Radiance transfer, to synthesize material with consistent mesoscale self-shadowing properties.
Because exemplar transformation is a preprocess, incorporating the neighborhood, feature, and radiance-transfer information has little cost. Moreover, the dimensionality reduction encodes all the information concisely using exemplar-adapted basis functions, rather than generic steerable filters.
In addition we present the following contributions:
We show that exemplar transformation permits parallel pixel-based synthesis using a runtime neighborhood vector of just 4 spatial points (Section 4), whereas prior schemes require at least 55 neighborhoods (and often larger for complex textures).
We design a scheme for high-quality anisometric synthesis. The key idea is to maintain texture coherence by only accessing immediate pixel neighbors, and to transform their synthesized coordinates according to a desired Jacobian field (Section 5).
We create surface texture by performing anisometric synthesis directly in the parametric domain of an ordinary texture atlas. Because our synthesis algorithm accesses only immediate pixel neighbors, we can jump across atlas charts using an indirection map to form seamless texture. Prior state-of-the-art schemes [e.g. Sloan et al 2003; Zhang et al 2003] require expensive per-vertex synthesis on irregular meshes with millions of vertices, and subsequently resample these signals into a texture atlas. Our technique is more elegant and practical, as it operates completely in the image space of the atlas domain, never marching over a mesh during synthesis (Section 6).
Finally, we describe an efficient scheme for advecting the texture over a given flow field while maintaining temporal coherence (Section 7). Our results exhibit less blurring than related work by [Kwatra et al 2005].
Previous work in these various areas required minutes of computation time for a static synthesis result. Remarkably, appearance-space synthesis lets us perform all the above functionalities together in tens of milliseconds on a GPU, i.e.
feature-preserving synthesis and advection of consistent radiance-transfer texture anisometrically mapped onto an arbitrary atlas-parameterized surface, in real-time.
Because we can synthesize the texture from scratch every frame, the user may interactively adjust all synthesis parameters, including randomness controls, direction fields, and feature scaling. Moreover, by computing the Jacobian map on the GPU, even the surface geometry itself can be deformed without any CPU load.
Background on texture synthesis
Our pixel-based neighborhood-matching synthesis scheme builds on a long sequence of earlier papers, which we can only briefly review here. The traditional approach is to generate texture sequentially in scanline order, comparing partially synthesized neighborhoods with exemplar neighborhoods to identify the best matching pixel [Garber 1981; Efros and Leung 1999]. Improvements include hierarchical synthesis [Popat and Picard 1993; De Bonet 1997; Wei and Levoy 2000], coherent synthesis [Ashikhmin 2001], precomputed similarity sets [Tong et al 2002], and order-independent synthesis [Wei and Levoy 2003].
[bookmark: _Ref123883911]We extend the parallel approach of [Lefebvre and Hoppe 2005], in which synthesis is realized as a sequence of GPU rasterization passes, namely upsampling, jitter, and correction. All passes operate on an image pyramid of exemplar coordinates rather than directly on exemplar colors (Figure 3). The key step of interest to us is the correction pass, in which each is assigned the exemplar coordinate whose 55 neighborhood best matches the currently synthesized neighborhood .
	[bookmark: _Ref123962164][image: 161b-pixels]
	[image: grad]
	

	[image: ctf_pyramid1]Exemplar
	Coordinates
	

	

	
	
	…
	
	
	

	[image: ctf_pyramid2]

	
	
	
	
	
	

	[bookmark: _Ref124391380]Figure 3: Review of parallel texture synthesis.

[bookmark: _Ref133739094]Definition of appearance vector
[bookmark: _Ref123956258]Spatial neighborhood
To compare a synthesized neighborhood and exemplar neighborhood , distance is typically measured by summing squared color differences. Because each pixel only contributes information at one point, large neighborhoods are often necessary to accurately recreate the original texture structure. Such large neighborhoods are a runtime bottleneck, as they require both many memory references and an expensive search process.
The runtime search can be accelerated by recognizing that the set of image neighborhoods typically lies near a lower-dimensional subspace. One technique is to project neighborhoods using PCA [Hertzmann et al 2001; Liang et al 2001; Lefebvre and Hoppe 2005]. The runtime-projected is compared against the precomputed . However, note the apparent inefficiency of the overall process – a large vector must be gathered from memory and multiplied by a large matrix , to then only yield a low-dimensional vector .
Our insight is to apply neighborhood projection on the exemplar itself as a precomputation, and then perform synthesis using this transformed exemplar. While we still perform PCA to accelerate runtime neighborhood matching (Section 4), our contribution is to redefine the signal contained in the neighborhood itself!
More concretely, let the Gaussian-weighted 55 neighborhoods of an RGB exemplar define a 75D appearance-space exemplar . We then project the exemplar using PCA to obtain a 3D transformed exemplar . Note in Figure 4 how has a greater “information density” than . The figure also demonstrates that synthesis using has higher quality than using even though both have 3 channels and hence the same synthesis cost. (Here we use the synthesis scheme described later in Section 4)
Generally, we let the transformed exemplar be 8D rather than 3D to further improve synthesis quality (Figure 4). The additional spatial bases are especially useful to encode feature and radiance-transfer data as introduced in the next sections. Note that for many color textures, a 4D transformed exemplar is sufficient, as shown in the supplemental material and in Figure 14.
	[image:]
[image:]
	[image:]
	[image:]
	[image:]

	[image:]
[image:]
	[image:]
	[image:]
	[image:]

	[image:]
[image:]
	[image:]
	[image:]
	[image:]

	 &
3D
	Using 3D
	Using 3D
	Using 8D

	
	Result of texture synthesis

[bookmark: _Ref123898713]Figure 4: Benefit of using exemplar transformation with spatial neighborhood as appearance vector.
Feature distance
Small spatial neighborhoods cannot encode large texture features. More importantly, simple color differences often fail to recognize semantic structure (e.g. mortar between nonhomogeneous stones). Wu and Yu [2004] introduce the notion of a feature mask to help guide the synthesis process. Their patch-based scheme applies local warping to align texture edges. We next show how their idea can be easily incorporated within our pixel-based scheme.
Given a user-provided binary feature mask, we compute a signed-distance field, and include this distance as an additional image channel prior to the neighborhood analysis of Section 3.1. Thus the new appearance vector has 554100 dimensions, but is still projected using PCA into 8D. For some textures, we find it beneficial to apply a simple remapping function to the distance. For example, clamping the distance magnitude to some maximum helps suppress singularities along the feature medial axis.
Note that unlike [Wu and Yu 2004], we need not consider feature tangent direction explicitly, because it is derived automatically in the spatial neighborhood analysis. (The PCA transformation may even detect feature curvature.) Moreover, “tangent consistency” is also captured within the appearance-space Euclidean metric. In fact, we obtain preservation of texture features without any change whatsoever to the runtime synthesis algorithm.
Figure 5 compares synthesis results before and after inclusion of feature distance in the appearance vector. The weight given to the feature-distance channel can be varied as shown in Figure 6. The tradeoff is that a larger weight downplays color differences, eventually resulting in synthesis noise.
Another scheme with the same goal of feature preservation is the two-pass approach of [Zhang et al 2003], which first synthesizes a binary texton mask by matching large hierarchical neighborhoods (with 152+112+72+32305 samples), and then uses this binary mask as a prior for color synthesis. In comparison, our approach involves a single synthesis pass with much smaller neighborhood comparisons (4 samples), and runs 4 orders of magnitude faster.
	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	
	Feature
mask
	Feature
distance
	No feature distance
	With feature distance

