
 

 1 

There Goes the Neighborhood:  
Relational Algebra for Spatial Data Search 

 
 

Jim Gray 
Microsoft Research 

Alexander S. Szalay 

 Gyorgy Fekete 

 William O’Mullane 

Aniruddha R. Thakar 

Johns Hopkins University 

 Gerd Heber  
Cornell Theory Center 

  Arnold H. Rots 

Harvard-Smithsonian Center for Astrophysics 
 

 

 April 2004 
 

Technical Report 

������������	� 

 

 

Microsoft Research 

Microsoft Corporation 

One Microsoft Way 

Redmond, WA  98052 

 



 

 2 

Table of Contents 

1. A Notation for Points and Regions_________________________________________________ 1 

2. Working in 3D Avoids Spherical Geometry__________________________________________ 2 

3. The HTM approach ____________________________________________________________ 2 

4. The Zone Approach ____________________________________________________________ 4 

4.1. The Problem – Going outside SQL is expensive_____________________________________________4 

4.2. The Basic Zone Idea ___________________________________________________________________4 

4.3. Using Zones to Find Nearby Objects______________________________________________________4 

4.4. Using Zones to Find Neighbors __________________________________________________________5 

4.5 Zone Summary ________________________________________________________________________6 

5. Representing Regions as Constraint Tuples _________________________________________ 6 

5.1. Representing Regions __________________________________________________________________6 

5.2. Region Constructors ___________________________________________________________________7 

5.3. Point-Region Queries __________________________________________________________________8 

5.4. Region Algebra _______________________________________________________________________8 

5.3. Limiting Region Searches with Zones _____________________________________________________9 

6. Summary ____________________________________________________________________ 10 

7. Acknowledgements ____________________________________________________________ 10 

8. References ___________________________________________________________________ 11 



 

 1 

There Goes the Neighborhood:  
Relational Algebra for Spatial Data Search 

Jim Gray1, Alexander S. Szalay2, Gyorgy Fekete2, Gerd Heber3, Wil O’Mullane2, Arnold H. Rots4, Aniruddha R. Thakar2 
(1) The Johns Hopkins University, (2) Microsoft, (3) Cornell Theory Center, (4) Harvard-Smithsonian Center for Astrophysics 

Gray@Microsoft.com,{Szalay, gyuri , WOMullan Thakar}@pha.jhu.edu, heber@tc.cornell.edu, arots@cfa.harvard.edu 
 

Abstract1 

We explored ways of doing spatial search within a relational 
database: (1) hierarchical triangular mesh (a tessellation of the 
sphere), (2) a zoned bucketing system, and (3) representing areas 
as disjunctive-normal form constraints.  Each of these approaches 
has merits. They all allow efficient point-in-region queries.  A 
relational representation for regions allows Boolean operations 
among them and allows quick tests for point-in-region, regions-
containing point, and region overlap.  The speed of these 
algorithms is much improved by a zone and multi-scale zone-
pyramid scheme.  The approach has the virtue that the zone 
mechanism works well on B-Trees native to all SQL systems and 
integrates naturally with current query optimizers – rather than 
requiring a new spatial access method and concomitant query 
optimizer extensions.  Over the last 5 years, we have used these 
techniques extensively in our work on SkyServer.sdss.org, 
SkyQuery.net, and TerraService.net.  

Categories and Subject Descriptors 
H.2.1 Data Logical Design, H.2.2 Data Physical Design, 
H.2.8 Database Applications, J.2 Physical Sciences and 
Engineering, C.4 Systems Performance, E.1 Data 
Structures, E.1 Data Storage Representations,   

Keywords 
Spatial search, databases, relational algebra  

1.  A Notation for Points and Regions  
Spatial is special.  Each spatial application seems to have 
some peculiar aspect that requires building a unique 
indexing method.  In Astronomy, the special requirements 
are that most operations are done on the celestial sphere, 
and the typical search involves spatial, spectral, and 
temporal attributes of a high-dimensional space.  The 
typical queries are points-near-point, point-in-region and 
region-overlaps-region – where regions are arbitrary 
polygons in space-time-spectrum coordinates.  

The OpenGIS [OpenGIS] standard approximates these 
requirements, but it is not exactly right for them.  It lacks 
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the astronomical coordinate systems and projections (even 
though it has more than 70,000 geoid coordinate systems.)  
Astronomy has a legacy going back to the Phoenicians 
(minutes, seconds and degrees) that predate OpenGIS by a 
few millennia. Astronomers have accumulated quite a few 
other “standards” since then.  So, we have borrowed 
concepts and terminology from OpenGIS, but followed the 
tradition of developing our own syntax and API.   

Astronomy applications typically use a small subset of 
World Coordinate Systems that are defined for 
astronomical use.  The most commonly used frames are 
either spherical or Cartesian coordinate systems; equatorial 
is aligned with the earth's rotation axis and equator, ecliptic 
is aligned with the earth's orbit, and Galactic is aligned with 
the Galactic plane.  The equatorial coordinate system 
defined by the position of the earth's axis at the beginning 
of the year 2000 with longitude/latitude coordinates of right 
ascension and declination is most common.  It is called the 
International Celestial Reference System (ICRS) or J2000.  
The community developed an XML schema for defining 
space-time regions [Rots].  In that standard, measured 
points have a location, error properties, and perhaps 
velocities. Regions of the sphere are described as the union 
of spherical polygons and their complements.  Each 
polygon is in turn bounded by a set of arcs.  Each arc is 
defined by its two endpoints (and the great circle passing 
through those endpoints) or by a small circle defined by the 
intersection of a plane with the sphere where the plane is 
described by its normal vector and its length.  As with 
OpenGIS, regions may have a buffer zone that extends the 
region to include near-neighbors. Buffer zones are 
measured in arc-angles. 
Humans never see the arcane XML syntax for regions; 
mostly they deal with graphical interfaces.  But 
occasionally a compact linear syntax is wanted (analogous 
to the well-known text representation of OpenGIS [OpenGIS].  
The rough BNF of this syntax is: 

circleSpec :=  CIRCLE J2000 ra dec radArcMin   
        |  CIRCLE CARTESIAN x y z radArcMin 
rectSpec :=  RECT J2000 {ra dec}2 
polySpec :=  POLY J2000 {ra dec}3+ 
  |  POLY CARTESIAN { x y z }3+ 
hullSpec   :=  CHULL J2000 {ra dec}3+ 
  |  CHULL CARTESIAN { x y z }3+ 
convexSpec :=  CONVEX { x y z d}+ 
regionSpec :=  REGION  { convexSpec  }+   
areaSpec   :=  circleSpec | rectSpec  | polySpec   
        |  hullSpec |  regionSpec 
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To give two examples, here is the definition of a 3 arc-
minute circle centered at right ascension 30 degrees and 
declination 20 degrees. 
  CIRCLE J2000 30 20 3  
And the definition of a spherical triangle of the North-
Eastern hemisphere is a sequence of ra, dec points 
  POLY J2000  0 0  0 90  180 0 

