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ABSTRACT 

 

An analysis of the failure statistics of a commercially available fault-tolerant system 
shows that administration and software are the major contributors to failure. Various 
approaches to software fault-tolerance are then discussed -- notably process-pairs, 
transactions and reliable storage. It is pointed out that faults in production software are 
often soft (transient) and that a transaction mechanism combined with persistent process-
pairs provides fault-tolerant execution -- the key to software fault-tolerance. 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

This paper is not an “official” Tandem statement on fault-tolerance.  Rather, it expresses 
the author’s research on the topic. 

______________________ 

An early version of this paper appeared in the proceedings of the German Association for 
Computing Machinery Conference on Office Automation, Erlangen, Oct. 2-4, 1985. 
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Introduction 

 
Computer applications such as patient monitoring, process control, online transaction 
processing, and electronic mail require high availability. 

 

The anatomy of a typical large system failure is interesting:  Assuming, as is usually the 
case, that an operations or software fault caused the outage, Figure 1 shows a time line of 
the outage.  It takes a few minutes for someone to realize that there is a problem and that 
a restart is the only obvious solution.  It takes the operator about 5 minutes to snapshoot 
the system state for later analysis. Then the restart can begin.  For a large system, the 
operating system takes a few minutes to get started. Then the database and data 
communications systems begin their restart.  The database restart completes within a few 
minutes but it may take an hour to restart a large terminal network.  Once the network is 
up, the users take a while to refocus on the tasks they had been performing.  After restart, 
much work has been saved for the system to perform -- so the transient load presented at 
restart is the peak load.  This affects system sizing. 

 

Conventional well-managed transaction processing systems fail about once every two 
weeks [Mourad], [Burman].  The ninety minute outage outlined above translates to 
99.6% availability for such systems.  99.6% availability “sounds” wonderful, but hospital 
patients, steel mills, and electronic mail users do not share this view -- a 1.5 hour outage 
every ten days is unacceptable.  Especially since outages usually come at times of peak 
demand [Mourad]. 

 

These applications require systems which virtually never fail -- parts of the system may 
fail but the rest of the system must tolerate failures and continue delivering service.  This 
paper reports on the structure and success of such a system -- the Tandem NonStop 
system.  It has MTBF measured in years -- more than two orders of magnitude better than 
conventional designs. 
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Hardware Availability Modular Redundancy 

 
Reliability and availability are different:  Availability is doing the right thing within the 
specified response time. Reliability is not doing the wrong thing. 

 

Expected reliability is proportional to the Mean Time Between Failures (MTBF).  A 
failure has some Mean Time To Repair (MTTR).  Availability can be expressed as a 
probability that the system will be available: 

MTTRMTBF
MTBF

tyAvailabili
+

≈   

In distributed systems, some parts may be available while others are not.  In these 
situations, one weights the availability of all the devices (e.g. if 90% of the database is 
available to 90% of the terminals, then the system is .9x.9 = 81% available.) 

The key to providing high availability is to modularize the system so that modules are the 
unit of failure and replacement.  Spare modules are configured to give the appearance of 
instantaneous repair -- if MTTR is tiny, then the failure is “seen” as a delay rather than a 
failure.  For example, geographically distributed terminal networks frequently have one 
terminal in a hundred broken.  Hence, the system is limited to 99% availability (because 
terminal availability is 99%).  Since terminal and communications line failures are 
largely independent, one can provide very good “site” availability by placing two 
terminals with two communications lines at each site. In essence, the second ATM 
provides instantaneous repair and hence very high availability.  Moreover, they increase 
transaction throughput at locations with heavy traffic.  This approach is taken by several 
high availability Automated Teller Machine (ATM) networks. 

 

This example demonstrates the concept:  modularity and redundancy allows one module 
of the system to fail without affecting the availability of the system as a whole because 
redundancy leads to small MTTR.  This combination of modularity and redundancy is the 
key to providing continuous service even if some components fail. 