	
	
	
	Texture synthesis with 8D

[bookmark: _Ref123963346]Figure 5: Inclusion of feature signed-distance in the appearance vector, to better preserve semantic texture structures.
	[image:]
[image:]
	[image:]
	[image:]
	[image:]

	
	0
	1 (best)
	3

[bookmark: _Ref123963322]Figure 6: Effect of feature channel weight on synthesis quality.
[bookmark: _Ref125191724]Radiance transfer
Realistic rendering of complex materials requires not only pointwise attributes but also mesoscale effects like self-shadowing and parallax occlusion. Tong et al [2002] synthesize a bidirectional texture function (BTF) to capture surface appearance under all view and light directions. They cluster the high-dim. reflectance vectors onto a discrete set of 3D textons [Leung and Malik 2001]. BTFs represent reflectance using directional bases for both view and light, and are therefore ideal for point light sources.
We chose to represent a radiance transfer texture (RTT) which instead uses spherical harmonics bases appropriate for low-frequency lighting environments [Sloan et al 2003]. To simplify our system, we implement the diffuse special case which omits view-dependence but still retains self-shadowing. The RTT is computed from a given patch of exemplar geometry using ray tracing [Sloan et al 2003]. For accurate shadows, we use spherical harmonics of degree 6, so each RTT pixel is 36-dimensional.
We redefine the appearance vector as a 55 neighborhood of the RTT texture, i.e. a vector of dimension 52·36900. As before these are PCA-projected into an 8D appearance-space exemplar. For efficient PCA computation, we skip the covariance matrix by instead using iterative expectation maximization [Roweis 1997]. Again, the runtime synthesis algorithm is unchanged.
Even though the 8D transformed exemplar loses ~30-50% of the appearance-space variance (Section 9), the mesoscale texture structure is sufficiently well captured to allow accurate RTT synthesis. As can be seen in Figure 7 and in the video, we obtain consistent self-shadowing under a changing lighting environment.
	[image:]
	[image:]
	[image:]
	[image:]

	Using a height-field as exemplar results in inconsistent RTT shading

	[image:]
	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	[image:]
	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	[image:]
	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	Shadings of RTT exemplar
	Shadings of RTT synthesis (and close-up)

[bookmark: _Ref124765465]Figure 7: Diffuse radiance transfer as appearance vector, to obtain consistent self-shadowing during RTT shading.
[bookmark: _Ref123805979][bookmark: _Ref123954200]Isometric synthesis
Having created an 8D appearance-space exemplar, we can apply any pixel-based synthesis algorithm, e.g. evaluating a 55 neighborhood error by summing squared differences (in 8D rather than 3D). But in fact, the greater information density permits synthesis using a more compact runtime neighborhood.
In adapting our earlier parallel synthesis algorithm [Lefebvre and Hoppe 2005], we find that a runtime neighborhood of just 4 diagonal points is sufficient:
	

	 , i.e.

However, the parallel synthesis correction algorithm operates as a sequence of subpasses, and all 4 diagonal points belong to the same subpass, resulting in poor convergence. To improve convergence without increasing the size of the neighborhood vector , we use the following observation. For any pixel , a nearby synthesized pixel can predict the synthesized coordinate at as . Thus, for each point , we average together the predicted appearance vectors from 3 synthesized pixels used in different subpasses. Specifically, we use the combination

	

where accesses the neighboring pixels shown inset. Although we now read a total of 12 pixels, the neighborhood vector still only has dimension 4·832. For the anisometric synthesis scheme described in the next section, we find it useful to re-express the neighborhood using the equivalent formula

Then, we compare the synthesized neighborhood vector with precomputed vectors in the exemplar to find the best-matching exemplar pixel:

As in [Tong et al 2002], we limit the search to a set of -coherent candidates

where the precomputed similarity set identifies other pixels with neighborhoods similar to that of . (We use 2.)
As in [Lefebvre and Hoppe 2005], we speed up runtime neighborhood comparisons by applying PCA projection (not to be confused with the PCA used in exemplar transformation). Specifically, we project the 32D exemplar neighborhoods to 8D as where is a 832 matrix. And, we use the same projection at runtime, so that evaluating the distance requires just three GPU instructions.
To summarize, the preprocess performs two successive PCA projections, and . All our results derive from this basic scheme.
Synthesis quality is greatly improved over [Lefebvre and Hoppe 2005] as can be seen in Figure 1 and in our supplemental material, available at http://research.microsoft.com/projects/AppTexSyn/.
[bookmark: _Ref123883973]Anisometric synthesis
In this section we generalize synthesis to allow local rotation and scaling of the texture according to a Jacobian field . Rather than defining multiple versions of the exemplar texture under different deformations [Taponecco and Alexa 2004], we anisometrically warp the synthesized neighborhood prior to neighborhood matching, as in Ying et al [2001]. One advantage is the ability to reproduce arbitrary affine deformations, including shears and nonuniform scales. In our setting, the method of Ying et al would define the warped synthesized neighborhood as

where differences from the isometric scheme are colored blue. That is, the sampling pattern in synthesis space is transformed by the inverse Jacobian at the current point. However, such a transformation requires filtered resampling since the samples no longer lie on the original grid. More significantly, if the Jacobian has stretch (i.e. spectral norm greater than unity), the warped samples become discontiguous, resulting in a breakdown in texture coherence. Ying et al [2001] also describe a coherent scheme that warps neighborhoods in exemplar space, but this inhibits search acceleration techniques such as our neighborhood PCA .
Instead, we seek to estimate an anisometrically warped neighborhood vector by only accessing immediate neighbors of . Our idea is to use the direction of each offset vector to infer which neighboring pixel to access, and then to use the full offset vector to transform the neighbor’s synthesized coordinate.
More precisely, we gather the appearance vector for each neighbor as follows. We normalize the Jacobian-transformed offset as , which keeps its rotation but removes any scaling. Thus always references one of the 8 immediate neighbors of pixel . We retrieve the synthesized coordinate , and use it to predict the synthesized coordinate at as , much as in Section 4 but adjusting for anisometry. Finally, we offset this predicted synthesized coordinate by the original exemplar-space neighbor vector . As before, we compute the appearance vector as a combination of 3 pixels. The final formula is

Also, we redefine the -coherent candidate set as

to account for anisometry. Because the Jacobian-transformed offsets introduce continuous deformations, the synthesized coordinates are no longer quantized to pixel locations of the exemplar. Therefore, to preserve this fine-scale positioning of synthesized coordinates, we re-express the precomputed similarity sets as offset vectors rather than absolute positions. Because the synthesized coordinates are continuous values, exemplar accesses like involve bilinear interpolation, but this interpolation is inexpensive in the hardware texture sampler.
Finally, we maintain texture coherence during coarse-to-fine synthesis by modifying the upsampling pass to account for the anisometry. Each child pixel inherits the parent synthesized coordinate, offset by the Jacobian times the relative child location:

Figure 8 shows some example results. Our accompanying video shows interactive drawing of texture orientation and scaling, which is an exciting new tool for artists.
	[image: aniso_eggs_scale][image: aniso_eggs_scale][image:]
	[image: aniso_keyboard][image: advect_keyboard_rotate][image:]

