

 1

There Goes the Neighborhood:
Relational Algebra for Spatial Data Search

Jim Gray
Microsoft Research

Alexander S. Szalay

 Gyorgy Fekete

 William O’Mullane

Aniruddha R. Thakar

Johns Hopkins University

 Gerd Heber
Cornell Theory Center

 Arnold H. Rots

Harvard-Smithsonian Center for Astrophysics

 April 2004

Technical Report

������������	�

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 2

Table of Contents

1. A Notation for Points and Regions___ 1

2. Working in 3D Avoids Spherical Geometry__ 2

3. The HTM approach __ 2

4. The Zone Approach __ 4

4.1. The Problem – Going outside SQL is expensive___4

4.2. The Basic Zone Idea ___4

4.3. Using Zones to Find Nearby Objects__4

4.4. Using Zones to Find Neighbors __5

4.5 Zone Summary __6

5. Representing Regions as Constraint Tuples ___ 6

5.1. Representing Regions __6

5.2. Region Constructors ___7

5.3. Point-Region Queries __8

5.4. Region Algebra ___8

5.3. Limiting Region Searches with Zones ___9

6. Summary __ 10

7. Acknowledgements __ 10

8. References ___ 11

 1

There Goes the Neighborhood:
Relational Algebra for Spatial Data Search

Jim Gray1, Alexander S. Szalay2, Gyorgy Fekete2, Gerd Heber3, Wil O’Mullane2, Arnold H. Rots4, Aniruddha R. Thakar2
(1) The Johns Hopkins University, (2) Microsoft, (3) Cornell Theory Center, (4) Harvard-Smithsonian Center for Astrophysics

Gray@Microsoft.com,{Szalay, gyuri , WOMullan Thakar}@pha.jhu.edu, heber@tc.cornell.edu, arots@cfa.harvard.edu

Abstract1

We explored ways of doing spatial search within a relational
database: (1) hierarchical triangular mesh (a tessellation of the
sphere), (2) a zoned bucketing system, and (3) representing areas
as disjunctive-normal form constraints. Each of these approaches
has merits. They all allow efficient point-in-region queries. A
relational representation for regions allows Boolean operations
among them and allows quick tests for point-in-region, regions-
containing point, and region overlap. The speed of these
algorithms is much improved by a zone and multi-scale zone-
pyramid scheme. The approach has the virtue that the zone
mechanism works well on B-Trees native to all SQL systems and
integrates naturally with current query optimizers – rather than
requiring a new spatial access method and concomitant query
optimizer extensions. Over the last 5 years, we have used these
techniques extensively in our work on SkyServer.sdss.org,
SkyQuery.net, and TerraService.net.

Categories and Subject Descriptors
H.2.1 Data Logical Design, H.2.2 Data Physical Design,
H.2.8 Database Applications, J.2 Physical Sciences and
Engineering, C.4 Systems Performance, E.1 Data
Structures, E.1 Data Storage Representations,

Keywords
Spatial search, databases, relational algebra

1. A Notation for Points and Regions
Spatial is special. Each spatial application seems to have
some peculiar aspect that requires building a unique
indexing method. In Astronomy, the special requirements
are that most operations are done on the celestial sphere,
and the typical search involves spatial, spectral, and
temporal attributes of a high-dimensional space. The
typical queries are points-near-point, point-in-region and
region-overlaps-region – where regions are arbitrary
polygons in space-time-spectrum coordinates.

The OpenGIS [OpenGIS] standard approximates these
requirements, but it is not exactly right for them. It lacks

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 xxxxxx

the astronomical coordinate systems and projections (even
though it has more than 70,000 geoid coordinate systems.)
Astronomy has a legacy going back to the Phoenicians
(minutes, seconds and degrees) that predate OpenGIS by a
few millennia. Astronomers have accumulated quite a few
other “standards” since then. So, we have borrowed
concepts and terminology from OpenGIS, but followed the
tradition of developing our own syntax and API.

Astronomy applications typically use a small subset of
World Coordinate Systems that are defined for
astronomical use. The most commonly used frames are
either spherical or Cartesian coordinate systems; equatorial
is aligned with the earth's rotation axis and equator, ecliptic
is aligned with the earth's orbit, and Galactic is aligned with
the Galactic plane. The equatorial coordinate system
defined by the position of the earth's axis at the beginning
of the year 2000 with longitude/latitude coordinates of right
ascension and declination is most common. It is called the
International Celestial Reference System (ICRS) or J2000.
The community developed an XML schema for defining
space-time regions [Rots]. In that standard, measured
points have a location, error properties, and perhaps
velocities. Regions of the sphere are described as the union
of spherical polygons and their complements. Each
polygon is in turn bounded by a set of arcs. Each arc is
defined by its two endpoints (and the great circle passing
through those endpoints) or by a small circle defined by the
intersection of a plane with the sphere where the plane is
described by its normal vector and its length. As with
OpenGIS, regions may have a buffer zone that extends the
region to include near-neighbors. Buffer zones are
measured in arc-angles.
Humans never see the arcane XML syntax for regions;
mostly they deal with graphical interfaces. But
occasionally a compact linear syntax is wanted (analogous
to the well-known text representation of OpenGIS [OpenGIS].
The rough BNF of this syntax is:

circleSpec := CIRCLE J2000 ra dec radArcMin
 | CIRCLE CARTESIAN x y z radArcMin
rectSpec := RECT J2000 {ra dec}2
polySpec := POLY J2000 {ra dec}3+
 | POLY CARTESIAN { x y z }3+
hullSpec := CHULL J2000 {ra dec}3+
 | CHULL CARTESIAN { x y z }3+
convexSpec := CONVEX { x y z d}+
regionSpec := REGION { convexSpec }+
areaSpec := circleSpec | rectSpec | polySpec
 | hullSpec | regionSpec

 2

To give two examples, here is the definition of a 3 arc-
minute circle centered at right ascension 30 degrees and
declination 20 degrees.
 CIRCLE J2000 30 20 3
And the definition of a spherical triangle of the North-
Eastern hemisphere is a sequence of ra, dec points
 POLY J2000 0 0 0 90 180 0

As with OpenGIS there is a natural Boolean algebra of
these regions (union, intersection, negation.) There is also a
natural spatial algebra for comparing points and regions.
The typical queries are point-proximity (“What
measurements are near this point?”), point-polygon queries
(“What points are in this polygon?” and “What polygons
contain this point?”), and polygon-polygon queries (“What
polygons overlap or contain or are outside this polygon?”).
The simplification query (“What is the “simple form” of
this region definition?”) also gives a test for empty regions.
Buffer-zone queries (“What points or polygons are near this
polygon?”) are useful in many contexts. On the other hand
we have not found a need for all nine Egenhofer OpenGIS
spatial relationship functions (e.g. touches).