As with OpenGIS there is a natural Boolean algebra of 
these regions (union, intersection, negation.) There is also a 
natural spatial algebra for comparing points and regions.  
The typical queries are point-proximity (“What 
measurements are near this point?”), point-polygon queries 
(“What points are in this polygon?” and “What polygons 
contain this point?”), and polygon-polygon queries (“What 
polygons overlap or contain or are outside this polygon?”).  
The simplification query (“What is the “simple form” of 
this region definition?”) also gives a test for empty regions.  
Buffer-zone queries (“What points or polygons are near this 
polygon?”)  are useful in many contexts. On the other hand 
we have not found a need for all nine Egenhofer OpenGIS 
spatial relationship functions (e.g. touches).  

2. Working in 3D Avoids Spherical Geometry 
Spherical metrics generally involve transcendental 
functions (sine, cosine, tangent,…) that are expensive to 
compute and that have singularities.  It is computationally 
expensive to decide if a point is inside or outside a circle, 
or if two circles overlap.  We use a 3D vector 
representation to circumvent these problems.  All points 
are represented as vectors on the unit sphere in Cartesian 
(J2000) coordinates.  All circles are represented by the 
intersection of a plane with the unit sphere and a sign 
designating which side of the plane is inside the circle.  The 
intersection of the unit sphere with the plane normal to 
vector C = (x, y, z) of length l defines circle C.  Point P, 
represented as vector (px, py, pz) is inside the circle if it is 
“above the plane,” that is if P�C = x�px+y�py+z�pz >l. By 
going to 3-dimensions, point-in-polygon computations 
replace most transcendental computations with a few 
multiplies, adds, and a compare (Figure 1). We use this 
technique extensively. 

Fuzz or boundary zones are important to many queries 
since all measurements are approximate and since one is 
often examining neighborhoods to look for clusters and 
local effects.  The vector representation accommodates a 
fuzz of � radians on the circle C = (x, y, z) of length l by 
replacing l with cos(acos(l)+�).  The vector length is 
reduced by the cosine of the angle.  To add a � radian 
buffer to a polygon or region, just apply this transformation 
to each constraint of the region.  

In what follows we describe three approaches to 
implementing these algorithms and the tradeoffs among the 
approaches.  All the code is in the public domain and 
available at [SkyServer Regions]. 

3. The HTM approach 
Virtually all spatial indexing techniques work on a 
hierarchical decomposition of space into bounding volumes 
that limit the search.  Then a finer membership test is 
applied to all elements in the candidate boxes.  The 
Hierarchical Triangular Mesh (HTM) first divides the 
sphere into 8 spherical triangles, and then builds a quad-tree 
recursively decomposing each triangle into 4 sub-triangles.  
Unlike many other spherical projection systems this one 
has the property that all triangles at the same level are 
within 42% of the area of all others and there are no 
singularities [HTM].  

Each triangle can be named by a sequence face,t1,t2,…,tn 

where  face is the index of the face of the major triangle, 
and each ti is an integer between 0 and 3 indicating which 
sub-triangle at that level has been chosen. This sequence is 
called the htmID of the triangle. Points can be described as 
tiny triangles – for example, a 20-deep mesh identifier on 
the surface of the earth corresponds to a triangle about 0.3 
meters on a side, and a 30 deep mesh corresponds to a sub- 
millimeter-sized triangle on the geoid (0.3 milli arcseconds)  
and fits nicely in a 64-bit word.  For most astronomy, a 20-
deep htmID is adequate (0.3 arcsecond accuracy).   

HtmIDs have a very useful property characteristic of space-
filling curves: if T1 and T2 are HTM triangles, then 
htmID(T1)  is a prefix of htmID(T2) iff T1 contains T2.  
Storing the htmIDs in a Btree index will cluster nearby 
objects one another.  All points or polygons within a 
triangle are located just after the parent triangle in the 
sorted list.   

We built a library that, given a region as described in 
Section 1, returns a list of HTM triangles that cover that 
region [HTM]. We call this the HTM-cover. These triangles 
can be looked up in a B-tree and all points or polygons 
contained in those triangles are easily located.  One can 
then run the “geometry filter” on those candidates to see if 
they qualify.   

 r 

cos(r) 

<px,py,pz> 

<x,y,z> 

px�x+py�y+pz�z 

Figure 1: The vector 
product distance.  
Point (x,y,z) is within 
arc-angle r of 
(px,py,pz) if their dot 
product is more than 
l=cos(r). 

 

The approximate logic of the HTM-cover routine is to 
consider each convex region in turn.  For each region, 
construct a list of HTM triangles that intersect the region.  
Recursively divide each triangle on the region edge, trying 
to get a finer approximation to the region; discarding sub-
triangles outside the region.  The algorithm returns between 
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10 and 20 triangle ranges, which give an acceptable 
fraction of false positives (about 30%).  

It is possible to spatially-enable almost any application by 
adding an HTM index and these HTM procedures to a pre-
existing table.  We call these extensions the HTM-spine-
schema.  We have added an HTM-spine-schema to a dozen 
astronomical databases by following these three steps:   

First, htmIDs are represented as 64 bit quantities.  The 
HTM code provides routines to convert between coordinate 
space and htmIDs with signatures something like this: 
define function PointToHtmID (point  varchar) returns htmID 
define function HtmIIdToPoint(htmID bigint) returns varchar 

Second, all point objects in the astronomy databases have 
their htmIDs computed when they are first ingested.  An 
htmID field is added to each row and there is an HTM index 
on each such table T that allows very fast spatial searches.   
create index T_htm on T(htmID, x, y, z)  

Third, the htmCover table-valued function has the SQL 
signature: 
define function htmCover (region  varchar) 
returns table (beginHtm htmID primary key, endHTM htmID) 
The routine returns all points in the database that are 
included in the region.  