	[image: aniso_zebra][image:]
	[image: aniso_7_rotation][image: aniso_7_rotation][image:]

	[image: aniso_hooks_both][image: dimred_isomap_hooks_64_4d][image:]
	[image: aniso_coblestone][image: aniso_coblestone][image:]

[bookmark: _Ref124154588]Figure 8: Results of anisometric synthesis.
[bookmark: _Ref123884418]Surface texture synthesis
Anisometric synthesis is important for creating surface texture. Approaches include per-vertex methods [e.g. Turk 2001; Wei and Levoy 2001] and patch-based ones [e.g. Neyret and Cani 1999; Praun et al 2000; Magda and Kriegman 2003]. To allow efficient parallel evaluation, we directly synthesize pixels in the parametric domain of the surface, like Ying et al [2001]. But whereas they construct overlapping charts on a subdivision surface, we consider ordinary texture atlases on arbitrary triangle meshes.
Surface tangential field. The user specifies a surface field of tangent and binormal vectors (Figure 9). This field can be interpolated from a few user constraints [Praun et al 2000] or obtained with a global optimization [Hertzmann and Zorin 2000].
Anisometry. Our goal is to synthesize texture anisometrically in the parametric domain such that the surface vectors are locally identified with the standard axes of the exemplar. From Figure 9 we see that , where is the 32 Jacobian of the surface parameterization , and is the desired 22 Jacobian for the synthesized map . Thus,

where “” denotes matrix pseudoinverse. If is orthonormal, then . The parameterization is piecewise linear, so the Jacobian is piecewise constant within each triangle. In contrast, the tangential frame varies per-pixel.
We compute the Jacobian map on the GPU by rasterizing the surface mesh over its texture domain. The pixel shader evaluates using derivative instructions, which is exact since is constant during the rasterization of each triangle.
Indirection map. To form seamless texture over a discontinuous atlas, the synthesis neighborhoods for pixels near chart boundaries must include samples from other charts. Here we exploit the property that our anisometric correction scheme accesses a neighborhood of fixed extent. We read samples across charts using a per-level indirection map , by replacing each access with . These indirection maps depend only the surface parameterization, and are precomputed by marching across chart boundaries. We reserve space for the necessary 2-pixel band of indirection pointers around each chart during atlas construction. Because all resolution levels use the same atlas parameterization, extra gutter space is reserved at the finest level (Figure 10). We avoid running the correction shader on the inter-chart gutter pixels by creating a depth mask and using early culling.

[bookmark: _Ref124156209]Figure 9: For surfaces, the synthesis Jacobian involves both the surface parameterization and a specified surface tangential field.
	[image:]
	[image:]
	[image:]

	[image:]
	[image:]
	[image:]

[bookmark: _Ref125807505]Figure 10: Levels 1-6 of the multiresolution synthesis pyramid.
	[image:]
	[image:]
	[image:]

	Textured surface
	No magnif.; 12.3 fps
	With magnif.; 11.7 fps

[bookmark: _Ref124221481]Figure 11: Surface texture synthesis with magnification.
Anisometric synthesis magnification. One difficulty in synthesizing texture within an atlas is that some parameterization distortion is usually inevitable and leads to undersampled regions. We are able to hide the sampling nonuniformity using synthesis magnification [Lefebvre and Hoppe 2005]. The idea is to use the synthesized coordinates to access a higher-resolution exemplar . Specifically, the pixel value at a continuous coordinate is obtained by combining the 4 nearest synthesized pixels as

where are bilinear interpolation weights. We modify synthesis magnification to account for anisometry by accessing the Jacobian map:

Anisometric synthesis magnification is performed in the surface shader at rendering time and thus adds little cost (Figure 11). Additional results are presented in Figure 12, including four examples of radiance-transfer textures (discussed in Section 3.3).
		color
	[image:]
	[image:]

		RTT
	[image:]
	

	[image:]
	[image:]
	[image:]

	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	[image:]
	[image:]
	[image:]
	[image:]
	[image:]

	[bookmark: _Ref124220787]Figure 12: Results of surface texture synthesis. The first column is an example of color texture, while the next four columns show
radiance-transfer textures. As in other figures, we visualize only the first 3 channels of the 8D transformed exemplar .

[bookmark: _Ref123884560][bookmark: _Ref124391121]Texture advection
Texture can be synthesized in space-time with a nonzero velocity field. Applications include texture-based flow visualization and textured animated fluids (e.g. water, foam, or lava). The challenge is to maintain spatial and temporal continuity without introducing blurring or ghosting. Neyret [2003] blends several advecting layers of texture regenerated periodically out-of-phase, and reduces ghosting by adapting the blend weights to the accumulated texture deformation. Kwatra et al [2005] cast synthesis as a global optimization over an overlapping set of blended neighborhoods. They achieve advection by warping the result of the previous frame with the flow field, and using the warped image as a soft constraint when optimizing the current frame.
	[image:]
	[image:]
	[image:]
	[image: kwatra_etal_siggraph2005_texture_optimization_img_7]
[Kwatra 2005]

	[image:]
	[image:]
	[image:]
	[image:]

[bookmark: _Ref124477227][image: rotate]Figure 13: Results of texture advection in 2D and on surfaces. Paradoxically, static frames from an ideal result may reveal little about the underlying flow field. So, seeing the video is crucial.
Our approach combines ideas from both these prior techniques. Given a velocity field in domain , by default we simply advect the synthesized coordinates of the previous frame to obtain the result at the current frame . We replace the synthesized coordinates in-place as .
Although transforming the synthesized coordinates creates a temporally smooth result, the texture gradually distorts in areas of flow divergence. Therefore, we must “regenerate” the texture using synthesis correction. However, achieving coherent synthesis requires upsampling parent pixels within the coarse-to-fine pyramid, which can increase temporal discontinuities. As a tradeoff between temporal coherence and exemplar fidelity, we upsample from the coarser level only in areas where the distortion of the synthesized texture exceeds a threshold. We measure distortion as the Frobenius norm between the observed Jacobian of the synthesized texture and the desired anisometric Jacobian (defined in Sections 5-6). Thus, the upsampling pass becomes

As an optimization, we find that obtaining good advection results only requires processing the 3-4 finest synthesis levels.
Compared to [Kwatra et al 2005], our advecting textures can conform to an anisometric field to allow flow of undistorted features over an arbitrary surface. Semantic features such as the keys and pustules in Figure 13 advect without blurring. And, synthesis is 3 orders of magnitude faster.
Nonlinear dimensionality reduction
Because exemplar transformation is a preprocess, we can replace linear PCA by nonlinear dimensionality reduction without affecting the performance of runtime synthesis. We have explored two such techniques: isomaps [Tenenbaum et al 2000] and locally linear embedding (LLE) [Roweis and Saul 2000].
Both isomaps and LLE aim to parameterize the data over a nonlinear manifold. They approximate the local structure of this manifold by building a weighted graph on the points using either a global distance threshold or -nearest neighborhoods. We have found this graph construction to be challenging in our problem setting. Distance thresholds become unstable in high-dimensional spaces due to low variance in distances. And, -neighborhoods behave poorly due to the presence of dense degenerate clusters. These clusters are in fact textons – groups of points with similar neighborhoods [Malik et al 1999]. Therefore, we perform fine clustering as a preprocess to collapse degenerate clusters, prior to constructing a 70 neighborhood graph on this regularized data.
We experiment with 4D transformed exemplars to emphasize differences (Figure 14). We find that isomaps lead to better texture synthesis results than LLE. One explanation is that isomaps are less likely to map dissimilar neighborhoods to nearby points in the transformed exemplar space, because they preserve geodesic distances between all pairs of points, whereas LLE preserves the geometry of local neighborhoods.
So far, isomap results are comparable to those of PCA, perhaps with a slight improvement. We think there is unique opportunity to further adapt and extend sophisticated nonlinear dimensionality reduction techniques to improve neighborhood comparisons while still enabling real-time synthesis.
		(4D)
	[image:]
	