2. Working in 3D Avoids Spherical Geometry
Spherical metrics generally involve transcendental
functions (sine, cosine, tangent,…) that are expensive to
compute and that have singularities. It is computationally
expensive to decide if a point is inside or outside a circle,
or if two circles overlap. We use a 3D vector
representation to circumvent these problems. All points
are represented as vectors on the unit sphere in Cartesian
(J2000) coordinates. All circles are represented by the
intersection of a plane with the unit sphere and a sign
designating which side of the plane is inside the circle. The
intersection of the unit sphere with the plane normal to
vector C = (x, y, z) of length l defines circle C. Point P,
represented as vector (px, py, pz) is inside the circle if it is
“above the plane,” that is if P�C = x�px+y�py+z�pz >l. By
going to 3-dimensions, point-in-polygon computations
replace most transcendental computations with a few
multiplies, adds, and a compare (Figure 1). We use this
technique extensively.

Fuzz or boundary zones are important to many queries
since all measurements are approximate and since one is
often examining neighborhoods to look for clusters and
local effects. The vector representation accommodates a
fuzz of � radians on the circle C = (x, y, z) of length l by
replacing l with cos(acos(l)+�). The vector length is
reduced by the cosine of the angle. To add a � radian
buffer to a polygon or region, just apply this transformation
to each constraint of the region.

In what follows we describe three approaches to
implementing these algorithms and the tradeoffs among the
approaches. All the code is in the public domain and
available at [SkyServer Regions].

3. The HTM approach
Virtually all spatial indexing techniques work on a
hierarchical decomposition of space into bounding volumes
that limit the search. Then a finer membership test is
applied to all elements in the candidate boxes. The
Hierarchical Triangular Mesh (HTM) first divides the
sphere into 8 spherical triangles, and then builds a quad-tree
recursively decomposing each triangle into 4 sub-triangles.
Unlike many other spherical projection systems this one
has the property that all triangles at the same level are
within 42% of the area of all others and there are no
singularities [HTM].

Each triangle can be named by a sequence face,t1,t2,…,tn

where face is the index of the face of the major triangle,
and each ti is an integer between 0 and 3 indicating which
sub-triangle at that level has been chosen. This sequence is
called the htmID of the triangle. Points can be described as
tiny triangles – for example, a 20-deep mesh identifier on
the surface of the earth corresponds to a triangle about 0.3
meters on a side, and a 30 deep mesh corresponds to a sub-
millimeter-sized triangle on the geoid (0.3 milli arcseconds)
and fits nicely in a 64-bit word. For most astronomy, a 20-
deep htmID is adequate (0.3 arcsecond accuracy).

HtmIDs have a very useful property characteristic of space-
filling curves: if T1 and T2 are HTM triangles, then
htmID(T1) is a prefix of htmID(T2) iff T1 contains T2.
Storing the htmIDs in a Btree index will cluster nearby
objects one another. All points or polygons within a
triangle are located just after the parent triangle in the
sorted list.

We built a library that, given a region as described in
Section 1, returns a list of HTM triangles that cover that
region [HTM]. We call this the HTM-cover. These triangles
can be looked up in a B-tree and all points or polygons
contained in those triangles are easily located. One can
then run the “geometry filter” on those candidates to see if
they qualify.

 r

cos(r)

<px,py,pz>

<x,y,z>

px�x+py�y+pz�z

Figure 1: The vector
product distance.
Point (x,y,z) is within
arc-angle r of
(px,py,pz) if their dot
product is more than
l=cos(r).

The approximate logic of the HTM-cover routine is to
consider each convex region in turn. For each region,
construct a list of HTM triangles that intersect the region.
Recursively divide each triangle on the region edge, trying
to get a finer approximation to the region; discarding sub-
triangles outside the region. The algorithm returns between

 3

10 and 20 triangle ranges, which give an acceptable
fraction of false positives (about 30%).

It is possible to spatially-enable almost any application by
adding an HTM index and these HTM procedures to a pre-
existing table. We call these extensions the HTM-spine-
schema. We have added an HTM-spine-schema to a dozen
astronomical databases by following these three steps:

First, htmIDs are represented as 64 bit quantities. The
HTM code provides routines to convert between coordinate
space and htmIDs with signatures something like this:
define function PointToHtmID (point varchar) returns htmID
define function HtmIIdToPoint(htmID bigint) returns varchar

Second, all point objects in the astronomy databases have
their htmIDs computed when they are first ingested. An
htmID field is added to each row and there is an HTM index
on each such table T that allows very fast spatial searches.
create index T_htm on T(htmID, x, y, z)

Third, the htmCover table-valued function has the SQL
signature:
define function htmCover (region varchar)
returns table (beginHtm htmID primary key, endHTM htmID)
The routine returns all points in the database that are
included in the region.

That’s all that is needed to spatially enable a table. The
following query finds all points in table T within 3
arcminutes of the North Celestial Pole (there are 60
arcseconds in a degree and the pole is vector (1,0,0)):
select T.*
from T join htmCover(‘CIRCLE CARTESIAN 1 0 0 3’)
 on T.htmID between beginHtm and endHtm
 and T.x*1 + T.y*0 + T.z*0 > acos(radians(3.0/60))

The last line of this query does the distance test using a dot-
product. Figure 2 diagrams this “cosine” logic. This is an
example of the careful geometry test following the coarse
selectivity filter of the HTM mesh.

The above query is such a common operation that the spine
schema implements a dozen table-valued fGetNearest and
fGetNearby functions that return objects of a certain type
within a certain radius of a given point. These functions
use an HTM index to limit the search and then they filter
the objects using the following equation to compute the
actual distance between object o with celestial coordinates
o.x, o.y, o.z and the point x,y,z:

DistanceInDegrees =
 degrees(2×asin(sqrt((o.x-x)2+(o.y-y)2+ (o.z-z)2))/2)) (1)

This calculation in terms of asin()is more stable for very
small distances (acos() is very close to 1 for small angles.)