That’s all that is needed to spatially enable a table. The 
following query finds all points in table T within 3 
arcminutes of the North Celestial Pole (there are 60 
arcseconds in a degree and the pole is vector (1,0,0)): 
select T.*  
from T join htmCover(‘CIRCLE CARTESIAN 1 0 0 3’)  
  on  T.htmID between beginHtm and endHtm 
  and T.x*1 + T.y*0 + T.z*0 > acos(radians(3.0/60))   

The last line of this query does the distance test using a dot-
product.  Figure 2 diagrams this “cosine” logic. This is an 
example of the careful geometry test following the coarse 
selectivity filter of the HTM mesh.   

The above query is such a common operation that the spine 
schema implements a dozen table-valued fGetNearest and 
fGetNearby functions that return objects of a certain type 
within a certain radius of a given point.  These functions 
use an HTM index to limit the search and then they filter 
the objects using the following equation to compute the 
actual distance between object o with celestial coordinates 
o.x, o.y, o.z and the point x,y,z:  

DistanceInDegrees =  
 degrees(2×asin(sqrt((o.x-x)2+(o.y-y)2+ (o.z-z)2))/2))   (1) 

This calculation in terms of asin()is more stable for very 
small distances (acos() is very close to 1 for small angles.) 

 
The HTM design forms the basis for the SkyServer 
[SkyServer] and several other astronomical online 
databases.  The performance can be roughly characterized 
as follows.  On a 1 GHz Intel Pentium processor2 the fixed 
cost of a null scalar function call in SQL Server is 31 �s, 
the cost of a null table-valued function call is 780 �s and 
the cost of a null external procedure call is 169�s.  By 
comparison, the htmLookup computation takes 170 �s and 
the htmCover computation for a small circle or rectangle 
takes about 1.4 milliseconds.  Much of this time goes into 
the linkage code between SQL and the HTM library written 
in C++.  There is a substantial impedance mismatch 
between SQL and C++.  SQL casts the HTM triangle-list 
into binary string and then into a SQL table.   
 
Still, these routines are wrapped within SQLServer table 
valued functions that join the HTM triangles with the 
spatial data points and then run the geometry filter on each 
point.  The base fGetNearbyObjXyz() runs in 6.7 ms for a 1 
minute radius (28 objects returned, 35 objects examined.  
Other table-valued functions layered above 
fGetNearbyObjXyz() like fGetNearestObjXyz() or 
fGetNearbyObjEq(), add 3 ms to this cost (9.8 ms per call).  
So, most of the cost is in the procedure linkage, not in the 
HTM library. 
 
With help from Beysim Sezgin and Peter Kukol of the 
Microsoft SQLServer group, we reimplemented the HTM 
libraries using the native virtual machine (the common 
language runtime) integrated with the next version of the 
product.  This bypasses much of the SQL-HTM linkage 
cost.  The resulting performance is described in Table 1.  
Clearly, the impedance mismatch is much reduced by 
integrating the virtual machine with the database.  It also 
eliminates about 500 lines of very ugly glue code.  

Table 1: Elapsed times (cpu milliseconds) of HTM functions using 
Transact-SQL or native virtual machine in SQLServer 2005.  

 SQLServer 2000™ SQLServer 2005 + CLR 

  Null Htm Null Htm 

scalar   0.03 .17 .05 .09 

table valued .5+.06R 1.45 + .06R 0.1 +.002R 0.2 +0.003R 

In addition to the HTM implementation we have also 
implemented a HEALPix index [HEALPix] which gives a 
hierarchical iso-area and iso-latitude tessellation of the sphere 
and so are convenient for harmonic data analysis on the sphere 
(densities, integrals, spherical harmonics, Fourier transforms, 
etc.,). We are also flirting with an Igloo implementation 
[Igloo] which has similar properties and benefits.   

                                                                 
2 Unless otherwise noted, all measurements are done on a 1.1GHz Intel 
Pentium III processor.  θ

θ/2 xyz
o.xyz o.

xy
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xy
zsin(θ/2) = |o.xyz-xyz|/2
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Figure 2.  Equation (1) to computes arcangle distance 
between unit vectors xyz and o.xyz. 
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Figure 4:  The figure at left shows cpu time vs. radius for 
neighbors function at various zone heights.  It suggests that any 
small zone height is adequate.  The figure at right shows cpu time 
vs. best time for each radius.  It indicates that a zoneHeight of 4 
arcminutes is near-optimal and that it outperforms smaller and 
larger radii by large factors.   

4. The Zone Approach 
Zones are a way of bucketing two-dimensional spaces (or 
2+D spaces) to give dynamically computed bounding 
boxes for queries.   

4.1. The Problem – Going outside SQL is expensive 
The basic problem is that SQL can evaluate equation (1) at 
the rate of about 170,000 records per second per cpu (5.6 
µs per row) while the HTM functions run at about 170 
records per second per cpu (6 ms per row to return ten 
nearby objects). This is a thousand-to-one performance 
difference.  The previous section showed that the high cost 
of the HTM functions is a combination of the HTM 
procedures, the expensive linkage to SQL via external 
stored procedures (a string interface), and the use of table-
valued functions.  The HTM code uses about 1.5 ms and 
the other costs (linkage, string conversion, and table-valued 
function) are in the range of 4 ms. The linkage costs are 
much reduced with the integration of SQLServer 2005 with 
C#, but native execution will still have a substantial 
advantage.   

4.2. The Basic Zone Idea 
An alternative is to use SQL operations to limit the search 
rather than using the HTM procedures.  Pushing the logic 
entirely into SQL allows the query optimizer to do a very 
efficient job at filtering the objects.  In particular, the zone 
design gives a three-fold speedup for the table-valued 
functions.  This same idea when applied to computing all 
the neighbors of each object in a 100 million object 
astronomy archive gives a 32-fold speedup, tuning a 14-day 
computation into a 9-hour job (see Section 4.3.) 

