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Abstract:  Parallel database machine architectures have evolved from the use of exotic 
hardware to a software parallel dataflow architecture based on conventional shared-nothing 
hardware.  These new designs provide impressive speedup and scaleup when processing 
relational database queries.  This paper reviews the techniques used by such systems, and surveys 
current commercial and research systems. 
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1. Introduction  
Highly parallel database systems are beginning to displace traditional mainframe 

computers for the largest database and transaction processing tasks.  The success of these 
systems refutes a 1983 paper predicting the demise of database machines [BORA83]. Ten years 
ago the future of highly-parallel database machines seemed gloomy, even to their staunchest 
advocates.  Most database machine research had focused on specialized, often trendy, hardware 
such as CCD memories, bubble memories, head-per-track disks, and optical disks.  None of these 
technologies fulfilled their promises; so there was a sense that conventional cpus, electronic RAM, 
and moving-head magnetic disks would dominate the scene for many years to come.  At that 
time, disk throughput was predicted to double while processor speeds were predicted to increase 
by much larger factors.  Consequently, critics predicted that multi-processor systems would soon 
be I/O limited unless a solution to the I/O bottleneck were found. 

While these predictions were fairly accurate about the future of hardware, the critics were 
certainly wrong about the overall future of parallel database systems.  Over the last decade 
Teradata, Tandem, and a host of startup companies have successfully developed and marketed 
highly parallel database machines.  

 Why have parallel database systems become more than a research curiosity?  One 
explanation is the widespread adoption of the relational data model. In 1983 relational database 
systems were just appearing in the marketplace; today they dominate it.  Relational queries are 
ideally suited to parallel execution; they consist of uniform operations applied to uniform streams 
of data.  Each operator produces a new relation, so the operators can be composed into highly 
parallel dataflow graphs. By streaming the output of one operator into the input of another 
operator, the two operators can work in series giving pipelined parallelism.  By partitioning the 
input data among multiple processors and memories, an operator can often be split into many 
independent operators each working on a part of the data.  This partitioned data and execution 
gives partitioned parallelism (Figure 1).  

The dataflow approach to database system design needs a message-based client-server 
operating system to interconnect the parallel processes executing the relational operators.  This in 
turn requires a high-speed network to interconnect the parallel processors.  Such facilities seemed 
exotic a decade ago, but now they are the mainstream of computer architecture.  The client-server 
paradigm using high-speed LANs is the basis for most PC, workstation, and workgroup software.  
Those same client-server mechanisms are an excellent basis for distributed database technology. 
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 pipeline parallelism partitioned data allows partitioned parallelism 
Figure 1.  The dataflow approach to relational operators gives both pipelined and partitioned 
parallelism.  Relational data operators take relations (uniform sets of records) as input and produce 
relations as outputs.  This allows them to be composed into dataflow graphs that allow pipeline parallelism 
(left) in which the computation of one operator proceeds in parallel with another, and partitioned 
parallelism in which operators (sort and scan in the diagram at the right) are replicated for each data 
source, and the replicas execute in parallel.  

 
Mainframe designers have found it difficult to build machines powerful enough to meet 

the CPU and I/O demands of relational databases serving large numbers of simultaneous users or 
searching terabyte databases.  Meanwhile, multi-processors based on fast and inexpensive 
microprocessors have become widely available from vendors including Encore, Intel, NCR, 
nCUBE, Sequent, Tandem, Teradata, and Thinking Machines.  These machines provide more 
total power than their mainframe counterparts at a lower price.  Their modular architectures 
enable systems to grow incrementally, adding MIPS, memory, and disks either to speedup the 
processing of a given job, or to scaleup the system to process a larger job in the same time. 

In retrospect, special-purpose database machines have indeed failed; but, parallel database 
systems are a big success.  The successful parallel database systems are built from conventional 
processors, memories, and disks.  They have emerged as major consumers of highly parallel 
architectures, and are in an excellent position to exploit massive numbers of fast-cheap 
commodity disks, processors, and memories promised by current technology forecasts.  

A consensus on parallel and distributed database system architecture has emerged.  This 
architecture is based on a shared-nothing hardware design [STON86] in which processors 
communicate with one another only by sending messages via an interconnection network.  In 
such systems, tuples of each relation in the database are partitioned (declustered) across disk 
storage units2 attached directly to each processor. Partitioning allows multiple processors to scan 
large relations in parallel without needing any exotic I/O devices.  Such architectures were 
pioneered by Teradata in the late seventies and by several research projects. This design is now 
used by Teradata, Tandem, Oracle-nCUBE, and several other products currently under 

                                                 
2 The term disk here is used as a shorthand for disk or other nonvolatile storage media.  As the decade proceeds nonvolatile 
electronic storage or some other media may replace or augment disks. 
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development.  The research community has also embraced this shared-nothing dataflow 
architecture in systems like Arbre, Bubba, and Gamma.  