The HTM design forms the basis for the SkyServer
[SkyServer] and several other astronomical online
databases. The performance can be roughly characterized
as follows. On a 1 GHz Intel Pentium processor2 the fixed
cost of a null scalar function call in SQL Server is 31 �s,
the cost of a null table-valued function call is 780 �s and
the cost of a null external procedure call is 169�s. By
comparison, the htmLookup computation takes 170 �s and
the htmCover computation for a small circle or rectangle
takes about 1.4 milliseconds. Much of this time goes into
the linkage code between SQL and the HTM library written
in C++. There is a substantial impedance mismatch
between SQL and C++. SQL casts the HTM triangle-list
into binary string and then into a SQL table.

Still, these routines are wrapped within SQLServer table
valued functions that join the HTM triangles with the
spatial data points and then run the geometry filter on each
point. The base fGetNearbyObjXyz() runs in 6.7 ms for a 1
minute radius (28 objects returned, 35 objects examined.
Other table-valued functions layered above
fGetNearbyObjXyz() like fGetNearestObjXyz() or
fGetNearbyObjEq(), add 3 ms to this cost (9.8 ms per call).
So, most of the cost is in the procedure linkage, not in the
HTM library.

With help from Beysim Sezgin and Peter Kukol of the
Microsoft SQLServer group, we reimplemented the HTM
libraries using the native virtual machine (the common
language runtime) integrated with the next version of the
product. This bypasses much of the SQL-HTM linkage
cost. The resulting performance is described in Table 1.
Clearly, the impedance mismatch is much reduced by
integrating the virtual machine with the database. It also
eliminates about 500 lines of very ugly glue code.

Table 1: Elapsed times (cpu milliseconds) of HTM functions using
Transact-SQL or native virtual machine in SQLServer 2005.

 SQLServer 2000™ SQLServer 2005 + CLR

 Null Htm Null Htm

scalar 0.03 .17 .05 .09

table valued .5+.06R 1.45 + .06R 0.1 +.002R 0.2 +0.003R

In addition to the HTM implementation we have also
implemented a HEALPix index [HEALPix] which gives a
hierarchical iso-area and iso-latitude tessellation of the sphere
and so are convenient for harmonic data analysis on the sphere
(densities, integrals, spherical harmonics, Fourier transforms,
etc.,). We are also flirting with an Igloo implementation
[Igloo] which has similar properties and benefits.

2 Unless otherwise noted, all measurements are done on a 1.1GHz Intel
Pentium III processor. θ

θ/2 xyz
o.xyz o.

xy
z-

xy
zsin(θ/2) = |o.xyz-xyz|/2

θ
θ/2 xyz

o.xyzo.xyz o.
xy

z-
xy

zsin(θ/2) = |o.xyz-xyz|/2

Figure 2. Equation (1) to computes arcangle distance
between unit vectors xyz and o.xyz.

 4

R o w s v s e lap s ed tim e
fit is 1 .4 6+2 .2 e -4 *r^2 m s /as e c

1

10

100

1000

10 100 1000

r (a se c)

tim
e

 (m
s)

7.5 as ec
15 as ec
30 as ec
1 am in
2 am in
4 am in
64 am in
r^2 fit

Relative time vs zone height (asec)
4 minute zone is near optimal

2 & 8 minute are slower

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

2.00

10 100 1000
r (asec)

tim
e

vs
 b

es
t

7 asec
15 asec
30 asec
1 amin
2 amin
4 amin
16 amin
1 degree

Figure 4: The figure at left shows cpu time vs. radius for
neighbors function at various zone heights. It suggests that any
small zone height is adequate. The figure at right shows cpu time
vs. best time for each radius. It indicates that a zoneHeight of 4
arcminutes is near-optimal and that it outperforms smaller and
larger radii by large factors.

4. The Zone Approach
Zones are a way of bucketing two-dimensional spaces (or
2+D spaces) to give dynamically computed bounding
boxes for queries.

4.1. The Problem – Going outside SQL is expensive
The basic problem is that SQL can evaluate equation (1) at
the rate of about 170,000 records per second per cpu (5.6
µs per row) while the HTM functions run at about 170
records per second per cpu (6 ms per row to return ten
nearby objects). This is a thousand-to-one performance
difference. The previous section showed that the high cost
of the HTM functions is a combination of the HTM
procedures, the expensive linkage to SQL via external
stored procedures (a string interface), and the use of table-
valued functions. The HTM code uses about 1.5 ms and
the other costs (linkage, string conversion, and table-valued
function) are in the range of 4 ms. The linkage costs are
much reduced with the integration of SQLServer 2005 with
C#, but native execution will still have a substantial
advantage.

4.2. The Basic Zone Idea
An alternative is to use SQL operations to limit the search
rather than using the HTM procedures. Pushing the logic
entirely into SQL allows the query optimizer to do a very
efficient job at filtering the objects. In particular, the zone
design gives a three-fold speedup for the table-valued
functions. This same idea when applied to computing all
the neighbors of each object in a 100 million object
astronomy archive gives a 32-fold speedup, tuning a 14-day
computation into a 9-hour job (see Section 4.3.)

The basic idea is to map the celestial sphere into zones,
each zone is a declination stripe of the sphere with some
zoneHeight (see Figure 3). The South Pole is in zone
number zero. Then an object with a declination of dec
degrees is in zone:

zoneNumber = floor((dec+90) /zoneHeight) (2)

There will be ceiling(180/zoneHeight) zones. The
following code defines the zone table.

create table zone (zone int, objID bigint, ra float, dec float,
 x float, y float, z float,
 primary key (zone, ra, objID))
 Notice that the primary key index on (zone,ra) clusters the

elements of a zone’ s bounding boxes in Figure 3. The
primary key index also makes (zone,ra) lookups very fast.
The zone table is populated from table T approximately as
follows.
insert into zone
 select floor((dec+90) /zoneHeight), ra, dec, x, y, z
 from T

4.3. Using Zones to Find Nearby Objects
If we search for all objects within a certain radius of point
(ra, dec) then we need only look in certain zones, and only
in certain parts of each zone. Indeed, to find all objects
within radius r of point ra, dec3, one need only consider
zones between
 maxZone = floor ((dec +90+R)/zoneHeight) (3)
 minZone =floor((dec +90-R)/zoneHeight)
and within these zones one only need consider objects o
with
 o.ra between ra-r and ra+r (4a)
(modulo cos(dec) and ra wraparound corrections in (4)
below.)