The basic idea is to map the celestial sphere into zones, 
each zone is a declination stripe of the sphere with some 
zoneHeight (see Figure 3).  The South Pole is in zone 
number zero. Then an object with a declination of dec 
degrees is in zone: 

zoneNumber = floor((dec+90) /zoneHeight)   (2) 

There will be ceiling(180/zoneHeight) zones.  The 
following code defines the zone table. 

create table zone (zone int, objID bigint, ra float, dec float,   
   x  float, y float, z float, 
   primary key (zone, ra, objID)) 
 Notice that the primary key index on (zone,ra) clusters the 

elements of a zone’ s bounding boxes in Figure 3.  The 
primary key index also makes (zone,ra) lookups very fast.  
The zone table is populated from table T approximately as 
follows.  
insert into zone 
 select floor((dec+90) /zoneHeight), ra, dec, x, y, z 
 from T  

4.3. Using Zones to Find Nearby Objects 
If we search for all objects within a certain radius of point 
(ra, dec) then we need only look in certain zones, and only 
in certain parts of each zone.  Indeed, to find all objects 
within radius r of point ra, dec3, one need only consider 
zones between 
  maxZone = floor ( (dec +90+R)/zoneHeight) (3) 
  minZone =floor( (dec +90-R)/zoneHeight)  
and within these zones one only need consider objects o 
with 
   o.ra between ra-r and ra+r     (4a) 
(modulo cos(dec) and ra wraparound corrections in (4) 
below.) 

This way of limiting the search is similar to the HTM 
approach but avoids calling an external procedure – it lets 
SQL do the math.  The primary key on zones makes this 
lookup very fast, so that the resulting procedure has the 
performance given in Figure 4.   

There are some nasty details that need a bit of extra 
mechanism.  The biggest problem is that the sphere is 
round, so equation (4a) must be computed modulo 360°, 
and must be corrected for the fact that the right-ascension is 
“ compressed”  by cos(dec) as it moves away from the 
equator.  So ra should be divided by cos(dec)+ε where ε is 
a tiny number added to prevent division by zero when dec 
is ±90°.   Fortunately, equation (3) needs no correction, but 
equation (4a) should become 
                                                                 
3 We assume RA and DEC have been normalized to be in the ranges [0°, 
360°] and [-90°, 90°] respectively. 

 

Figure 3:  The division of the sphere 
into 12 zones (in practice there are 
thousands of zones).  Two circular 
neighborhoods are shown, one inside 
one zone (minZone=maxZone) and 
another crossing 3 zones (minZone+2= 
maxZone.)  The dotted boxes show how 
the ra filter and the dec filter further 
reduce the search.  The ra filter needs to 
be “ expanded”  by 1/cos(abs(dec)).  
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  o.ra between   ra-R/(abs((cos(dec))+ε) and   
    ra+R/(abs(cos(dec))+ε)   (4) 

One other detail is that when one is near the prime meridian 
(ra = 0° or ra = 360°) then the “ other end”  of the range is 
nearby.  This problem is solved by adding these neighbors 
into the zone as the margins with ra less than zero for the 
left margin and ra greater than 360° for the right margin. 
The main area is the ½ open interval [0°, 360°) and the 
margins must respect this ½ open property.  Assuming a 
MaxRadius of 1° and epsilon is 1.0e-6: 

insert into zone        -- right margin, notice +360 on ra4 
 select  floor((dec+90) /@zoneHeight), ra+360, dec, x, y, z 
 from T 
 where ra >= 0  
  and ra < @MaxRadius/(cos(radians(abs(dec)))+@epsilon)  
 
insert into zone           -- left margin, notice -360 on ra 
 select  floor((dec+90) /@zoneHeight), ra-360, dec, x, y, z 
 from T 
 where ra < 360 
  and ra >= 360-@maxRadius/(cos(radians(abs(dec)))+@epsilon)  
  
Now, equation (4) is actually correct and finds all 
neighbors within the zone. The full query to select the 
neighbors within @r of @ra and @dec from a zone is: 
select objID  
from  zone       -- force the zone 
where  zoneID = @zoneID  -- using zone number   
  and ra between   -- quick filter on ra 
        @ra - @r/(cos(radians(abs(@dec)))+ @epsilon)  
     and @ra +@r/(cos(radians(abs(@dec)))+ @epsilon) 
  and dec between @dec-@r  -- quick filter on dec  
       and @dec+@r 
 and 4*power(sin(radians(@r / 2)),2) > -- careful distance test 
    power(x-@x,2)+power(y-@y,2)+power(z-@z,2)   
          
This statement combined with the minZone and maxZone 
logic of equation (4) gives the performance described in 
Figure 4 for a table-valued function finding neighbors 
nearby a point.  This is the 7x speedup over the HTM 
external procedures.  The full statement handling this zone 
logic is: 
select objID  
from zone     
where zoneID between floor((@dec+90-@r)/@zoneHeight)  
        and floor((@dec+90+@r)/@zoneHeight)  
and ra between @ra-@r/(cos(radians(abs(@dec)))+@epsilon)  
             and @ra+@r/(cos(radians(abs(@dec)))+@epsilon) 
and dec between @dec-@r   
      and @dec+@r 
and 4* power(sin(radians(@r / 2)),2) > -- careful distance 
filter  
    power(x-@x,2)+power(y-@y,2)+power(z-@z,2)   

                                                                 
4 In SQLServer, host language variables are preceded by a “ @”  character.  
So, here for example, @zoneHeight, and @epsilon are inputs or free 
variables in this SQL expression. 

 One can further accelerate the test by observing that ra-@r 
and ra+@r is too “ fat”  a band for any zone except the one 
holding the center of the circle.  Figure 5 gives the equation 
for reducing the neighboring zone cell width.   

 4.4. Using Zones to Find Neighbors 
 Some queries want to compare several hundred million 
objects with all their neighbors.  Astronomical searchers for 
gravitational lenses and for clusters are examples of such 
queries.  To speed these queries the SkyServer precomputes 
the Neighbors table that lists all an object’ s neighbors 
within 30 arcseconds.  This table averages about 9 
neighbors per object; but, some objects have hundreds of 
neighbors and some have none.  Using this materialized 
view is a thousand times quicker than searching for the 
neighbors each time -- 60 �s vs 6 ms per neighborhood.   

Computing the neighbors table using the 
fGetNearbyObjects function can take a long time:  on the 
fifteen million object SDSS early data release, the 
computation took 56 hours – or about 74 neighborhoods per 
second.  Fortunately, the computation was done only a few 
times during the load process and then used many times in 
queries.  But, a speedup is needed as the SDSS database 
grows twenty-fold by 2007 and the naive computation 
grows to 2 months.   

The computation is embarrassingly parallel and cpu-bound. 
Each object’ s neighbors can be computed independently.  
So a 30-node processor farm could do the 2 month job in 2 
days.  But, it makes sense to look for better algorithms. 