 

Von Neumann was the first to analytically study the use of redundancy to construct 
available (highly reliable) systems from unreliable components [Neumann].  In his 
model, a redundancy 20,000 was needed to get a system MTBF of 100 years.  Certainly, 
his components were less reliable than transistors, he was thinking of human neurons or 
vacuum tubes. Still, it is not obvious why von Neumann’s machines required a 
redundancy factor of 20,000 while current electronic systems use a factor of 2 to achieve 
very high availability. The key difference is that von Neumann’s model lacked 
modularity, a failure in any bundle of wires anywhere, implied a total system failure. 
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VonNeumann’s model had redundancy without modularity.  In contrast, modern 
computer systems are constructed in a modular fashion -- a failure within a module only 
affects that module.  In addition each module is constructed to be fail-fast -- the module 
either functions properly or stops [Schlichting].  Combining redundancy with modularity 
allows one to use a redundancy of two rather than 20,000. Quite an economy! 

 

To give an example, modern discs are rated for an MTBF above 10,000 hours -- a hard 
fault once a year.  Many systems duplex pairs of such discs, storing the same information 
on both of them, and using independent paths and controllers for the discs.  Postulating a 
very leisurely MTTR of 24 hours and assuming independent failure modes, the MTBF of 
this pair (the mean time to a double failure within a 24 hour window) is over 1000 years. 
In practice, failures are not quite independent, but the MTTR is less than 24 hours and so 
one observes such high availability. 

 

Generalizing this discussion, fault-tolerant hardware can be constructed as follows: 

• Hierarchically decompose the system into modules. 

• Design the modules to have MTBF in excess of a year. 

• Make each module fail-fast -- either it does the right thing or stops. 

• Detect module faults promptly by having the module signal failure or by requiring 
it to periodically send an I AM ALIVE message or reset a watchdog timer. 

• Configure extra modules which can pick up the load of failed modules.  Takeover 
time, including the detection of the module failure, should be seconds.  This gives 
an apparent module MTBF measured in millennia. 

 

The resulting systems have hardware MTBF measured in decades or centuries. 

 

This gives fault-tolerant hardware. Unfortunately, it says nothing about tolerating the 
major sources of failure: software and operations.  Later we show how these same ideas 
can be applied to gain software fault-tolerance. 
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An Analysis of Failures of a Fault-Tolerant System 

 
There have been many studies of why computer systems fail. To my knowledge, none 
have focused on a commercial fault-tolerant system. The statistics for fault-tolerant 
systems are quite a bit different from those for conventional mainframes [Mourad]. 
Briefly, the MTBF of hardware, software and operations is more than 500 times higher 
than those reported for conventional computing systems -- fault-tolerance works.  On the 
other hand, the ratios among the sources of failure are about the same as those for 
conventional systems.  Administration and software dominate; hardware and environment 
are minor contributors to total system outages. 

 

Tandem Computers Inc. makes a line of fault-tolerant systems [Bartlett] [Borr 81, 84].  I 
analyzed the causes of system failures reported to Tandem over a seven-month period. 
The sample set covered more than 2000 systems and represents over 10,000,000 system 
hours or over 1300 system years.  Based on interviews with a sample of customers, I 
believe these reports cover about 50% of all total system failures.  There is under-
reporting of failures caused by customers or by environment.  Almost all failures caused 
by the vendor are reported. 

 

During the measured period, 166 failures were reported including one fire and one flood.  
Overall, this gives a system MTBF of 7.8 years reported and 3.8 years MTBF if the 
systematic under-reporting is taken into consideration.  This is still well above the 1 week 
MTBF typical of conventional designs. 

 

By interviewing four large customers who keep careful books on system outages, I got a 
more accurate picture of their operation.  They averaged a 4-year MTBF (consistent with 
7.8 years with 50% reporting).  In addition, their failure statistics had under-reporting in 
the expected areas of environment and operations.  Rather than skew the data by 
multiplying all MTBF numbers by .5, I will present the analysis as though the reports 
were accurate. 

 

About one third of the failures were “infant mortality” failures -- a product having a 
recurring problem.  All these fault clusters are related to a new software or hardware 
product still having the bugs shaken out.  If one subtracts out systems having “infant” 
failures or non-duplexed-disc failures, then the remaining failures, 107 in all, make an 
interesting analysis (see table 1). 