This way of limiting the search is similar to the HTM
approach but avoids calling an external procedure – it lets
SQL do the math. The primary key on zones makes this
lookup very fast, so that the resulting procedure has the
performance given in Figure 4.

There are some nasty details that need a bit of extra
mechanism. The biggest problem is that the sphere is
round, so equation (4a) must be computed modulo 360°,
and must be corrected for the fact that the right-ascension is
“ compressed” by cos(dec) as it moves away from the
equator. So ra should be divided by cos(dec)+ε where ε is
a tiny number added to prevent division by zero when dec
is ±90°. Fortunately, equation (3) needs no correction, but
equation (4a) should become

3 We assume RA and DEC have been normalized to be in the ranges [0°,
360°] and [-90°, 90°] respectively.

Figure 3: The division of the sphere
into 12 zones (in practice there are
thousands of zones). Two circular
neighborhoods are shown, one inside
one zone (minZone=maxZone) and
another crossing 3 zones (minZone+2=
maxZone.) The dotted boxes show how
the ra filter and the dec filter further
reduce the search. The ra filter needs to
be “ expanded” by 1/cos(abs(dec)).

 5

 o.ra between ra-R/(abs((cos(dec))+ε) and
 ra+R/(abs(cos(dec))+ε) (4)

One other detail is that when one is near the prime meridian
(ra = 0° or ra = 360°) then the “ other end” of the range is
nearby. This problem is solved by adding these neighbors
into the zone as the margins with ra less than zero for the
left margin and ra greater than 360° for the right margin.
The main area is the ½ open interval [0°, 360°) and the
margins must respect this ½ open property. Assuming a
MaxRadius of 1° and epsilon is 1.0e-6:

insert into zone -- right margin, notice +360 on ra4
 select floor((dec+90) /@zoneHeight), ra+360, dec, x, y, z
 from T
 where ra >= 0
 and ra < @MaxRadius/(cos(radians(abs(dec)))+@epsilon)

insert into zone -- left margin, notice -360 on ra
 select floor((dec+90) /@zoneHeight), ra-360, dec, x, y, z
 from T
 where ra < 360
 and ra >= 360-@maxRadius/(cos(radians(abs(dec)))+@epsilon)

Now, equation (4) is actually correct and finds all
neighbors within the zone. The full query to select the
neighbors within @r of @ra and @dec from a zone is:
select objID
from zone -- force the zone
where zoneID = @zoneID -- using zone number
 and ra between -- quick filter on ra
 @ra - @r/(cos(radians(abs(@dec)))+ @epsilon)
 and @ra +@r/(cos(radians(abs(@dec)))+ @epsilon)
 and dec between @dec-@r -- quick filter on dec
 and @dec+@r
 and 4*power(sin(radians(@r / 2)),2) > -- careful distance test
 power(x-@x,2)+power(y-@y,2)+power(z-@z,2)

This statement combined with the minZone and maxZone
logic of equation (4) gives the performance described in
Figure 4 for a table-valued function finding neighbors
nearby a point. This is the 7x speedup over the HTM
external procedures. The full statement handling this zone
logic is:
select objID
from zone
where zoneID between floor((@dec+90-@r)/@zoneHeight)
 and floor((@dec+90+@r)/@zoneHeight)
and ra between @ra-@r/(cos(radians(abs(@dec)))+@epsilon)
 and @ra+@r/(cos(radians(abs(@dec)))+@epsilon)
and dec between @dec-@r
 and @dec+@r
and 4* power(sin(radians(@r / 2)),2) > -- careful distance
filter
 power(x-@x,2)+power(y-@y,2)+power(z-@z,2)

4 In SQLServer, host language variables are preceded by a “ @” character.
So, here for example, @zoneHeight, and @epsilon are inputs or free
variables in this SQL expression.

 One can further accelerate the test by observing that ra-@r
and ra+@r is too “ fat” a band for any zone except the one
holding the center of the circle. Figure 5 gives the equation
for reducing the neighboring zone cell width.

 4.4. Using Zones to Find Neighbors
 Some queries want to compare several hundred million
objects with all their neighbors. Astronomical searchers for
gravitational lenses and for clusters are examples of such
queries. To speed these queries the SkyServer precomputes
the Neighbors table that lists all an object’ s neighbors
within 30 arcseconds. This table averages about 9
neighbors per object; but, some objects have hundreds of
neighbors and some have none. Using this materialized
view is a thousand times quicker than searching for the
neighbors each time -- 60 �s vs 6 ms per neighborhood.

Computing the neighbors table using the
fGetNearbyObjects function can take a long time: on the
fifteen million object SDSS early data release, the
computation took 56 hours – or about 74 neighborhoods per
second. Fortunately, the computation was done only a few
times during the load process and then used many times in
queries. But, a speedup is needed as the SDSS database
grows twenty-fold by 2007 and the naive computation
grows to 2 months.

The computation is embarrassingly parallel and cpu-bound.
Each object’ s neighbors can be computed independently.
So a 30-node processor farm could do the 2 month job in 2
days. But, it makes sense to look for better algorithms.

 The zone approach can bypass the stored procedure and get
30-fold speedup as follows. We can join each zone with
itself and then with its north and south neighbor zones.
These three joins all use the relational operators with
automatic parallelism and with some very sophisticated
optimizations. This bypasses much of the transact-SQL

r ra-zoneMax

� � � ��� � ��� �
	
������ � � � �
� 	
��� � ��� � �
����� �
	 ������ � � � zoneMax

x

Ra ± x

r ra-zoneMax

� � � ��� � ��� �
	
������ � � � �
� 	
��� � ��� � �
����� �
	 ������ � � � zoneMax

x

Ra ± x

Figure 5: when a
circle crosses multiple
zones, the ra range of
the adjacent zones can
be reduced from r to x
as shown in the
diagram. For zones
above the center
point, zoneMin
replaces zoneMax in
the equation.