 The zone approach can bypass the stored procedure and get 
30-fold speedup as follows.  We can join each zone with 
itself and then with its north and south neighbor zones.  
These three joins all use the relational operators with 
automatic parallelism and with some very sophisticated 
optimizations.  This bypasses much of the transact-SQL 

r ra-zoneMax

� � � ��� � ��� �
	
������ � � � �
� 	
��� � ��� � �
����� �
	 ������ � � � zoneMax

x

Ra ± x

r ra-zoneMax

� � � ��� � ��� �
	
������ � � � �
� 	
��� � ��� � �
����� �
	 ������ � � � zoneMax

x

Ra ± x

 

Figure 5: when a 
circle crosses multiple 
zones, the ra range of 
the adjacent zones can 
be reduced from r to x 
as shown in the 
diagram.  For zones 
above the center 
point, zoneMin 
replaces zoneMax in 
the equation.  

 

Figure 6: The upper figure shows the 
three cases that require joining the 
center zone with two neighbors, and 
shows the 3r×2r box that the nested 
loop must examine.  The figure at the 
bottom shows a zoneHeight = r/2 and 
where a zone must be joined with two 
northern neighbors and two southern 
neighbors, so the box is (5/2)r×2r.  The 
cost of the two extra joins outweighs 
the 20% reduction in pair-wise 
comparisons. 
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logic in the original algorithm.  

The basic join to compute the neighbors is: 
 
insert neighbors     -- insert one zone's neighbors  
select o1.objID as objID,  
     o2.objID as NeighborObjID,   
     .. other fields elided 
from zone o1 join zone o2        -- a nested loop join on   
   on o1.zoneID-@deltaZone = o2.zoneID      --  zone,ra   
  and o2.ra between  
        o1.ra - @r/(cos(radians(abs(o1.dec)))+@epsilon)  
    and o1.ra + @r/(cos(radians(abs(o1.dec)))+@epsilon) 
where (  (o1.ra >= 0 and o1.ra < 360)  -- not both marginal 
     or  (o2.ra >= 0 and o2.ra < 360))     
  and o1.objID < o2.objID            -- do 1/2 the work  
  and o2.dec between o1.dec-@r and o1.dec+@r   
  and 4*power(sin(radians(@r / 2)),2) > -- careful distance 
filter  
power(o1.x-o2.x,2)+power(o1.y-o2.y,2)+power(o1.z- o2.z,2)   

This is done for @deltaZone in {-1, 0, 1}.  The insert-join 
above does only ½ the work, finding only objects where 
o1.objID<o2.objID5.  To complete the neighbors table it 
is augmented with the mirror image of each pair (o2, o1).  
Then an (zone, ra) index is built on the resulting neighbors 
table.   

This computation runs at 2.8k objects per second, 
computing the personal subset of the SDSS EDR in about a 
minute.  The old algorithm took more than an hour on the 
same data and hardware. On the personal SkyServer (154k 
rows) the times for these steps on a warm database are: 

Build zone table: 9.5 seconds 
Join to zone  -1 10.5 seconds  generated 128,469 rows 
Join to zone  0 16.5 seconds  generated 389,157 rows 
Join to zone  1  9.4 seconds  generated 126,104 rows 
Add mirror rows 10.7 seconds  
Create index is 7.6 seconds   
Total time 64.2 seconds  Total   1,287,460 rows 
 
There is one surprise in the neighbors computation – it 
wants small zones (in particular zoneHeight = @r is 
optimal).  Unlike the nearby computation (Section 3.3 and 
Figure 4) that works with a specific ra, dec in equation (4); 
the zone-join compares all objects in one zone to all objects 
in three other zones within the designated ra limits.  That 
is, an object is compared with all objects in a box that is 2× 
radius wide and 3×zoneHeight high (the zone and its north 
and south neighbors as in Figure 6.)  This means that “ tall”  
zones result in quadraticly more work Minimizing the 
zoneHeight minimizes work so zoneHeight = radius is 
optimal (½ arcminute is the radius for the neighbors table.)  
One might consider zoneHeight smaller than radius, but 
                                                                 
5 This optimization has two benefits: (1) It prevents marginal neighbors 
from being added twice (this might happen near the poles;) and (2) adding 
the mirror records, rather than computing them, speeds the computation by 
about 30% (see the following discussion of the cost of each phase).  

then one has to join with two or more northern and two or 
more southern neighbors as in Figure 6.  These extra joins 
add extra costs that outweigh the savings in pair-wise 
comparisons.   

4.5 Zone Summary  
Using relational operators and a zoned-index to limit search 
speeds up the spatial proximity functions (GetNearbyObj et. 
al.) by about 3.4x and speeds the SDSS Neighbors table 
computation by about 32x. The neighbor table computation 
can be further accelerated by computing different zone 
pairs in parallel.  Table 3 summarizes the speedups.  One 
virtue of the zone approach is that is a way to implement 
spatial functionality in SQL without any proprietary 
extensions.  It allows a completely portable library for 
points-near-point queries, and for some simple point in 
polygon and polygon overlaps queries.  

Table 3:  The times and speeds of computing the Neighbors with 
HTM or zone algorithms.  The zoned algorithm is much faster.  
The neighbors-of-a-point speedup is 8:1 and the computation of 
all neighbors speedup is 35:1.   

  
elapsed 
(ms/obj) 

rate 
(obj/sec) speedup 

fGetNeighbors HTM 14.5 69 1 
HTM Build Neighbors table 13.5 74 1 
Zoned GetNeighbors 1.7 578 8 
Zoned build Neighbors table 0.2 2,406 35 

5. Representing Regions as Constraint Tuples 
So far, the discussion has focused on point-in-polygon and 
nearby-points queries.  Now we discuss ways to do algebra 
on regions and to do point and region queries with this 
representation.   

5.1. Representing Regions 
Section 2 explained that spherical areas can be represented 
as a set of positive and negative convex-areas.  Non-convex 
areas may be composed as the union of several convex 
areas. Swiss-cheese areas with holes in them can be 
composed of positive and negative convex areas.  Each 
convex area is defined by the intersection of the unit sphere 
with the interior of a 3D convex (possibly open) 
polyhedron, formed by these half-space constraints. The 
plane of a half-space constraint is in turn defined by a 
normal unit vector v = (vx,vy,vz) and length l.  Point 
P=(x,y,z) on the unit sphere is inside the circle if 
(x,y,z)�(vx,vy,vz)> l.  A point is inside a convex area if it is 
inside each of the half-space constraints. Figure 8 shows a 
complex convex area and also shows the dot-product test 
for  “ inside the half-space” .  