	[image:]
	[image:]

	[image:]
	[image:]
	[image:]

	PCA
	isomaps
	LLE

[bookmark: _Ref124930562]Figure 14: Comparison of appearance-space dimensionality reduction using PCA, isomaps, and LLE, and resulting synthesis.
[bookmark: _Ref125079103]Discussion and additional results
Recall that we perform PCA projection twice: for appearance-space dimensionality reduction and for runtime neighborhoods . We can quantify the effectiveness of these projections by computing their fractional residual variance. Figure 15 plots appearance-space residual variance as a function of the dimension of the transformed exemplar . Each curve corresponds to a different level of coarse-to-fine synthesis (6 is finest) on the Figure 3 exemplar. For this dataset, the most challenging level is 3, where the 8D transformed exemplar loses 21% of the total variance. In some sense, this resolution level has the most complex spatial structure.
Figure 16 compares such curves for a simple color texture, a texture with a signed-distance feature channel, and a radiance-transfer texture. As expected, these texture types have appearance-space distributions that are progressively more complex. Table 1 summarizes this for the textures we have tested.
The results suggest that appearance-space dimensionality reduction can lose significant information and still permit effective texture synthesis. It is interesting to put this in the context of traditional synthesis schemes, in which appearance at an exemplar location is estimated by just point-sampling color. Intuitively, these schemes provide a constant-color approximation in our appearance space. We find empirically that this constant-color approximation has a mean squared error that is about 5-12 times larger than our 8D PCA residual variance. In effect, the larger runtime neighborhood comparisons used in earlier synthesis schemes helped compensate for this missing information.
Pixel-based schemes often use a parameter to artificially favor coherent patches [Hertzmann et al 2001]. We find that this bias becomes much less important in appearance-space synthesis. The bias is only beneficial in extreme cases such as undersampled surface regions and areas of rapidly changing Jacobian.

[bookmark: _Ref124825510]Figure 15: Appearance-space variance unaccounted by the largest principal components, for synthesis levels 1-6.

[bookmark: _Ref124826813]Figure 16: Comparison of appearance-space residual variance for a color texture, a texture with feature distance, and an RTT.
	Data type
	E dim.
	PCA residual variance (max over levels)

	
	
	8D
	8D

	
	
	mean
	sdv
	mean
	sdv

	RGB color
	75
	26%
	9%
	25%
	11%

	RGB + feature
	100
	30%
	10%
	27%
	12%

	RTT
	900
	36%
	16%
	19%
	12%

[bookmark: _Ref125185117]Table 1: Fraction of variance lost in the two PCA projections, expressed as mean and standard deviation over all datasets.
	Synthesis mode
	Synthesis rate (frames/sec)