 

First, the system MTBF rises from 7.8 years to over 11 years. 
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System administration, which includes operator actions, system configuration, and 
system maintenance, was the main source of failures -- 42%.  Software and hardware 
maintenance was the largest category. High availability systems allow users to add 
software and hardware and to do preventative maintenance while the system is operating. 
By and large, online maintenance works VERY well.  It extends system availability by 
two orders of magnitude. But occasionally, once every 52 years by my figures, something 
goes wrong. This number is somewhat speculative -- if a system failed while it was 
undergoing online maintenance or while hardware or software was being added, I 
ascribed the failure to maintenance.  Sometimes it was clear that the maintenance person 
typed the wrong command or unplugged the wrong module, thereby introducing a double 
failure.  Usually, the evidence was circumstantial.  The notion that mere humans make a 
single critical mistake every few decades amazed me -- clearly these people are very 
careful and the design tolerates some human faults. 

 

System operators were a second source of human failures.  I suspect under-reporting of 
these failures.  If a system fails because of the operator, he is less likely to tell us about it. 
Even so, operators reported several failures.  System configuration, getting the right 
collection of software, microcode, and hardware, is a third major headache for reliable 
system administration. 
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Software faults were a major source of system outages -- 25% in all.  Tandem supplies 
about 4 million lines of code to the customer.  Despite careful efforts, bugs are present in 
this software.  In addition, customers write quite a bit of software.  Application software 
faults are probably under-reported here.  I guess that only 30% are reported. If that is 
true, application programs contribute 12% to outages and software rises to 30% of the 
total. 

 

Next come environmental failures.  Total communications failures (losing all lines to the 
local exchange) happened three times; in addition, there was a fire and a flood. No 
outages caused by cooling or air conditioning were reported.  Power outages are a major 
source of failures among customers who do not have emergency backup power (North 
American urban power typically has a 2-month MTBF).  Tandem systems tolerate over 4 
hours of lost power without losing any data or communications state (the MTTR is almost 
zero), so customers do not generally report minor power outages (less than 1 hour) to us. 

 

Given that power outages are under-reported, the smallest contributor to system outages 
was hardware, mostly discs and communications controllers.  The measured set included 
over 20,000 discs -- over 100,000,000 disc hours.  We saw 19 duplexed disc failures, but 
if one subtracts out the infant mortality failures, then there were only 7 duplexed disc 
failures.  In either case, one gets an MTBF in excess of 5 million hours for the duplexed 
pair and their controllers. This approximates the 1000-year MTBF calculated in the 
earlier section. 
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Implications of the Analysis of MTBF 

 
The implications of these statistics are clear: the key to high-availability is tolerating 
operations and software faults. 

 

Commercial fault-tolerant systems are measured to have a 73-year hardware MTBF 
(Table 1).  I believe there was 75% reporting of outages caused by hardware.  Calculating 
from device MTBF, there were about 50,000 hardware faults in the sample set.  Less than 
one in a thousand resulted in a double failure or an interruption of service.  Hardware 
fault-tolerance works! 

 

In the future, hardware will be even more reliable due to better design, increased levels of 
integration, and reduced numbers of connectors. 

 

By contrast, the trend for software and system administration is not positive.  Systems are 
getting more complex.  In this study, administrators reported 41 critical mistakes in over 
1300 years of operation.  This gives an operations MTBF of 31 years!  Operators 
certainly made many more mistakes, but most were not fatal.  These administrators are 
clearly very careful and use good practices. 

 

The top priority for improving system availability is to reduce administrative mistakes by 
making self-configured systems with minimal maintenance and minimal operator 
interaction.  Interfaces that ask the operator for information or ask him to perform some 
function must be simple, consistent and operator fault-tolerant. 

 

The same discussion applies to system maintenance.  Maintenance interfaces must be 
simplified.  Installation of new equipment must have fault-tolerant procedures and the 
maintenance interfaces must be simplified or eliminated.  To give a concrete example, 
Tandem’s newest discs have no special customer engineering training (installation is 
“obvious”) and they have no scheduled maintenance. 

 

A secondary implication of the statistics is actually a contradiction: 

 

• New and changing systems have higher failure rates.  Infant products contributed 
one third of all outages.  Maintenance caused one third of the remaining outages. 
A way to improve availability is to install proven hardware, and software, and 
then leave it alone. As the adage says, “If it’s not broken, don’t fix it”. 
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• On the other hand, a Tandem study found that a high percentage of outages were 
caused by “known” hardware or software bugs, which had fixes available, but the 
fixes were not yet installed in the failing system.  This suggests that one should 
install software and hardware fixes as soon as possible. 

 

There is a contradiction here: never change it and change it ASAP!  By consensus, the 
risk of change is too great.  Most installations are slow to install changes; they rely on 
fault-tolerance to protect them until the next major release.  After all, it worked 
yesterday, so it will probably work tomorrow. 