More generally, any half-space H of the N dimensional 
space S can be expressed as H = {xε S | f(x) > 0} for some 
function f.  The intersection of a set of half-spaces {Hi}, 
defines a convex of points. C = {x ε S | x ε Hi for all Hi}.  A 
region R is the union of a set of convexes R = {x ε Ci}. 
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Figure 7:  The figure at left shows a complex shape 
consisting of two positive convex areas and a circular hole 
(negative convex area) in the center. The figure at right 
shows how a vector and length define an edge and circular 
area on the spherical surface. Points in the shaded area have 
dot product with unit vector v= (x,y,z) greater than l.  To get 
the opposite area, complement x, y, z, and l. 

These ideas can be translated into relational database terms 
quite simply.  A region is a name and an ID. 

create table Region (  
 regionID int identity primary key, 
 type    char(16),        -- short description 
 comment   varchar(8000),    -- long description 
 predicate  varchar(8000))    -- complied containment  
 )         -- test see fRegionPredicate() below. 

The region’ s convexes are stored as sets of 3D half-spaces 
together in a HalfSpace table: 
Create table HalfSpace (  
 regionID  int not null -- region name 
              foreign key references Region(regionID), 
 convexID    int not null,  -- grouping a set of ½ spaces 
 halfSpaceID  int identity(),  -- a particular ½ space 
 x      float not null,  -- the (x,y,z) parameters  
 y      float not null,  -- defining the ½ space 
 z      float not null,  
 l       float not null,  -- the constraint constant   
 primary key(regionID, convexID, halfSpaceID) 
 ) 

The following SQL query returns all the regions and 
convexes containing point @x, @y, @z. 
select regionID, convexID from HalfSpace 

where @x *x + @y * y + @z * z <  l  
group by all regionID, convexID 
having count(*) = 0  

This query groups all the half-spaces by their convexes.  
For each convex it asks how many of the half-spaces do 
NOT contain the point.  If that answer is zero (count(*) = 
0), then the point is inside all the convex’ s half-spaces and 
so is inside the convex and region.  

The key observation is that the HalfSpace table represents a 
region as a disjunct (or) of one or more convexes.  Each 
convex is a conjunct (and) of its component half-spaces.  
The HalfSpace table is the disjunctive normal form 
representation of the region. The inverse (not) of a convex 
can be expressed through deMorgan’ s laws. If the convex X 
has half-space constraints a,b,c, i.e. X=a•b•c, one can 

express its inverse ~X= ~a + ~b + ~c, where • represents 
and, + is or and ~ is not.  It is advantageous to express this 
negation region as disjoint convexes. This can be achieved 
by expressing ~X as 

~X = ~a + a•~b + a•b• ~c 

The negation of the half-space constraints is trivial, each 
component of the 4-vector (x,y,z,l) is multiplied with –1. 

The representation of spherical regions in terms of regions, 
convexes and half-spaces allows us to describe even the 
most complex “ holes in holes”  geometries. At the same 
time, the representation has some shortcomings: it ignores 
points exactly on the edge (the inequality is strict), but 
since our objects have finite extents with errors, this is not a 
problem.  

5.2. Region Constructors 
One can define a simple library for constructing regions 
and convexs.  RegionNew creates a region: 
regionID    = RegionNew 

      (type varchar(16), comment varchar(8000)) 
RegionNewConvex adds an empty convex hull to a region 
convexID   = RegionNewConvex(regionID int) 
RegionNewConvexConstraint adds a half-space constraint to a 
region: 
halfSpaceID = RegionNewConvexConstraint 

(regionID int, convexID int, 
x float, y float, z float, l float) 

To complete this we need the destructor: 
RegionDrop(regionID).  
Using these primitives, you can define complex regions. 
Indeed, regions can get very complex, so one needs a 
routine to discard empty convexes, merge neighboring 
convexes, and discard redundant constraints.  
RegionSimplify performs these operations. 
  RegionSimplify(regionID)  
RegionSimplify is quite complex and merits a separate 
paper. It considers each convex in turn seeing if it is null as 
follows: For every pair of planes, it computes the two 
intersection points of those two planes with the unit sphere.  
For N planes, this is a list of N2 points. A convex can form 
several patches on a sphere – each patch being a connected 
region—for example a cube can have eight triangular 
patches, one for each corner point. For each patch, we 
construct the list of arcs and points that meet in a vertex 
point at the boundary of the patch.  We divide constraints 
not participating in any of the vertex points into two sets: 
those with c<0 (holes), and c≥0 (limits).  First discard all 
limit constraints except the one with the largest c, i.e. the 
smallest circle. Discard all hole constraints where the anti-
center point (-x,-y,-z) is outside the patch.  Simplify also 
merges adjacent convexes if they have the form A = 
A.B+A.~B. and discards a convex contained in another 
convex.  The code is at [SkyServer Region]. 



 

 8 

tile

wedge

Tilebox &
SkyBox

mask

5 sectorlets
1 sector

tile

wedge

Tilebox &
SkyBox

mask

5 sectorlets
1 sector

Sectorlets SectorSectorlets Sector

 
Figure 8. Examples of the region algebra.  Various kinds of regions are derived  
from Boolean combinations of other regions.   

 
These routines convert between the string representation 
and the half-space representation:   
      string = fRegionString(regionID bigint) 
and  
      regionID = RegionFromString(string varchar(8000)) 
Other routines convert among coordinate systems.  

5.3. Point-Region Queries 
The regions representation is very convenient for point-in-region 
queries. The following routine returns all regions containing point 
(@x, @y, @z):  
procedure RegionsOnPoint(@x float, @y float, @z float) 
as select distinct regionID -- return region name 
   from HalfSpace  -- where 
   where convexID in ( -- one of its convexes  
 select convexID -- contains the point, i.e. 
  from HalfSpace  -- all half spaces contain the 
 where @x * x + @y * y + @z * z <  l    
  group by all convexID -- i.e. , the point  is not 
  having count(*) = 0 )  -- outside any half space. 