	
	Standard size
:642, :2562
	Large size
:1282, :5122

	2D isometric
	48.3
	8.4

	2D anisometric
	40.4
	8.1

	Surface atlas
	54.7
	13.1

	Advection over surface
	88.6
	19.7

[bookmark: _Ref125185293]Table 2: Runtime performance in frames per second, including synthesis and rendering with magnification.
All results are obtained with Microsoft DirectX 9 on an NVIDIA GeForce 7800 with 256MB memory. Texture atlases are created using DirectX UVAtlas. For 2D isometric synthesis, the number of pixel shader instructions in the upsampling and correction passes is 45 and 383 respectively. When including all functionalities (anisometry, atlas indirection, advection), these increase to 52 and 516 instructions respectively. For each pyramid synthesis level, we perform 2 correction passes, each with 4 subpasses.
Table 2 summarizes runtime synthesis performance for different exemplar and output sizes. As demonstrated on the video, we can manipulate all synthesis parameters interactively since the texture is regenerated every frame.
Summary and future work
We transform an exemplar into an appearance space prior to texture synthesis. This appearance space is low-dimensional (8D) and Euclidean, so we avoid the large (e.g. 4002) inner-product matrices of texton schemes, as well as any noise due to discrete texton quantization. By including spatial neighborhood, semantic features, and radiance-transfer into the appearance vectors, we achieve results similar to earlier specialized schemes, but with a simpler, unifying framework that is several orders of magnitude faster and extends easily to anisometric synthesis and advection.
Pixel-based approaches are often perceived as inherently limited due to narrow neighborhoods and lack of global optimization. In this regard, results such as Figure 8 have unexpected quality. The robustness of appearance-space synthesis is most evident in our advection results, where the added constraint of temporal coherence makes synthesis particularly challenging.
There are a number of avenues for future work:
Consider other appearance-space attributes, such as foreground-background segmentation in multi-layer textures.
Synthesize view-dependent RTT or BTF. We believe that this should still be possible with an 8D transformed exemplar because the texture mesostructure is already captured accurately.
Further explore nonlinear dimensionality reduction.
Consider spatiotemporal neighborhoods for video textures.
Acknowledgments
We thank Ben Luna, Peter-Pike Sloan, and John Snyder for providing the RTT datasets and libraries.
References
ASHIKHMIN, M. 2001. Synthesizing natural textures. Symposium on Interactive 3D Graphics, 217-226.
DE BONET, J. 1997. Multiresolution sampling procedure for analysis and synthesis of texture images. ACM SIGGRAPH, 361-368.
EFROS, A., AND LEUNG, T. 1999. Texture synthesis by non-parametric sampling. ICCV, 1033-1038.
GARBER, D. 1981. Computational models for texture analysis and texture synthesis. PhD Dissertation, University of Southern California.
HEEGER, D., AND BERGEN, J. 1995. Pyramid-based texture analysis/synthesis. ACM SIGGRAPH, 229-238.
HERTZMANN, A., JACOBS, C., OLIVER, N., CURLESS, B., AND SALESIN, D. 2001. Image analogies. ACM SIGGRAPH, 327-340.
HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth surfaces. ACM SIGGRAPH, 517-526.
KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005. Texture optimization for example-based synthesis. SIGGRAPH, 795-802.
LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture synthesis. ACM SIGGRAPH, 777-786.
LEUNG, T., AND MALIK, J. 2001. Representing and recognizing the visual appearance of materials using 3D textons. IJCV 43(1), 29-44.
LIANG, L., LIU, C., XU, Y., GUO, B., AND SHUM, H.-Y. 2001. Real-time texture synthesis by patch-based sampling. ACM TOG 20(3), 127-150.
MAGDA, S., AND KRIEGMAN, D. 2003. Fast texture synthesis on arbitrary meshes. Eurographics Symposium on Rendering, 82-89.
MALIK, J., BELONGIE, S., SHI, J., AND LEUNG, T. 1999. Textons, contours and regions: Cue integration in image segmentation. ICCV, 918-925.
NEYRET, F., AND CANI, M.-P. 1999. Pattern-based texturing revisited. ACM SIGGRAPH, 235-242.
NEYRET, F. 2003. Advected textures. Symposium on computer animation, 147-153.
POPAT, K., AND PICARD, R. 1993. Novel cluster-based probability model for texture synthesis, classification, and compression. Visual Communications and Image Processing, 756-768.
PORTILLA, J., AND SIMONCELLI, E. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. IJCV (40)1.
PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped textures. ACM SIGGRAPH, 465-470.
ROWEIS, S. 1997. EM algorithms for PCA and SPCA. NIPS, 626-632.
ROWEIS, S., AND SAUL, L. 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323-2326.
SLOAN, P.-P., LIU, X., SHUM, H.-Y., AND SNYDER, J. 2003. Bi-scale radiance transfer. ACM SIGGRAPH, 370-375.
TAPONECCO, F., AND ALEXA, M. 2004. Steerable texture synthesis. Eurographics Conference.
TENENBAUM, J., DE SILVA, V., AND LANGFORD, J. 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319-2323.
TONG, X., ZHANG, J., LIU, L., WANG, X., GUO, B., AND SHUM, H.-Y. 2002. Synthesis of bidirectional texture functions on arbitrary surfaces. ACM SIGGRAPH, 665-672.
TURK, G. 2001. Texture synthesis on surfaces. SIGGRAPH, 347-354.
WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using tree-structured vector quantization. ACM SIGGRAPH, 479-488.
WEI, L.-Y., AND LEVOY, M. 2001. Texture synthesis over arbitrary manifold surfaces. ACM SIGGRAPH, 355-360.
WEI, L.-Y., AND LEVOY, M. 2003. Order-independent texture synthesis. http://graphics.stanford.edu/papers/texture-synthesis-sig03/.
WU, Q., AND YU, Y. 2004. Feature matching and deformation for texture synthesis. ACM SIGGRAPH, 362-365.
YING, L., HERTZMANN, A., BIERMANN, H., AND ZORIN, D. 2001. Texture and shape synthesis on surfaces. Symposium on Rendering, 301-312.
ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H.-Y. 2003. Synthesis of progressively-variant textures on arbitrary surfaces. ACM SIGGRAPH, 295-302.
1	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	21.0869	9.7338000000000022	3.4608000000000061	1.8756999999999948	0.79259999999999309	0.28959999999999297	0.13559999999999661	1.9999999999996021E-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	81.842199999999991	67.617999999999995	53.617100000000001	42.981099999999998	32.694199999999995	26.697599999999994	22.046300000000002	18.276700000000005	15.488600000000005	13.247	11.522800000000004	9.9685000000000059	8.4945000000000022	7.2441000000000031	6.089100000000002	4.9681000000000068	4.2069000000000045	3.4458999999999946	2.8164000000000016	2.3826999999999998	2.1032000000000011	1.8436999999999983	1.5977000000000032	1.3652000000000015	1.1631	0.96720000000000539	0.79229999999999734	0.64459999999999695	0.54430000000000689	0.44469999999999743	0.36400000000000432	0.29319999999999879	0.23460000000000036	0.18250000000000455	0.13460000000000605	9.6500000000006025E-2	6.0299999999998022E-2	4.7499999999999432E-2	3.5499999999998977E-2	2.6799999999994384E-2	1.829999999999643E-2	1.1099999999999E-2	3.9000000000015689E-3	1.9999999999953388E-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	81.507900000000006	65.498899999999992	51.605600000000003	38.3626	33.328100000000006	28.903700000000001	24.812200000000004	21.4452	18.690899999999999	16.249700000000004	14.211699999999993	12.1828	10.540499999999994	9.1173000000000002	7.8605000000000018	6.6068000000000069	5.651600000000002	5.0082000000000022	4.468900000000005	3.9669999999999987	3.4819999999999993	3.0865000000000009	2.7121000000000066	2.370199999999997	2.0523000000000025	1.7519999999999953	1.5448999999999984	1.3777000000000044	1.2361999999999966	1.1219999999999999	1.0160999999999945	0.91830000000000211	0.82150000000000034	0.73959999999999582	0.66840000000000543	0.6063000000000045	0.54859999999999332	0.4964999999999975	0.4544000000000068	0.41729999999999734	0.3825999999999965	0.34900000000000375	0.31959999999999411	0.29070000000000107	0.26300000000000523	0.23919999999999675	0.21779999999999688	0.19809999999999661	0.17860000000000298	0.16110000000000468	0.14499999999999602	0.13039999999999452	0.11700000000000443	0.10420000000000584	9.3599999999995021E-2	8.4400000000002251E-2	7.5999999999993406E-2	6.810000000000116E-2	6.059999999999377E-2	5.329999999999302E-2	4.6199999999998909E-2	3.9500000000003865E-2	3.3400000000000318E-2	2.8599999999997294E-2	2.389999999999759E-2	2.0099999999999341E-2	1.649999999999352E-2	1.3199999999997658E-2	1.0199999999997544E-2	7.4999999999931788E-3	5.0999999999987722E-3	3.200000000006753E-3	1.8000000000029104E-3	6.9999999999481588E-4	4	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	80.745999999999995	62.519799999999996	45.104999999999997	28.207099999999997	25.260400000000004	22.597999999999999	20.038899999999998	17.667100000000005	16.105400000000003	14.6143	13.183599999999998	11.805099999999996	10.503	9.5819000000000045	8.6843999999999966	7.8666999999999945	7.1084000000000032	6.481899999999996	5.930499999999995	5.4060000000000059	4.932699999999997	4.4993999999999943	4.0836000000000041	3.6880000000000024	3.3584000000000032	3.0348000000000042	2.7639000000000067	2.5019000000000062	2.2775000000000034	2.0671999999999997	1.8717999999999932	1.6944000000000017	1.5213999999999999	1.3580000000000041	1.2186999999999983	1.0870000000000033	0.96020000000000039	0.87449999999999761	0.79059999999999775	0.71380000000000621	0.63809999999999434	0.57609999999999673	0.52360000000000184	0.47459999999999525	0.43009999999999593	0.39119999999999777	0.35469999999999402	0.32280000000000086	0.29649999999999466	0.27079999999999416	0.24660000000000082	0.2254999999999967	0.20449999999999591	0.18550000000000466	0.16800000000000637	0.15089999999999293	0.13540000000000418	0.12130000000000507	0.10819999999999652	9.560000000000457E-2	8.3899999999999864E-2	7.2900000000004184E-2	6.3100000000005707E-2	5.5300000000002569E-2	4.779999999999518E-2	4.0300000000002001E-2	3.3400000000000318E-2	2.6899999999997704E-2	2.1000000000000796E-2	1.5799999999998704E-2	1.0800000000003251E-2	7.8000000000031378E-3	4.9999999999954525E-3	2.3999999999944066E-3	5	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	61.443199999999997	43.059199999999997	25.245500000000007	17.269499999999994	14.832899999999995	12.794399999999996	11.130499999999998	9.6450999999999993	8.3465999999999951	7.4750999999999976	6.6343999999999994	5.8519000000000005	5.1877999999999957	4.5810000000000031	4.0592999999999932	3.613900000000001	3.2102000000000004	2.8636000000000053	2.5883000000000038	2.3221999999999952	2.1012999999999948	1.9047000000000054	1.712299999999999	1.5572999999999979	1.4154000000000053	1.2827000000000055	1.1543000000000063	1.040300000000002	0.93489999999999895	0.8335000000000008	0.7546999999999997	0.68580000000000041	0.62179999999999325	0.56699999999999307	0.51529999999999632	0.4655000000000058	0.42000000000000171	0.38519999999999754	0.35129999999999484	0.31969999999999743	0.28820000000000334	0.26009999999999422	0.23600000000000421	0.21240000000000236	0.19029999999999347	0.16949999999999932	0.15030000000000143	0.13230000000000075	0.11629999999999541	0.10200000000000387	8.9200000000005275E-2	7.9899999999994975E-2	7.1200000000004593E-2	6.3199999999994816E-2	5.5599999999998317E-2	4.8599999999993315E-2	4.1899999999998272E-2	3.5399999999995657E-2	2.9700000000005389E-2	2.5099999999994793E-2	2.1299999999996544E-2	1.8000000000000682E-2	1.4899999999997249E-2	1.2100000000003774E-2	9.6000000000060481E-3	7.4999999999931788E-3	5.8999999999969077E-3	4.4999999999930651E-3	3.2999999999958618E-3	2.3999999999944066E-3	1.5999999999962711E-3	1.0999999999938836E-3	6.0000000000570708E-4	2.0000000000663931E-4	6	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	32.327200000000005	21.766000000000005	11.556299999999993	8.3247999999999962	6.3799000000000063	5.1364999999999981	4.1543999999999954	3.3062999999999931	2.6166999999999945	2.090999999999994	1.8075000000000045	1.5307999999999993	1.366100000000003	1.208200000000005	1.0703000000000031	0.94759999999999422	0.84420000000000073	0.74559999999999604	0.65489999999999782	0.56959999999999411	0.50830000000000553	0.45140000000000668	0.40040000000000475	0.36129999999999995	0.33079999999999643	0.30060000000000286	0.27209999999999468	0.24699999999999989	0.22369999999999379	0.20130000000000337	0.17959999999999354	0.16200000000000614	0.14560000000000173	0.132000000000005	0.1186000000000007	0.10680000000000689	9.5900000000000318E-2	8.5300000000003706E-2	7.540000000000191E-2	6.5899999999999181E-2	5.880000000000507E-2	5.2400000000005775E-2	4.6599999999997976E-2	4.0999999999996817E-2	3.6500000000003752E-2	3.2300000000006435E-2	2.8099999999994907E-2	2.4299999999996658E-2	2.0899999999997476E-2	1.8199999999993111E-2	1.5799999999998704E-2	1.3499999999993406E-2	1.1700000000004707E-2	1.0099999999994225E-2	8.6000000000012733E-3	7.1999999999974307E-3	6.100000000003547E-3	5.0999999999987722E-3	4.0999999999939973E-3	3.6000000000058208E-3	3.200000000006753E-3	2.7999999999934744E-3	2.3999999999944066E-3	2.0999999999986585E-3	1.8000000000029104E-3	1.4999999999929514E-3	1.1999999999972033E-3	1.0999999999938836E-3	9.0000000000145519E-4	6.9999999999481588E-4	6.0000000000570708E-4	3.9999999999906777E-4	2.9999999999574811E-4	2.0000000000663931E-4	Number of dimensions d