Figure 6: The upper figure shows the
three cases that require joining the
center zone with two neighbors, and
shows the 3r×2r box that the nested
loop must examine. The figure at the
bottom shows a zoneHeight = r/2 and
where a zone must be joined with two
northern neighbors and two southern
neighbors, so the box is (5/2)r×2r. The
cost of the two extra joins outweighs
the 20% reduction in pair-wise
comparisons.

 6

logic in the original algorithm.

The basic join to compute the neighbors is:

insert neighbors -- insert one zone's neighbors
select o1.objID as objID,
 o2.objID as NeighborObjID,
 .. other fields elided
from zone o1 join zone o2 -- a nested loop join on
 on o1.zoneID-@deltaZone = o2.zoneID -- zone,ra
 and o2.ra between
 o1.ra - @r/(cos(radians(abs(o1.dec)))+@epsilon)
 and o1.ra + @r/(cos(radians(abs(o1.dec)))+@epsilon)
where ((o1.ra >= 0 and o1.ra < 360) -- not both marginal
 or (o2.ra >= 0 and o2.ra < 360))
 and o1.objID < o2.objID -- do 1/2 the work
 and o2.dec between o1.dec-@r and o1.dec+@r
 and 4*power(sin(radians(@r / 2)),2) > -- careful distance
filter
power(o1.x-o2.x,2)+power(o1.y-o2.y,2)+power(o1.z- o2.z,2)

This is done for @deltaZone in {-1, 0, 1}. The insert-join
above does only ½ the work, finding only objects where
o1.objID<o2.objID5. To complete the neighbors table it
is augmented with the mirror image of each pair (o2, o1).
Then an (zone, ra) index is built on the resulting neighbors
table.

This computation runs at 2.8k objects per second,
computing the personal subset of the SDSS EDR in about a
minute. The old algorithm took more than an hour on the
same data and hardware. On the personal SkyServer (154k
rows) the times for these steps on a warm database are:

Build zone table: 9.5 seconds
Join to zone -1 10.5 seconds generated 128,469 rows
Join to zone 0 16.5 seconds generated 389,157 rows
Join to zone 1 9.4 seconds generated 126,104 rows
Add mirror rows 10.7 seconds
Create index is 7.6 seconds
Total time 64.2 seconds Total 1,287,460 rows

There is one surprise in the neighbors computation – it
wants small zones (in particular zoneHeight = @r is
optimal). Unlike the nearby computation (Section 3.3 and
Figure 4) that works with a specific ra, dec in equation (4);
the zone-join compares all objects in one zone to all objects
in three other zones within the designated ra limits. That
is, an object is compared with all objects in a box that is 2×
radius wide and 3×zoneHeight high (the zone and its north
and south neighbors as in Figure 6.) This means that “ tall”
zones result in quadraticly more work Minimizing the
zoneHeight minimizes work so zoneHeight = radius is
optimal (½ arcminute is the radius for the neighbors table.)
One might consider zoneHeight smaller than radius, but

5 This optimization has two benefits: (1) It prevents marginal neighbors
from being added twice (this might happen near the poles;) and (2) adding
the mirror records, rather than computing them, speeds the computation by
about 30% (see the following discussion of the cost of each phase).

then one has to join with two or more northern and two or
more southern neighbors as in Figure 6. These extra joins
add extra costs that outweigh the savings in pair-wise
comparisons.

4.5 Zone Summary
Using relational operators and a zoned-index to limit search
speeds up the spatial proximity functions (GetNearbyObj et.
al.) by about 3.4x and speeds the SDSS Neighbors table
computation by about 32x. The neighbor table computation
can be further accelerated by computing different zone
pairs in parallel. Table 3 summarizes the speedups. One
virtue of the zone approach is that is a way to implement
spatial functionality in SQL without any proprietary
extensions. It allows a completely portable library for
points-near-point queries, and for some simple point in
polygon and polygon overlaps queries.

Table 3: The times and speeds of computing the Neighbors with
HTM or zone algorithms. The zoned algorithm is much faster.
The neighbors-of-a-point speedup is 8:1 and the computation of
all neighbors speedup is 35:1.

elapsed
(ms/obj)

rate
(obj/sec) speedup

fGetNeighbors HTM 14.5 69 1
HTM Build Neighbors table 13.5 74 1
Zoned GetNeighbors 1.7 578 8
Zoned build Neighbors table 0.2 2,406 35

5. Representing Regions as Constraint Tuples
So far, the discussion has focused on point-in-polygon and
nearby-points queries. Now we discuss ways to do algebra
on regions and to do point and region queries with this
representation.

5.1. Representing Regions
Section 2 explained that spherical areas can be represented
as a set of positive and negative convex-areas. Non-convex
areas may be composed as the union of several convex
areas. Swiss-cheese areas with holes in them can be
composed of positive and negative convex areas. Each
convex area is defined by the intersection of the unit sphere
with the interior of a 3D convex (possibly open)
polyhedron, formed by these half-space constraints. The
plane of a half-space constraint is in turn defined by a
normal unit vector v = (vx,vy,vz) and length l. Point
P=(x,y,z) on the unit sphere is inside the circle if
(x,y,z)�(vx,vy,vz)> l. A point is inside a convex area if it is
inside each of the half-space constraints. Figure 8 shows a
complex convex area and also shows the dot-product test
for “ inside the half-space” .

More generally, any half-space H of the N dimensional
space S can be expressed as H = {xε S | f(x) > 0} for some
function f. The intersection of a set of half-spaces {Hi},
defines a convex of points. C = {x ε S | x ε Hi for all Hi}. A
region R is the union of a set of convexes R = {x ε Ci}.

 7

+convex1

+convex2

-convex3

+convex1

+convex2

-convex3

ll

Figure 7: The figure at left shows a complex shape
consisting of two positive convex areas and a circular hole
(negative convex area) in the center. The figure at right
shows how a vector and length define an edge and circular
area on the spherical surface. Points in the shaded area have
dot product with unit vector v= (x,y,z) greater than l. To get
the opposite area, complement x, y, z, and l.

These ideas can be translated into relational database terms
quite simply. A region is a name and an ID.

create table Region (
 regionID int identity primary key,
 type char(16), -- short description
 comment varchar(8000), -- long description
 predicate varchar(8000)) -- complied containment
) -- test see fRegionPredicate() below.