This query runs at the rate of 100K convexes per second 
per cpu (the inner loop is embarrassingly parallel).  
Conversely if one has many points and wants all the points 
in a certain region @regionID, the query is  
create table Points (point ID int, x float, y float, z float). 
 
define procedure PointsInRegion(@regionID int)  
as select *    -- return all points 
   from Points p    -- in the area 
   where exists (  select  ConvexID  -- Where there is a  
    from  HalfSpace h      -- convex in the region 

where  regionID = @regionID  -- where no points   
  and  (p.x*h.x + p.y*h.y + p.z*h.z) < h.l   

group by all ConvexID    -- outside a half-plane   
  having count(*) = 0)  -- is zero (no outside points) 

Again, this query runs at about 100K convexes per second.  
One can go about ten times faster by compiling the 
predicate as follows. First translate the predicate into an 
expression of the form: 
    or (and ((p.x*a.x + p.y*a.y + p.z*a.z) >= a.l)) 
using  
    predicate   = RegionPredicate(regionID) 
Then combine the predicate with a select… where 
<predicate> and do an sp_execute of the resulting string.  
Something like the following: 

declare @query varchar(8000) 
set @query =  

'select * '   -- return all points in area 
'from Points p ' +  -- satisfying the predicate 
'where ' + fRegionPredicate(@regionID)  --  

execute (@query)  -- execute the query 

This query runs at 1 µs per point or at the rate of a million 
half-space tests per second per cpu if it is 
not IO bound.  Deriving the predicate costs 
less than 1ms and the fixed cost of 
executing the predicate on a small set of 
points is about 6ms (all this on a 1Ghz 
machine).  So, if more than a thousand 
points are to be tested, the fixed cost of 
compilation is paid for by the speedup in 
point comparisons. 

Unfortunately, SQL Server does not allow 
execute inside a function so one must use a 

temporary table and a stored procedure rather than using 
the more efficient table-valued variable. 

5.4. Region Algebra 
Once constructed, regions can be manipulated with Boolean 
operations. 
regionID = RegionOr (regionID1 int, regionID2 int, 
        type varchar(16), comment varchar(8000)) 
regionID = RegionAnd (regionID1 int, regionID2 int, 
        type varchar(16), comment varchar(8000)) 
regionID =  RegionNot (regionID1 int,  
        type varchar(16), comment varchar(8000)) 
 
These functions create new regions by adding a row to the 
Region table and many rows to the HalfSpace table.  The 
‘OR’  function just adds in all half-space rows from each of 
the two source regions with the new region name and with 
the convexID renumbered.   

The “ AND”  predicate is more subtle. It intersects each 
convex from the first region with each convex from the 
second region.  If there are N and M convexes in the 
original regions, then there will be NxM convexes in the 
conjunction.  This is just an application of deMorgan’ s 
Law:   
    (A1 | A2) & (B1 | B2) = A1&B1 | A1&B2 | A2&B1 | 
A2&B2 

The negation predicate is by far the most complex.  It needs 
to build a new set of convexes that draw a negative half-
space from each of the original ½ spaces.  The “ and”  and 
“ or”  were simple SQL statements. The negation required a 
recursive definition doing the Cartesian product of the 
(negation of) each half space in the first convex with the 
negation of all the other convexes in the region.  

The algorithm uses RegionSimplify() to  simplify the 
resulting regions, discarding empty convexes. 
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The discussion here has been in terms of 3D space, because 
that is easiest to visualize.  But, the algorithms and data 
structures apply to higher dimensions (more than 3D) by 
adding more parameters.  They also apply to half spaces 
defined by higher-order polynomials (quadratic rather than 
linear equations). Further, the algorithms apply to non-
Euclidian spaces like the surface of the sphere.  The thing 
that makes the algorithms work is the triangle inequality 
inherent in any metric space. 

5.4. Limiting Region Searches with Zones 
When the number of regions gets large (more than 10,000 
constraints) the region queries need to be restricted by 
some bounding box so that only a few thousand regions are 
considered in each query and so queries can be answered in 
milliseconds rather than seconds or minutes.   

The standard approach is to use an R-Tree to represent 
bounding boxes [Samet].  Unfortunately, or perhaps 
fortunately, our database system does not support an R-
Tree index.  So, we have to do bounding boxes some other 
way.  As it happens, the zoned approach fits with the SQL 
Query optimizer and so gives a spatial extension to SQL 
with no extra work by the vendor.  This approach should 
work with any relational database system.  

The zone idea (Figure 3) used earlier for point-point 
comparisons can be used for regions as well.  Each region 
R has a bounding circle radius.  If all radii were limited to 
the zone height (if all regions were smaller than twice the 
zone height), then we could just store a (zone, ra, dec, 
radius, regionID) tuple for each region in an index.  Then 
when looking for regions overlapping a region R centered 
on @ra, @dec with @radius one would look in the 
neighborhood of zone number z = @dec/@zoneHeight. The 
zones to search would be limited to zones in the interval  
      z ± ceiling(1+ @radius/@zoneHeight).     
Within each of those zones, one would look at the box  
centered on @ra and look @buffer = @r + @zoneHeight  to 
the left and right6:     
    [@ra - @buffer , @ra + @buffer]. 

This is an efficient B-tree search.  The zone search cuts the 
space by a factor of a thousand (if there are many thousand 
zones) and the @ra limit typically cuts the area by another 
factor of a hundred.  So, careful geometry tests are only 
needed on few candidate regions.  

The problem with this approach is that not all regions are of 
the same scale.  Some are very large – covering ½ the sky, 
while most are tiny.  The large regions have very large 
radius and so imply a huge buffer zone.  To get useful 
bounding boxes we introduce the notion of a zone-pyramid.  
The index supports zones with granularities graded in 
powers of 2 having zone heights 1, 2, 4, 8,… until the 

                                                                 
6 Figure 4 shows an optimization of this idea.  

coarsest zone covers the entire  sphere. For the TerraServer, 
200 meters is a reasonable baseZoneHeight (about 10 
arcseconds), while for SkyServer 30 arcseconds seems to 
be the characteristic scale. These choices give about 
100,000 base zones.  There are about 16 scale levels to this 
system.  Survey footprints that cover most of the sky are 
stored at the top-level scale while masks of bright stars 
saturated pixels are stored at the lowest scale.   

create table zones (  
  scale  int not null,  -- scale is 0,1,...,  (2^n base 
                      --  pixels per pixels at scale n) 
  zone int not null,  -- bucket that holds obj center  
  ra float not null, -- obj centerpoint (ra,dec) 
  dec float not null, --  == (lon, lat) for  astro 
  radius float not null, -- obj bounding circle 
  objId bigint identity(1,1),  -- uniqueID 
  primary key (scale, zone, ra, objID) 
 ) 
Now, given an object with a certain bounding @radius 
centered on @ra, @dec, one can insert that object in the 
zones index by computing its scale (the zone height that is 
as big as this radius); and its zone (the band at that scale 
that contains @dec.)  