Residual variance (%)

RTT (viscous) (level 2)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	90.376670000000004	82.114499999999992	75.554200000000009	69.307999999999993	63.4754	58.908000000000001	54.882899999999999	50.965400000000002	47.326900000000002	44.189900000000002	41.399500000000003	38.938299999999998	36.686700000000002	34.451499999999996	32.387799999999999	30.479500000000002	28.6815	27.051400000000001	25.590500000000006	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	24.267899999999997	Feature (weave) (level 1)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	90.272360000000006	81.561999999999998	74.545299999999997	67.924399999999991	61.628599999999999	55.653500000000001	50.070799999999998	44.966299999999997	40.325299999999999	36.174999999999997	32.313100000000006	28.953699999999998	25.726399999999998	23.3446	21.126300000000001	18.955399999999997	16.859800000000007	14.947999999999993	13.117400000000004	11.437100000000001	9.9222000000000037	8.5584999999999951	7.2265000000000015	6.0264999999999986	4.9412999999999982	3.9159999999999968	2.9257999999999953	2.0965999999999951	1.2800000000000011	0.91160000000000707	0.57420000000000471	0.47790000000000532	0.39090000000000202	0.31570000000000675	0.25749999999999318	0.19950000000000045	0.16100000000000136	0.14069999999999538	0.12050000000000693	0.10099999999999909	8.3100000000001728E-2	6.9999999999993179E-2	5.8000000000006935E-2	4.8900000000003274E-2	4.0899999999993497E-2	3.3199999999993679E-2	2.7199999999993452E-2	2.1500000000003183E-2	1.659999999999684E-2	1.4600000000001501E-2	1.2699999999995271E-2	1.0800000000003251E-2	9.1000000000036607E-3	7.4999999999931788E-3	6.2999999999959755E-3	5.2000000000020918E-3	4.199999999997317E-3	3.2999999999958618E-3	2.4999999999977263E-3	1.8000000000029104E-3	1.1999999999972033E-3	6.9999999999481588E-4	2.9999999999574811E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	1.0000000000331966E-4	Color (greencells) (level 3)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	100	81.507900000000006	65.498899999999992	51.605600000000003	38.3626	33.328100000000006	28.903700000000001	24.812200000000004	21.4452	18.690899999999999	16.249700000000004	14.211699999999993	12.1828	10.540499999999994	9.1173000000000002	7.8605000000000018	6.6068000000000069	5.651600000000002	5.0082000000000022	4.468900000000005	3.9669999999999987	3.4819999999999993	3.0865000000000009	2.7121000000000066	2.370199999999997	2.0523000000000025	1.7519999999999953	1.5448999999999984	1.3777000000000044	1.2361999999999966	1.1219999999999999	1.0160999999999945	0.91830000000000211	0.82150000000000034	0.73959999999999582	0.66840000000000543	0.6063000000000045	0.54859999999999332	0.4964999999999975	0.4544000000000068	0.41729999999999734	0.3825999999999965	0.34900000000000375	0.31959999999999411	0.29070000000000107	0.26300000000000523	0.23919999999999675	0.21779999999999688	0.19809999999999661	0.17860000000000298	0.16110000000000468	0.14499999999999602	0.13039999999999452	0.11700000000000443	0.10420000000000584	9.3599999999995021E-2	8.4400000000002251E-2	7.5999999999993406E-2	6.810000000000116E-2	6.059999999999377E-2	5.329999999999302E-2	4.6199999999998909E-2	3.9500000000003865E-2	3.3400000000000318E-2	2.8599999999997294E-2	2.389999999999759E-2	2.0099999999999341E-2	1.649999999999352E-2	1.3199999999997658E-2	1.0199999999997544E-2	7.4999999999931788E-3	5.0999999999987722E-3	3.200000000006753E-3	1.8000000000029104E-3	6.9999999999481588E-4	Number of dimensions d