 

Here one must separate software and hardware maintenance.  Software fixes outnumber 
hardware fixes by several orders of magnitude.   I believe this causes the difference in 
strategy between hardware and software maintenance.  One cannot forego hardware 
preventative maintenance -- our studies show that it may be good in the short term but it 
is disastrous in the long term.  One must install hardware fixes in a timely fashion.  If 
possible, preventative maintenance should be scheduled to minimize the impact of a 
possible mistake. Software appears to be different. The same study recommends 
installing a software fix only if the bug is causing outages. Otherwise, the study 
recommends waiting for a major software release, and carefully testing it in the target 
environment prior to installation.  Adams comes to similar conclusions [Adams]; he 
points out that for most bugs, the chance of  “rediscovery” is very slim indeed. 

 

The statistics also suggest that if availability is a major goal, then avoid products which 
are immature and still suffering infant mortality.  It is fine to be on the leading edge of 
technology, but avoid the bleeding edge of technology. 

 

The last implication of the statistics is that software fault-tolerance is important.  
Software fault-tolerance is the topic of the rest of the paper. 
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Fault-tolerant Execution 

 
Based on the analysis above, software accounts for over 25% of system outages. This is 
quite good -- a MTBF of 50 years!  The volume of Tandem’s software is 4 million lines 
and growing at about 20% per year.  Work continues on improving coding practices and 
code testing but there is little hope of getting ALL the bugs out of all the software. 
Conservatively, I guess one bug per thousand lines of code remains after a program goes 
through design reviews, quality assurance, and beta testing.  That suggests the system has 
several thousand bugs. But somehow, these bugs cause very few system failures because 
the system tolerates software faults. 

 

The keys to this software fault-tolerance are: 

 

• Software modularity through processes and messages. 

• Fault containment through fail-fast software modules. 

• Process-pairs to tolerate hardware and transient software faults. 

• Transaction mechanism to provide data and message integrity. 

• Transaction mechanism combined with process-pairs to ease exception handling 
and tolerate software faults. 

 

This section expands on each of these points. 

 

• Software modularity through processes and messages 

 

As with hardware, the key to software fault-tolerance is to hierarchically decompose 
large systems into modules, each module being a unit of service and a unit of failure.  A 
failure of a module does not propagate beyond the module. 

 

There is considerable controversy about how to modularize software.  Starting with 
Burroughs’ Esbol and continuing through languages like Mesa and Ada, compiler writers 
have assumed perfect hardware and contended that they can provide good fault isolation 
through static compile-time type checking.  In contrast, operating systems designers have 
advocated run-time checking combined with the process as the unit of protection and 
failure. 
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Although compiler checking and exception handling provided by programming 
languages are real assets, history seems to have favored the run-time checks plus the 
process approach to fault containment.  It has the virtue of simplicity -- if a process or its 
processor misbehaves, stop it.  The process provides a clean unit of modularity, service, 
fault containment, and failure. 

 

• Fault containment through fail-fast software modules 
 
The process approach to fault isolation advocates that the process software module be 
fail-fast, it should either function correctly or it should detect the fault, signal failure and 
stop operating. 

 

Processes are made fail-fast by defensive programming.  They check all their inputs, 
intermediate results, outputs and data structures as a matter of course. If any error is 
detected, they signal a failure and stop.  In the terminology of [Christian], fail-fast 
software has small fault detection latency. 

 

The process achieves fault containment by sharing no state with other processes; rather, 
its only contact with other processes is via messages carried by a kernel message system.  

 

• Software faults are soft -- the Bohrbug/Heisenbug hypothesis 
 
Before developing the next step in fault-tolerance, process-pairs, we need to have a 
software failure model.  It is well known that most hardware faults are soft -- that is, most 
hardware faults are transient.  Memory error correction and checksums plus 
retransmission for communication are standard ways of dealing with transient hardware 
faults.  These techniques are variously estimated to boost hardware MTBF by a factor of 
5 to 100. 

 

I conjecture that there is a similar phenomenon in software -- most production software 
faults are soft.  If the program state is reinitialized and the failed operation retried, the 
operation will usually not fail the second time. 