set @BaseZoneHeight = 0.5/60.0  -- ½ arc second 
set @scale = log2(ceiling(@radius/@BaseZoneHeight)) 
set @zone = floor(@dec/(@BaseZoneHeight* 2^@scale)) 
 
To search, we need to know what (scale, zone) pairs to 
examine and what buffer radius to use when looking in 
those zones.  The following helper table-valued function 
returns between 15 and 40 zones depending on the radius – 
a larger radius returns more fine-grained zones7.  

fCandidateZones(@dec int, @radius int) returns  
      @zones table ( scale  int,  
   Zone  int,  
   ScaleRadius  int, 
                    primary key(scale,zone)) 
Using that function, the following code finds objects within 
the circle centered at @ra, @dec with radius @radius:   
select objID       
from fCandidateZones(@dec,@radius) z join cells c              
    on     z.scale = c.scale  
  and z.zone = c.zone   
  and  c.ra between @ra-z.ScaleRadius-@radius  
             and @ra+z.ScaleRadius+@radius       
where  abs(c.ra-@ra)< c.radius + @radius    
  and  abs(c.dec-@dec) < c.radius + @radius     
  and  (c.ra-@ra)*(c.ra-@ra) + (c.dec-@dec)*(c.dec-@dec)   
      < (@radius + c.radius) *(@radius + c.radius)   
  

                                                                 
7 To work on the sphere (as opposed to the plane) the ra distance test must 

to be modified by cos(dec) and each zone has to have include 
duplicate objects at the margin (the sphere wraparound at the 0 
meridian.)  Both of these were explained in section 4.3 and are skipped 
over here.  The implementation is at [SkyServer Region].  
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On a database of 1.3M randomly placed regions forming a 
10-level pyramid, this query returns a list of overlapping 
regions in a few milliseconds while a brute force search 
takes several seconds.  Tables 4 and 5 show the detailed 
performance of this design on a synthetic TerraServer tile 
database (the image pyramid) looking for areas that overlap 
a given area of radius 10 to 1000 pixels.  

Based on the performance results of Table 5, it is quite 
reasonable to consider using this zoned-pyramid scheme to 
limit spatial searches for multi-scale regions.  The region 
overlap performance is comparable to the performance of 
point queries (about 5ms) and is dominated by the cost of 
SQL’ s table-valued functions.  

There is one caveat to this: if a region is long and narrow, 
then its bounding circle will be huge.  Cosmic ray trails and 
drift scans have this property in the astronomy world and 
long interstate highways have this property in the 
geographic space.  There are few drift scans and interstates 
so we can just ignore this problem for them (at the cost of 
many more false negatives), but cosmic ray, meteor, and 
satellite trails are very numerous.  The solution in the SDSS 
is to segment these big objects into N smaller ones that all 
point to the same base object.  

6. Summary 
The Hierarchical Triangular Mesh code combined with 
SQL provides an HTM spine schema that makes it easy to 
add point and region queries to an existing database.  With 
the advent of virtual machines integrated with database 
engines, the impedance mismatch between the spatial 
library and the database system is much reduced and the 
performance of the integrated HTM code improves by a 
factor of ten. 

By using the zone idea (segmenting space into zone 
buckets and then segmenting zones by an offset), one gets 
performance comparable or better than the traditional 
(external procedures) HTM-SQL integration approach, 
largely because the zone approach allows the SQL 
optimizer to pick efficient plans and because we avoid the 
impedance mismatch – the zone code is all native to SQL.  
Adding a multi-granularity approach to the zone 
mechanism allows it to deal with areas of large dynamic 
range.  

All this shows the simplicity and benefits of the HTM 
index.  HTM uses a common representation for multi-
granular searches that adapts to different scale factors with 
no extra mechanism.  The code aims for an HTM cover of a 
small number of triangles which results in an area of the 
appropriate granularity.  

Regions can be represented as unions of convex areas.  
This representation is very natural in a relational system 
and there are efficient ways for SQL to do points-in-region, 
regions-containing-point, and regions-overlap-region 

queries.  This representation also allows a simple way to do 
Boolean algebra among regions.  A routine from the HTM 
library is used to simplify regions and in addition regions 
can be simplified using geometric reasoning implanted as 
SQL set operations.   

The region representation works well with both the zone 
and the HTM indexing mechanisms.  The regions form a 

base layer, and these indices are different partitionings and 
indices of the underlying representation.  

We began by repeating the oft quoted phrase: “ Spatial is 
special.”   The techniques here have proven very useful to 
us in building the SkyServer and other astronomical 
databases and have helped in the TerraServer.  But, they 
each seem to form special cases rather than some grand 
unified approach.   

The common themes are that it is possible to embed spatial 
concepts in a relational framework.  When one does that, 
the SQL set-oriented language and optimizer is very 
convenient way to ask and answer the set-oriented queries 
typical of spatial applications. Surprisingly the SQL query 
optimizer, given either HTM or zone-pyramid indices, does 
a good job of efficiently answering these queries.   

All the code mentioned here is included in the public domain SQL 
Server stored procedures used by the SkyServer and several other 
astronomy archives.  You may download that code from 
[MySkyServer] 
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Table 4: The selectivity of the zone-pyramid scheme. Each row 
shows the result set cardinality vs radius for each successive filter 
clause in the SQL statement above.  Zones cut the search space 
down to 10,000 items; the ra filter further reduces it by a factor of 
100; and then the dec filter gives a further factor of 2. The fine ra 
filter does not contribute much.  The “ careful”  geometry test has 
about �/4 positive answers (as would be expected of circles 
inscribed in bounding boxes.) 

Radius (in base units)   
10 100 350 1,000 

zone + scale filter 7,968 7,968 10,004 19,589 
index ra filter 70 75 109 316 
fine ra filter 70 75 108 316 
dec filter 41 46 84 275 
geometry filter 31 35 62 218 
Table 5: The performance of zone-pyramid search to find regions 
overlapping a region for various radii. 

Radius (in base units)   
10 100 350 1,000 

Count (objects) 31 35 62 2216 
Time (milliseconds) 5.0 5.3 5.4 7.8 
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