The region’ s convexes are stored as sets of 3D half-spaces
together in a HalfSpace table:
Create table HalfSpace (
 regionID int not null -- region name
 foreign key references Region(regionID),
 convexID int not null, -- grouping a set of ½ spaces
 halfSpaceID int identity(), -- a particular ½ space
 x float not null, -- the (x,y,z) parameters
 y float not null, -- defining the ½ space
 z float not null,
 l float not null, -- the constraint constant
 primary key(regionID, convexID, halfSpaceID)
)

The following SQL query returns all the regions and
convexes containing point @x, @y, @z.
select regionID, convexID from HalfSpace

where @x *x + @y * y + @z * z < l
group by all regionID, convexID
having count(*) = 0

This query groups all the half-spaces by their convexes.
For each convex it asks how many of the half-spaces do
NOT contain the point. If that answer is zero (count(*) =
0), then the point is inside all the convex’ s half-spaces and
so is inside the convex and region.

The key observation is that the HalfSpace table represents a
region as a disjunct (or) of one or more convexes. Each
convex is a conjunct (and) of its component half-spaces.
The HalfSpace table is the disjunctive normal form
representation of the region. The inverse (not) of a convex
can be expressed through deMorgan’ s laws. If the convex X
has half-space constraints a,b,c, i.e. X=a•b•c, one can

express its inverse ~X= ~a + ~b + ~c, where • represents
and, + is or and ~ is not. It is advantageous to express this
negation region as disjoint convexes. This can be achieved
by expressing ~X as

~X = ~a + a•~b + a•b• ~c

The negation of the half-space constraints is trivial, each
component of the 4-vector (x,y,z,l) is multiplied with –1.

The representation of spherical regions in terms of regions,
convexes and half-spaces allows us to describe even the
most complex “ holes in holes” geometries. At the same
time, the representation has some shortcomings: it ignores
points exactly on the edge (the inequality is strict), but
since our objects have finite extents with errors, this is not a
problem.

5.2. Region Constructors
One can define a simple library for constructing regions
and convexs. RegionNew creates a region:
regionID = RegionNew

 (type varchar(16), comment varchar(8000))
RegionNewConvex adds an empty convex hull to a region
convexID = RegionNewConvex(regionID int)
RegionNewConvexConstraint adds a half-space constraint to a
region:
halfSpaceID = RegionNewConvexConstraint

(regionID int, convexID int,
x float, y float, z float, l float)

To complete this we need the destructor:
RegionDrop(regionID).
Using these primitives, you can define complex regions.
Indeed, regions can get very complex, so one needs a
routine to discard empty convexes, merge neighboring
convexes, and discard redundant constraints.
RegionSimplify performs these operations.
 RegionSimplify(regionID)
RegionSimplify is quite complex and merits a separate
paper. It considers each convex in turn seeing if it is null as
follows: For every pair of planes, it computes the two
intersection points of those two planes with the unit sphere.
For N planes, this is a list of N2 points. A convex can form
several patches on a sphere – each patch being a connected
region—for example a cube can have eight triangular
patches, one for each corner point. For each patch, we
construct the list of arcs and points that meet in a vertex
point at the boundary of the patch. We divide constraints
not participating in any of the vertex points into two sets:
those with c<0 (holes), and c≥0 (limits). First discard all
limit constraints except the one with the largest c, i.e. the
smallest circle. Discard all hole constraints where the anti-
center point (-x,-y,-z) is outside the patch. Simplify also
merges adjacent convexes if they have the form A =
A.B+A.~B. and discards a convex contained in another
convex. The code is at [SkyServer Region].

 8

tile

wedge

Tilebox &
SkyBox

mask

5 sectorlets
1 sector

tile

wedge

Tilebox &
SkyBox

mask

5 sectorlets
1 sector

Sectorlets SectorSectorlets Sector

Figure 8. Examples of the region algebra. Various kinds of regions are derived
from Boolean combinations of other regions.

These routines convert between the string representation
and the half-space representation:
 string = fRegionString(regionID bigint)
and
 regionID = RegionFromString(string varchar(8000))
Other routines convert among coordinate systems.

5.3. Point-Region Queries
The regions representation is very convenient for point-in-region
queries. The following routine returns all regions containing point
(@x, @y, @z):
procedure RegionsOnPoint(@x float, @y float, @z float)
as select distinct regionID -- return region name
 from HalfSpace -- where
 where convexID in (-- one of its convexes
 select convexID -- contains the point, i.e.
 from HalfSpace -- all half spaces contain the
 where @x * x + @y * y + @z * z < l
 group by all convexID -- i.e. , the point is not
 having count(*) = 0) -- outside any half space.

This query runs at the rate of 100K convexes per second
per cpu (the inner loop is embarrassingly parallel).
Conversely if one has many points and wants all the points
in a certain region @regionID, the query is
create table Points (point ID int, x float, y float, z float).

define procedure PointsInRegion(@regionID int)
as select * -- return all points
 from Points p -- in the area
 where exists (select ConvexID -- Where there is a
 from HalfSpace h -- convex in the region

where regionID = @regionID -- where no points
 and (p.x*h.x + p.y*h.y + p.z*h.z) < h.l

group by all ConvexID -- outside a half-plane
 having count(*) = 0) -- is zero (no outside points)

Again, this query runs at about 100K convexes per second.
One can go about ten times faster by compiling the
predicate as follows. First translate the predicate into an
expression of the form:
 or (and ((p.x*a.x + p.y*a.y + p.z*a.z) >= a.l))
using
 predicate = RegionPredicate(regionID)
Then combine the predicate with a select… where
<predicate> and do an sp_execute of the resulting string.
Something like the following:

declare @query varchar(8000)
set @query =

'select * ' -- return all points in area
'from Points p ' + -- satisfying the predicate
'where ' + fRegionPredicate(@regionID) --

execute (@query) -- execute the query

This query runs at 1 µs per point or at the rate of a million
half-space tests per second per cpu if it is
not IO bound. Deriving the predicate costs
less than 1ms and the fixed cost of
executing the predicate on a small set of
points is about 6ms (all this on a 1Ghz
machine). So, if more than a thousand
points are to be tested, the fixed cost of
compilation is paid for by the speedup in
point comparisons.