Residual variance (%)

image3.png

image86.png

image87.png

image88.emf
 Parametric domain D

f

ˆ

x

p

ˆ

y

p

p

Exemplar E

u

ˆ

y

u

b

t

ˆ

x

u

ˆ

x

p

ˆ

y

p

b



t



p

S

ˆ

y

f

p





ˆ

x

f

p





() fp

() fp

Surface M

Synthesized texture

Jacobian J f

Tangent frame

Surface parameterization

oleObject4.bin

[image: image29.wmf]()

fp

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

f

Surface parameterization

� EMBED Equation.DSMT4 ���

Jacobian Jf

Tangent frame

Parametric domain D

� EMBED Equation.DSMT4 ���

S

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

� EMBED Equation.DSMT4 ���

u

Surface M

Synthesized texture

Exemplar E

[image: image1][image: image2.wmf]ˆ

y

p

[image: image3.wmf]ˆ

y

f

p

¶

¶

[image: image4.wmf]ˆ

x

f

p

¶

¶

[image: image5.wmf]p

[image: image6.wmf]()

fp

[image: image7.wmf]ˆ

x

p

[image: image8.wmf]p

[image: image9.wmf]t

%

[image: image10.wmf]b

%

[image: image11.wmf]ˆ

y

p

[image: image12.wmf]ˆ

x

p

[image: image13.wmf]ˆ

x

u

[image: image14.wmf]t

[image: image15.wmf]b

[image: image16.wmf]ˆ

y

u

[image: image17.wmf]()

fp

[image: image18.wmf]ˆ

y

u

[image: image19.wmf]ˆ

y

f

p

¶

¶

[image: image20.wmf]b

%

[image: image21.wmf]b

[image: image22.wmf]ˆ

x

f

p

¶

¶

[image: image23.wmf]ˆ

x

u

[image: image24.wmf]ˆ

x

p

[image: image25.wmf]ˆ

y

p

[image: image26.wmf]t

[image: image27.wmf]p

[image: image28.wmf]t

%

_1186468321.unknown

_1186468500.unknown

_1187079608.unknown

_1187112559.unknown

_1187112589.unknown

_1187079654.unknown

_1186468507.unknown

_1186468425.unknown

_1186468469.unknown

_1186468414.unknown

_1186468224.unknown

_1186468274.unknown

_1186468218.unknown

image89.png

image90.png

image91.png

image92.png

image93.png

image94.png

image4.png

image95.png

image96.png

image97.png

image98.png

image99.png
AN

image100.png

image101.png

image102.png

image103.png

image104.png

image5.png

image105.png
e

[T

image106.png

image107.png

image108.png

image109.png

image110.png

image111.png

image112.png

image113.png

image114.png

image6.png

image115.png

image116.png

image117.png

image118.png

image119.png

image120.png

image121.png

image122.png

image123.png

image124.png

image7.png

image125.png

image126.png

image127.png

image8.emf

E xemplar

E

Color space

E



Appearance space

E





dim. red.

Transformed exemplar

S

texture synthesis

[]

ES

appearance vectors

Synthesized coordinates

Synthesized texture

oleObject1.bin

[image: image11.wmf]E

� EMBED Equation.DSMT4 ���

appearance�vectors

� EMBED Equation.DSMT4 ���

Synthesized�texture

� EMBED Equation.DSMT4 ���

Synthesized�coordinates

� EMBED Equation.DSMT4 ���

texture synthesis

Exemplar

Transformed�exemplar

dim. red.

Appearance space

Color space

� EMBED Equation.DSMT4 ���

[image: image1][image: image2.wmf]S

[image: image3.wmf]E

¢

%

[image: image4.wmf][]

ES

[image: image5.wmf]E

[image: image6.wmf]E

¢

[image: image7.wmf][]

ES

[image: image8.wmf]E

¢

[image: image9.wmf]E

¢

%

[image: image10.wmf]S

_1198734348.unknown

_1198734365.unknown

_1198734376.unknown

_1198734358.unknown

_1198734336.unknown

image9.png

image10.png

image11.jpeg

image12.jpeg

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png
4 e * TIE

AB b e R

Pt AV B TR

IILaA5T

! - 4

IS an--
o

iy iy B

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png
- N 5 W
A -

L
s

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png
ja 4
M-_\f ‘_ X A
e = e S
N \.s) A
2 w. \&*ﬁ \
sl e
y 4..*‘ JWXI\” \ A
et et et
n 3 1 ad d \«

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png
i G L =y
AIAAN))91%

W)))) .@%\JMT%
2

-~
-~
X
W,,‘W,m%ﬁagw&
O um%% A
NS

image68.png

image1.png

image69.png

image70.emf

p

oleObject2.bin

[image: image3.wmf]p

� EMBED Equation.DSMT4 ���

[image: image1][image: image2.wmf]p

_1193322751.unknown

image71.emf

p

oleObject3.bin

[image: image3.wmf]p

� EMBED Equation.DSMT4 ���

[image: image1][image: image2.wmf]p

_1193322751.unknown

image72.png

image73.png

image74.png

image75.png

image2.png

image76.png

image77.png

image78.png

image79.png

image80.png

image81.png

image82.png

image83.png

image84.png

image85.png

Appearance

-

Space Texture Synthesis

Sylvain Lefebvre

Hugues Hoppe

Microsoft Research

Exemplar

E

Transf

ormed

E

?

'

Isometric synthesis

Anisometric synthesis

Synthesis in atlas

domain

Textured surface

Radiance

-

transfer syn

.

Figure

1

:

Transforming an exemplar into an

8D appearance

space

??

?

'

improves synthesis

quality and enables new real

-

time functionalities

.

Abstract

T

he traditional approach in texture synthesis is to

compare

color

neighborhoods with

those of an

exemplar.

We show that

quality

is

greatly

improved

if pointwise color

s

are

replaced

by

appearance

vector

s

that

incorporate

nonlocal

information

such as

feature and

radiance

-

transfer data

.

We

perform

dimensionality reduction

on

these vectors

prior to synthesis,

to create

a new appearance

-

space

exemplar.

U

nlike

a

texton space

,

our

appearance space

is

low

-

dimensional and

Euclidean.

Synthesis in

this

information

-

rich

space lets us

reduce

runtime neighborhood vectors

from 5

´

5 grids

to just 4 locations

.

Building on this unifying framework, w

e

introduce

novel

technique

s

for coherent anisometric synthesis,

surface

texture synthesis

directly in

an

ordinary

atlas

, and

texture

advection

. Remarkably,

we achieve

all these functionalities in

real

-

time,

or

3

to

4 orders of magnitude faster than prior work.

Keywords

:

exemplar

-

b

ased synthesis, surface textures,

feature

-

based

synthesis, anisometric synthesis, dimensionality reduction

,

RTT

synthesis

.

1.

Introduction

W

e describe a new framework for exemplar

-

based texture synth

e-

sis

(

Figure

1

)

.

O

ur

main

idea is to

transform

an

exemplar

image

??

from

the traditional

space of

pixel

color

s

to a space of

appearance

vectors

, and

then

perform synthesis in this

transformed

space

(

Figure

2

)

.

Specifically, we

compute

a

high

-

dimensional appea

r-

ance vector at each pixel

to

form

an

appearance

-

space

image

??

'

,

and

map

??

'

onto

a low

-

dimensional

transformed

exemplar

??

?

'

using principal component analysis (PCA) or nonlinear dime

n-

sionality reduction.

Using

??

?

'

as the exemplar, we synthesize an

image

??

of exemplar coordinates. Finally, we return

??