 

If you consider an industrial software system that has gone through structured design, 
design reviews, quality assurance, alpha test, beta test, and months or years of production, 
then most of the “hard” software bugs, ones that always fail on retry, are gone.  The 
residual bugs are rare cases, typically related to strange hardware conditions (rare or 
transient device fault), limit conditions (out of storage, counter overflow, lost interrupt, 
etc.) or race conditions (forgetting to request a semaphore). 
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In these cases, resetting the program to a quiescent state and re-executing it will quite 
likely work, because now the environment is slightly different. After all, it worked a 
minute ago! 

 

The assertion that most production software bugs are soft -- Heisenbugs that go away 
when you look at them -- is well known to systems programmers.  Bohrbugs, like the 
Bohr atom, are solid, easily detected by standard techniques, and hence boring.  But 
Heisenbugs may elude a bugcatcher for years of execution.  Indeed, the bugcatcher may 
perturb the situation just enough to make the Heisenbug disappear.  This is analogous to 
the Heisenberg Uncertainty Principle in Physics. 

 

I have tried to quantify the chances of tolerating a Heisenbug by re-execution.  This is 
difficult.  A poll yields nothing quantitative. The one experiment I did went as follows: 
The spooler error log of several dozen systems was examined.  The spooler is constructed 
as a collection of fail-fast processes.  When one of the processes detects a fault, it stops 
and lets its brother continue the operation.  The brother does a software retry.  If the 
brother also fails, then the bug is a Bohrbug rather than a Heisenbug.  In the measured 
period, one out of 132 software faults was a Bohrbug, the remainders were Heisenbugs. 

 

A related study is reported in [Mourad].  In MVS/XA functional recovery routines try to 
recover from software and hardware faults.  If a software fault is recoverable, it is a 
Heisenbug.  In that study, about 90% of the software faults in system software had 
functional recovery routines (FRRs).  Those routines had a 76% success rate in 
continuing system execution.  That is, MVS  FRRs extend the system software MTBF by 
a factor of 4. 

 

It would be nice to quantify this phenomenon further.  As it is, systems designers know 
from experience that they can exploit the Heisenbug hypothesis to improve software 
fault-tolerance. 
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• Process-pairs for fault-tolerant execution 
 
One might think that fail-fast modules would produce a reliable but unavailable system -- 
modules are stopping all the time.  But, as with fault-tolerant hardware, configuring extra 
software modules gives a MTTR of milliseconds in case a process fails due to a hardware 
failure or a software Heisenbug.  If modules have a MTBF of a year, then dual processes 
give very acceptable MTBF for the pair.  Process triples do not improve MTBF because 
other parts of the system (e.g., operators) have orders of magnitude worse MTBF.  So, in 
practice fault-tolerant processes are generically called process-pairs. There are several 
approaches to designing process-pairs: 

 

Lockstep:   In this design, the primary and backup processes synchronously execute the 
same instruction stream on independent processors [Kim].  If one of the 
processors fails, the other simply continues the computation.  This approach gives 
good tolerance to hardware failures but gives no tolerance of Heisenbugs.  Both 
streams will execute any programming bug in lockstep and will fail in exactly the 
same way. 

 

State Checkpointing:  In this scheme, communication sessions are used to connect a 
requestor to a process-pair.  The primary process in a pair does the computation 
and sends state changes and reply messages to its backup prior each major event.  
If the primary process stops, the session switches to the backup process which 
continues the conversation with the requestor.  Session sequence numbers are 
used to detect duplicate and lost messages, and to resend the reply if a duplicate 
request arrives [Bartlett].  Experience shows that checkpointing process-pairs give 
excellent fault-tolerance (see Table 1), but that programming checkpoints is 
difficult.  The trend is away from this approach and towards the Delta or 
Persistent approaches described below. 

 

Automatic Checkpointing:  This scheme is much like state checkpoints except that the 
kernel automatically manages the checkpointing, relieving the programmer of this 
chore. As described in [Borg], all messages to and from a process are saved by the 
message kernel for the backup process.  At takeover, these messages are replayed 
to the backup to roll it forward to the primary process’ state.  When substantial 
computation or storage is required in the backup, the primary state is copied to the 
backup so that the message log and replay can be discarded.  This scheme seems 
to send more data than the state checkpointing scheme and hence seems to have 
high execution cost. 