Unfortunately, SQL Server does not allow
execute inside a function so one must use a

temporary table and a stored procedure rather than using
the more efficient table-valued variable.

5.4. Region Algebra
Once constructed, regions can be manipulated with Boolean
operations.
regionID = RegionOr (regionID1 int, regionID2 int,
 type varchar(16), comment varchar(8000))
regionID = RegionAnd (regionID1 int, regionID2 int,
 type varchar(16), comment varchar(8000))
regionID = RegionNot (regionID1 int,
 type varchar(16), comment varchar(8000))

These functions create new regions by adding a row to the
Region table and many rows to the HalfSpace table. The
‘OR’ function just adds in all half-space rows from each of
the two source regions with the new region name and with
the convexID renumbered.

The “ AND” predicate is more subtle. It intersects each
convex from the first region with each convex from the
second region. If there are N and M convexes in the
original regions, then there will be NxM convexes in the
conjunction. This is just an application of deMorgan’ s
Law:
 (A1 | A2) & (B1 | B2) = A1&B1 | A1&B2 | A2&B1 |
A2&B2

The negation predicate is by far the most complex. It needs
to build a new set of convexes that draw a negative half-
space from each of the original ½ spaces. The “ and” and
“ or” were simple SQL statements. The negation required a
recursive definition doing the Cartesian product of the
(negation of) each half space in the first convex with the
negation of all the other convexes in the region.

The algorithm uses RegionSimplify() to simplify the
resulting regions, discarding empty convexes.

 9

The discussion here has been in terms of 3D space, because
that is easiest to visualize. But, the algorithms and data
structures apply to higher dimensions (more than 3D) by
adding more parameters. They also apply to half spaces
defined by higher-order polynomials (quadratic rather than
linear equations). Further, the algorithms apply to non-
Euclidian spaces like the surface of the sphere. The thing
that makes the algorithms work is the triangle inequality
inherent in any metric space.

5.4. Limiting Region Searches with Zones
When the number of regions gets large (more than 10,000
constraints) the region queries need to be restricted by
some bounding box so that only a few thousand regions are
considered in each query and so queries can be answered in
milliseconds rather than seconds or minutes.

The standard approach is to use an R-Tree to represent
bounding boxes [Samet]. Unfortunately, or perhaps
fortunately, our database system does not support an R-
Tree index. So, we have to do bounding boxes some other
way. As it happens, the zoned approach fits with the SQL
Query optimizer and so gives a spatial extension to SQL
with no extra work by the vendor. This approach should
work with any relational database system.

The zone idea (Figure 3) used earlier for point-point
comparisons can be used for regions as well. Each region
R has a bounding circle radius. If all radii were limited to
the zone height (if all regions were smaller than twice the
zone height), then we could just store a (zone, ra, dec,
radius, regionID) tuple for each region in an index. Then
when looking for regions overlapping a region R centered
on @ra, @dec with @radius one would look in the
neighborhood of zone number z = @dec/@zoneHeight. The
zones to search would be limited to zones in the interval
 z ± ceiling(1+ @radius/@zoneHeight).
Within each of those zones, one would look at the box
centered on @ra and look @buffer = @r + @zoneHeight to
the left and right6:
 [@ra - @buffer , @ra + @buffer].

This is an efficient B-tree search. The zone search cuts the
space by a factor of a thousand (if there are many thousand
zones) and the @ra limit typically cuts the area by another
factor of a hundred. So, careful geometry tests are only
needed on few candidate regions.

The problem with this approach is that not all regions are of
the same scale. Some are very large – covering ½ the sky,
while most are tiny. The large regions have very large
radius and so imply a huge buffer zone. To get useful
bounding boxes we introduce the notion of a zone-pyramid.
The index supports zones with granularities graded in
powers of 2 having zone heights 1, 2, 4, 8,… until the

6 Figure 4 shows an optimization of this idea.

coarsest zone covers the entire sphere. For the TerraServer,
200 meters is a reasonable baseZoneHeight (about 10
arcseconds), while for SkyServer 30 arcseconds seems to
be the characteristic scale. These choices give about
100,000 base zones. There are about 16 scale levels to this
system. Survey footprints that cover most of the sky are
stored at the top-level scale while masks of bright stars
saturated pixels are stored at the lowest scale.

create table zones (
 scale int not null, -- scale is 0,1,..., (2^n base
 -- pixels per pixels at scale n)
 zone int not null, -- bucket that holds obj center
 ra float not null, -- obj centerpoint (ra,dec)
 dec float not null, -- == (lon, lat) for astro
 radius float not null, -- obj bounding circle
 objId bigint identity(1,1), -- uniqueID
 primary key (scale, zone, ra, objID)
)
Now, given an object with a certain bounding @radius
centered on @ra, @dec, one can insert that object in the
zones index by computing its scale (the zone height that is
as big as this radius); and its zone (the band at that scale
that contains @dec.)

set @BaseZoneHeight = 0.5/60.0 -- ½ arc second
set @scale = log2(ceiling(@radius/@BaseZoneHeight))
set @zone = floor(@dec/(@BaseZoneHeight* 2^@scale))

To search, we need to know what (scale, zone) pairs to
examine and what buffer radius to use when looking in
those zones. The following helper table-valued function
returns between 15 and 40 zones depending on the radius –
a larger radius returns more fine-grained zones7.

fCandidateZones(@dec int, @radius int) returns
 @zones table (scale int,
 Zone int,
 ScaleRadius int,
 primary key(scale,zone))
Using that function, the following code finds objects within
the circle centered at @ra, @dec with radius @radius:
select objID
from fCandidateZones(@dec,@radius) z join cells c
 on z.scale = c.scale
 and z.zone = c.zone
 and c.ra between @ra-z.ScaleRadius-@radius
 and @ra+z.ScaleRadius+@radius
where abs(c.ra-@ra)< c.radius + @radius
 and abs(c.dec-@dec) < c.radius + @radius
 and (c.ra-@ra)*(c.ra-@ra) + (c.dec-@dec)*(c.dec-@dec)
 < (@radius + c.radius) *(@radius + c.radius)

7 To work on the sphere (as opposed to the plane) the ra distance test must

to be modified by cos(dec) and each zone has to have include
duplicate objects at the margin (the sphere wraparound at the 0
meridian.) Both of these were explained in section 4.3 and are skipped
over here. The implementation is at [SkyServer Region].