?

??

?

which

accesses the original exemplar, rather than

??

?

'

?

??

?

.

Th

e idea of exemplar transformation is simple, but has broad

implications. As we shall see, it improves synthesis quality and

enables new functionalities while

maintaining fast

performance.

Several prior synthesis schemes use appearance vectors.

Heeger

and Bergen [1995]

,

De

Bonet [1997]

, and Portilla and Simoncelli

[2000]

evaluate

steerable filters on

image

pyramid

s

. Malik et al

[1999] use multiscale Gaussian derivative filters, and apply

clustering to form discrete

textons

. Tong et al [2002] and Magda

and Kriegman [2003] synthesize texture by examining inter

-

texton distances. However, textons have two drawbacks:

the

clustering introduces discretization errors, and

the

distance

metric

requires

costly access to a large inner

-

product matrix. In contrast,

our approach defines an appearance space that is

continuous,

low

-

dimensional

,

and has a trivial Euclidean metric

.

The appearance vector at an image pixel should capture the

local

structure of the texture

,

so that each pixel of the transformed

exemplar

??

?

'

provides an information

-

rich

encoding for effective

synthesis

(Section

3

)

.

We form the appearance vector using:

·

Neighborhood

information

, to encode not just pointwise attri

b-

utes but

local

spatial

patterns

including gradients.

·

Feature

information

, to faithfully recover

structural

texture

elements not captured by

local

??

2

error

.

·

R

adiance transfer

, to

synthesize

material with consistent

meso

-

scale

self

-

shadowing

properties.

Because exemplar transformation is a preprocess, incorporating

the

neighborhood

, feature, and radia

nce

-

transfer information

has

little cost.

Moreover

,

the

dimensionality reduction

encodes

all the

information concisely

using

exemplar

-

adapted

basis functions,

rather than

generic

steerable filters.

In addition we present the following contributions:

·

We

sh

ow

that

exemplar

transformation

permits

parallel pixel

-

based

synthe

sis using

a runtime neighborhood vector of just 4

spatial points

(Section

4

)

,

whereas prior schemes require at least

5

´

5 neighborhoods (

and often

larger for complex texture

s

).

·

We

design

a scheme for

high

-

quality

anisometric synthesis.

The key idea is to

maintain tex

ture coherence by only

accessing

immediate pixel neighbors

,

and to transform their synthesized

coordinates according to a desired Jacobian field (Section

5

).

·

We create

surface

texture by performing anisometric synthesis

directly in the parametric domain of an ordinary texture atlas.

Because our synthesis algorithm accesses only immediate pixel

neighbors, we can jump across atlas charts using an

indirection

map

to form seamless texture

. Prior state

-

of

-

the

-

art schemes

E

xemplar

E

Color space

E

¢

Appearance space

E

¢

%

dim. red.

Transformed

exemplar

S

texture synthesis

[]

ES

appearance

vectors

Synthesized

coordinates

Synthesized

texture

Figure

2

:

Overview of synthesis using exemplar transformation.

 Appearance - Space Texture Synthesis

Sylvain Lefebvre Hugues Hoppe

Microsoft Research

Exemplar E Transf ormed E ' Isometric synthesis Anisometric synthesis Synthesis in atlas domain Textured surface Radiance - transfer syn .

Figure 1 : Transforming an exemplar into an 8D appearance space ?? ' improves synthesis quality and enables new real - time functionalities . Abstract T he traditional approach in texture synthesis is to compare color neighborhoods with those of an exemplar. We show that quality is greatly improved if pointwise color s are replaced by appearance vector s that incorporate nonlocal information such as feature and radiance - transfer data . We perform dimensionality reduction on these vectors prior to synthesis, to create a new appearance - space exemplar. U nlike a texton space , our appearance space is low - dimensional and Euclidean. Synthesis in this information - rich space lets us reduce runtime neighborhood vectors from 5  5 grids to just 4 locations . Building on this unifying framework, w e introduce novel technique s for coherent anisometric synthesis, surface texture synthesis directly in an ordinary atlas , and texture advection . Remarkably, we achieve all these functionalities in real - time, or 3 to 4 orders of magnitude faster than prior work. Keywords : exemplar - b ased synthesis, surface textures, feature - based synthesis, anisometric synthesis, dimensionality reduction , RTT synthesis . 1. Introduction W e describe a new framework for exemplar - based texture synth e- sis (Figure 1) . O ur main idea is to transform an exemplar image ?? from the traditional space of pixel color s to a space of appearance vectors , and then perform synthesis in this transformed space (Figure 2) . Specifically, we compute a high - dimensional appea r- ance vector at each pixel to form an appearance - space image ?? ' , and map ?? ' onto a low - dimensional transformed exemplar ?? ' using principal component analysis (PCA) or nonlinear dime n- sionality reduction. Using ?? ' as the exemplar, we synthesize an image ?? of exemplar coordinates. Finally, we return ?? ?? which accesses the original exemplar, rather than ?? ' ?? . Th e idea of exemplar transformation is simple, but has broad implications. As we shall see, it improves synthesis quality and enables new functionalities while maintaining fast performance. Several prior synthesis schemes use appearance vectors. Heeger and Bergen [1995] , De Bonet [1997] , and Portilla and Simoncelli [2000] evaluate steerable filters on image pyramid s . Malik et al [1999] use multiscale Gaussian derivative filters, and apply clustering to form discrete textons . Tong et al [2002] and Magda and Kriegman [2003] synthesize texture by examining inter - texton distances. However, textons have two drawbacks: the clustering introduces discretization errors, and the distance metric requires costly access to a large inner - product matrix. In contrast, our approach defines an appearance space that is continuous, low - dimensional , and has a trivial Euclidean metric . The appearance vector at an image pixel should capture the local structure of the texture , so that each pixel of the transformed exemplar ?? ' provides an information - rich encoding for effective synthesis (Section 3) . We form the appearance vector using:  Neighborhood information , to encode not just pointwise attri b- utes but local spatial patterns including gradients.  Feature information , to faithfully recover structural texture elements not captured by local ?? 2 error .  R adiance transfer , to synthesize material with consistent meso - scale self - shadowing properties. Because exemplar transformation is a preprocess, incorporating the neighborhood , feature, and radia nce - transfer information has little cost. Moreover , the dimensionality reduction encodes all the information concisely using exemplar - adapted basis functions, rather than generic steerable filters. In addition we present the following contributions:  We sh ow that exemplar transformation permits parallel pixel - based synthe sis using a runtime neighborhood vector of just 4 spatial points (Section 4) , whereas prior schemes require at least 5  5 neighborhoods (and often larger for complex texture s).  We design a scheme for high - quality anisometric synthesis. The key idea is to maintain tex ture coherence by only accessing immediate pixel neighbors , and to transform their synthesized coordinates according to a desired Jacobian field (Section 5).  We create surface texture by performing anisometric synthesis directly in the parametric domain of an ordinary texture atlas. Because our synthesis algorithm accesses only immediate pixel neighbors, we can jump across atlas charts using an indirection map to form seamless texture . Prior state - of - the - art schemes

E xemplar

E

Color space

E



Appearance space

E

 

dim. red.

Transformed exemplar

S

texture synthesis

[] ES

appearance vectors

Synthesized coordinates

Synthesized texture

Figure 2 : Overview of synthesis using exemplar transformation.