 

Delta Checkpointing:  This is an evolution of state checkpointing.  Logical rather than 
physical updates are sent to the backup [Borr 84].  Adoption of this scheme by 
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Tandem cut message traffic in half and message bytes by a factor of 3 overall 
[Enright].  Deltas have the virtue of performance as well as making the coupling 
between the primary and backup state logical rather than physical.  This means 
that a bug in the primary process is less likely to corrupt the backup’s state. 

 

Persistence:  In persistent process-pairs, if the primary process fails, the backup wakes up 
in the null state with amnesia about what was happening at the time of the 
primary failure.  Only the opening and closing of sessions is checkpointed to the 
backup.  These are called stable processes by [Lampson].  Persistent processes are 
the simplest to program and have low overhead.  The only problem with persistent 
processes is that they do not hide failures!  If the primary process fails, the 
database or devices it manages are left in a mess and the requestor notices that the 
backup process has amnesia.  We need a simple way to resynchronize these 
processes to have a common state.  As explained below, transactions provide such 
a resynchronization mechanism. 

 

Summarizing the pros and cons of these approaches: 

 

• Lockstep processes don’t tolerate Heisenbugs. 

• State checkpoints give fault-tolerance but are hard to program. 

• Automatic checkpoints seem to be inefficient -- they send a lot of data to the 
backup. 

• Delta checkpoints have good performance but are hard to program. 

• Persistent processes lose state in case of failure. 

 

We argue next that transactions combined with persistent processes are simple to 
program and give excellent fault-tolerance. 

 

• Transactions for data integrity 
 
A transaction is a group of operations, be they database updates, messages, or external 
actions of the computer, which form a consistent transformation of the state. 
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Transactions should have the ACID property [Haeder]: 

 

• Atomicity:  Either all or none of the actions of the transaction should “happen”.  
Either it commits or aborts. 

• Consistency:  Each transaction should see a correct picture of the state, even if 
concurrent transactions are updating the state. 

• Integrity:  The transaction should be a correct state transformation. 

• Durability:  Once a transaction commits, all its effects must be preserved, even if 
there is a failure. 

 

The programmer’s interface to transactions is quite simple:  he starts a transaction by 
asserting the BeginTransaction verb, and ends it by asserting the EndTransactjon or 
AbortTransaction verb.  The system does the rest. 

 

The classical implementation of transactions uses locks to guarantee consistency and a 
log or audit trail to insure atomicity and durability.  Borr shows how this concept 
generalizes to a distributed fault-tolerant system [Borr 81, 84]. 

 

Transactions relieve the application programmer of handling many error conditions.  If 
things get too complicated, the programmer (or the system) calls AbortTransaction which 
cleans up the state by resetting everything back to the beginning of the transaction. 

 

• Transactions for simple fault-tolerant execution 

 
Transactions provide reliable execution and data availability (recall reliability means not 
doing the wrong thing, availability means doing the right thing and on time). 
Transactions do not directly provide high system availability.  If hardware fails or if there 
is a software fault, most transaction processing systems stop and go through a system 
restart -- the 90 minute outage described in the introduction. 

 

It is possible to combine process-pairs and transactions to get fault-tolerant execution and 
hence avoid most such outages. 

As argued above, process-pairs tolerate hardware faults and software Heisenbugs.  But 
most kinds of process-pairs are difficult to implement.  The “easy” process-pairs, 
persistent process-pairs, have amnesia when the primary fails and the backup takes over.  
Persistent process-pairs leave the network and the database in an unknown state when the 
backup takes over. 
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The key observation is that the transaction mechanism knows how to UNDO all the 
changes of incomplete transactions.  So we can simply abort all uncommitted transactions 
associated with a failed persistent process and then restart these transactions from their 
input messages.  This cleans up the database and system states, resetting them to the point 
at which the transaction began. 

 

So, persistent process-pairs plus transactions give a simple execution model which 
continues execution even if there are hardware faults or Heisenbugs.  This is the key to 
the Encompass data management system’s fault-tolerance [Borr 81].  The programmer 
writes fail-fast modules in conventional languages (Cobol, Pascal, Fortran) and the 
transaction mechanism plus persistent process-pairs makes his program robust. 

 

Unfortunately, people implementing the operating system kernel, the transaction 
mechanism itself and some device drivers still have to write “conventional” process-
pairs, but application programmers do not.  One reason Tandem has integrated the 
transaction mechanism with the operating system is to make the transaction mechanism 
available to as much software as possible [Borr 81]. 
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Fault-tolerant Communication 

 
Communications lines are the most unreliable part of a distributed computer system, 
partly because they are so numerous and partly because they have poor MTBF.  The 
operations aspects of managing them, diagnosing failures and tracking the repair process 
are a real headache [Gray]. 