 10

On a database of 1.3M randomly placed regions forming a
10-level pyramid, this query returns a list of overlapping
regions in a few milliseconds while a brute force search
takes several seconds. Tables 4 and 5 show the detailed
performance of this design on a synthetic TerraServer tile
database (the image pyramid) looking for areas that overlap
a given area of radius 10 to 1000 pixels.

Based on the performance results of Table 5, it is quite
reasonable to consider using this zoned-pyramid scheme to
limit spatial searches for multi-scale regions. The region
overlap performance is comparable to the performance of
point queries (about 5ms) and is dominated by the cost of
SQL’ s table-valued functions.

There is one caveat to this: if a region is long and narrow,
then its bounding circle will be huge. Cosmic ray trails and
drift scans have this property in the astronomy world and
long interstate highways have this property in the
geographic space. There are few drift scans and interstates
so we can just ignore this problem for them (at the cost of
many more false negatives), but cosmic ray, meteor, and
satellite trails are very numerous. The solution in the SDSS
is to segment these big objects into N smaller ones that all
point to the same base object.

6. Summary
The Hierarchical Triangular Mesh code combined with
SQL provides an HTM spine schema that makes it easy to
add point and region queries to an existing database. With
the advent of virtual machines integrated with database
engines, the impedance mismatch between the spatial
library and the database system is much reduced and the
performance of the integrated HTM code improves by a
factor of ten.

By using the zone idea (segmenting space into zone
buckets and then segmenting zones by an offset), one gets
performance comparable or better than the traditional
(external procedures) HTM-SQL integration approach,
largely because the zone approach allows the SQL
optimizer to pick efficient plans and because we avoid the
impedance mismatch – the zone code is all native to SQL.
Adding a multi-granularity approach to the zone
mechanism allows it to deal with areas of large dynamic
range.

All this shows the simplicity and benefits of the HTM
index. HTM uses a common representation for multi-
granular searches that adapts to different scale factors with
no extra mechanism. The code aims for an HTM cover of a
small number of triangles which results in an area of the
appropriate granularity.

Regions can be represented as unions of convex areas.
This representation is very natural in a relational system
and there are efficient ways for SQL to do points-in-region,
regions-containing-point, and regions-overlap-region

queries. This representation also allows a simple way to do
Boolean algebra among regions. A routine from the HTM
library is used to simplify regions and in addition regions
can be simplified using geometric reasoning implanted as
SQL set operations.

The region representation works well with both the zone
and the HTM indexing mechanisms. The regions form a

base layer, and these indices are different partitionings and
indices of the underlying representation.

We began by repeating the oft quoted phrase: “ Spatial is
special.” The techniques here have proven very useful to
us in building the SkyServer and other astronomical
databases and have helped in the TerraServer. But, they
each seem to form special cases rather than some grand
unified approach.

The common themes are that it is possible to embed spatial
concepts in a relational framework. When one does that,
the SQL set-oriented language and optimizer is very
convenient way to ask and answer the set-oriented queries
typical of spatial applications. Surprisingly the SQL query
optimizer, given either HTM or zone-pyramid indices, does
a good job of efficiently answering these queries.

All the code mentioned here is included in the public domain SQL
Server stored procedures used by the SkyServer and several other
astronomy archives. You may download that code from
[MySkyServer]

7. Acknowledgements
Peter Kukol, Beysim Sezgin, Cesar Galindo-Legaria have
been enormously helpful with the SQL aspects of this
project. Peter Kunszt and Robert Brunner contributed to the
initial HTM design and implementation. Tom Barclay
helped us with TerraServer design issues.

Table 4: The selectivity of the zone-pyramid scheme. Each row
shows the result set cardinality vs radius for each successive filter
clause in the SQL statement above. Zones cut the search space
down to 10,000 items; the ra filter further reduces it by a factor of
100; and then the dec filter gives a further factor of 2. The fine ra
filter does not contribute much. The “ careful” geometry test has
about �/4 positive answers (as would be expected of circles
inscribed in bounding boxes.)

Radius (in base units)
10 100 350 1,000

zone + scale filter 7,968 7,968 10,004 19,589
index ra filter 70 75 109 316
fine ra filter 70 75 108 316
dec filter 41 46 84 275
geometry filter 31 35 62 218
Table 5: The performance of zone-pyramid search to find regions
overlapping a region for various radii.

Radius (in base units)
10 100 350 1,000

Count (objects) 31 35 62 2216
Time (milliseconds) 5.0 5.3 5.4 7.8

 11

8. References
[HEALPix] W. O’ Mullane, A.J. Banday, K.M. Gorski, P. Kuntz,

A.S. Szalay, “Splitting the Sky – HTM and HEALPix,”
Mining the Sky, Banday et al ed, Springer, 2000, p 639-648

[HTM] http://www.sdss.jhu.edu/htm/ or “ The Indexing of the
SDSS Science Archive,” P. Z. Kunszt, A. S. Szalay, I.
Csabai, A. R. Thakar, Proc ADASS IX, eds. N. Manset, C.
Veillet, D. Crabtree, (ASP Conference series), 216, 141
(2000).

[Igloo] R. G. Crittenden and N. G. Turok, “ Exactly Azimuthal
Pixelizations of the Sky,” 1998, http://arxiv.org/abs/astro-
ph/9806374

[MySkyServr] Personal Skyserver Software
http://www.skyserver.org/myskyserver/

[OpenGIS] OpenGIS Simple Features Specification for SQL,
OGC, #99-49, May 1999, http://www.opengis.org/docs/99-
049.pdf

[Rots] A.H. Rots, “ Space-Time Coordinate Specification for VO
Metadata.” http://hea-
www.harvard.edu/~arots/nvometa/SpaceTime.html

[Samet] H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading, MA, 1990.

[SkyServer Region] http://www.skyserver.org/regions

[SkyServer] http://SkyServer.Sdss.Org/

[ICRS] International Celestial Reference System, Arias E. F.,
Charlot P., Feissel M., Lestrade J.-F., 1995: The
Extragalactic Reference System of the International Earth
Rotation Service, ICRS, Astron. Astrophys., 303, pp. 604-
608. also see http://www.iers.org/iers/earth/icrs/icrs.html