 

At the hardware level, fault-tolerant communication is obtained by having multiple data 
paths with independent failure modes. 

 

At the software level, the concept of session is introduced.  A session has simple 
semantics: a sequence of messages is sent via the session.  If the communication path 
fails, an alternate path is tried.  If all paths are lost, the session endpoints are told of the 
failure.  Timeout and message sequence numbers are used to detect lost or duplicate 
messages.  All this is transparent above the session layer. 

 

Sessions are the thing that makes process-pairs work:  the session switches to the backup 
of the process-pair when the primary process fails [Bartlett].  Session sequence numbers 
(called SyncIDs by Bartlett) resynchronize the communication state between the sender 
and receiver and make requests/replies idempotent. 

 

Transactions interact with sessions as follows: if a transaction aborts, the session 
sequence number is logically reset to the sequence number at the beginning of the 
transaction and all intervening messages are canceled.  If a transaction commits, the 
messages on the session will be reliably delivered EXACTLY once [Spector]. 
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Fault-tolerant Storage 

 

The basic form of fault-tolerant storage is replication of a file on two media with 
independent failure characteristics -- for example two different disc spindles or, better 
yet, a disc and a tape.  If one file has an MTBF of a year then two files will have a 
millennia MTBF and three copies will have about the same MTBF -- as the Tandem 
system failure statistics show, other factors will dominate at that point. 

 

Remote replication is an exception to this argument.  If one can afford it, storing a replica 
in a remote location gives good improvements to availability.  Remote replicas will have 
different administrators, different hardware, and different environment.  Only the 
software will be the same.  Based on the analysis in Table 1, this will protect against 75% 
of the failures (all the non-software failures).  Since it also gives excellent protection 
against Heisenbugs, remote replication guards against most software faults. 

 

There are many ways to remotely replicate data; one can have exact replicas, can have the 
updates to the replica done as soon as possible or even have periodic updates.  [Gray] 
describes representative systems which took different approaches to long-haul 
replication. 

 

Transactions provide the ACID properties for storage -- Atomicity, Consistency, Integrity 
and Durability [Haeder].  The transaction journal plus an archive copy of the data provide 
a replica of the data on media with independent failure modes. If the primary copy fails, a 
new copy can be reconstructed from the archive copy by applying all updates committed 
since the archive copy was made.  This is Durability of data. 

 

In addition, transactions coordinate a set of updates to the data, assuring that all or none 
of them apply.  This allows one to correctly update complex data structures without 
concern for failures.  The transaction mechanism will undo the changes if something goes 
wrong.  This is Atomicity. 

 

A third technique for fault-tolerant storage is partitioning the data among discs or nodes 
and hence limiting the scope of a failure.  If the data is geographically partitioned, local 
users can access local data even if the communication net or remote nodes are down.  
Again, [Gray] gives examples of systems which partition data for better availability. 
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Summary 

 

Computer systems fail for a variety of reasons.  Large computer systems of conventional 
design fail once every few weeks due to software, operations mistakes, or hardware.  
Large fault-tolerant systems are measured to have an MTBF at orders of magnitude 
higher -- years rather than weeks. 

 

The techniques for fault-tolerant hardware are well documented.  They are quite 
successful.  Even in a high availability system, hardware is a minor contributor to system 
outages. 

 

By applying the concepts of fault-tolerant hardware to software construction, software 
MTBF can be raised by several orders of magnitude.  These concepts include: modularity, 
defensive programming, process-pairs, and tolerating soft faults -- Heisenbugs. 

 

Transactions plus persistent process-pairs give fault-tolerant execution.  Transactions plus 
resumable communications sessions give fault-tolerant communications.  Transactions 
plus data replication give fault-tolerant storage.  In addition, transaction atomicity 
coordinates the changes of the database, the communications net, and the executing 
processes.  This allows easy construction of high availability software. 

 

Dealing with system configuration, operations, and maintenance remains an unsolved 
problem.  Administration and maintenance people are doing a much better job than we 
have reason to expect.  We can’t hope for better people.  The only hope is to simplify and 
reduce human intervention in these aspects of the system. 
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