The remainder of this paper is organized as follows. Section 2 describes the basic 
architectural concepts used in these parallel database systems. This is followed by a brief 
presentation of the unique features of the Teradata, Tandem, Bubba, and Gamma systems in 
Section 3. Section 4 describes several areas for future research. Our conclusions are contained in 
Section 5.  
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2. Basic Techniques for Parallel Database Machine Implementation 

2.1. Parallelism Goals and Metrics: Speedup and Scaleup  
The ideal parallel system demonstrates two key properties: (1) linear speedup: Twice as 

much hardware can perform the task in half the elapsed time, and (2) linear scaleup:  Twice as 
much hardware can perform twice as large a task in the same elapsed time (see Figures 2 and 3).  

 

100GB 100GB 100GB 1 TB

Speedup Batch Scaleup  
Figure 2. Speedup and Scaleup. A speedup design performs a one-hour job four times faster when run 
on a four-times larger system.  A scaleup design runs a ten-times bigger job is done in the same time by a 
ten-times bigger system. 

 
More formally, given a fixed job run on a small system, and then run on a larger system, 

the speedup given by the larger system is measured as:  

  Speedup = 
small_system_elapsed_time
big_system_elapsed_time  

Speedup is said to be linear, if an N-times large or more expensive system yields a speedup of N. 
Speedup holds the problem size constant, and grows the system.  Scaleup measures the 

ability to grow both the system and the problem.  Scaleup is defined as the ability of an N-times 
larger system to perform an N-times larger job in the same elapsed time as the original system.  
The scaleup metric is.   

Scaleup = 
small_system_elapsed_time_on_small_problem

big_system_elapsed_time_on_big_problem   

If this scaleup equation evaluates to 1, then the scaleup is said to be linear3.  There are two 
distinct kinds of scaleup, batch and transactional.  If the job consists of performing many small 
independent requests submitted by many clients and operating on a shared database, then scaleup 
consists of N-times as many clients, submitting N-times as many requests against an N-times 
larger database.  This is the scaleup typically found in transaction processing systems and 
timesharing systems.  This form of scaleup is used by the Transaction Processing Performance 
Council to scale up their transaction processing benchmarks [GRAY91]. Consequently, it is 
called transaction-scaleup.  Transaction scaleup is ideally suited to parallel systems since each 
transaction is typically a small independent job that can be run on a separate processor.  

                                                 
3 The execution cost of some operators increases super-linearly.  For example, the cost of sorting n-tuples increases as nlog(n).   
When n is in the billions, scalling up by a factor of a thousand, causes nlog(n) to increase by 3000.   This 30% deviation from 
linarity in a three-orders-of-magnitude scalup justifies the use of the term near-linear scaleup. 
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A second form of scaleup, called batch scaleup, arises when the scaleup task is presented 
as a single large job.  This is typical of database queries and is also typical of scientific 
simulations.  In these cases, scaleup consists of using an N-times larger computer to solve an N-
times larger problem.  For database systems batch scaleup translates to the same query on an N-
times larger database; for scientific problems, batch scaleup translates to the same calculation on 
an N-times finer grid or on an N-times longer simulation. 

The generic barriers to linear speedup and linear scaleup are the triple threats of:  
startup: The time needed to start a parallel operation.  If thousands of processes must be 

started, this can easily dominate the actual computation time. 
interference:  The slowdown each new process imposes on all others when accessing shared 

resources.  
skew:  As the number of parallel steps increases, the average sized of each step decreases, but 

the variance can well exceed the mean.  The service time of a job is the service time of the 
slowest step of the job.  When the variance dominates the mean, increased parallelism 
improves elapsed time only slightly. 

 

Processors & Discs

The Good Speedup  
Curve 

    Processors & Discs

A Bad Speedup Curve 
3-Factors 

Processors & Discs

A Bad Speedup Curve 

Linearity 

No Parallelism

 
Figure 2. Good and bad speedup curves.  The standard speedup curves. The left curve is the ideal. 
The middle graph shows no speedup as hardware is added.  The right curve shows the three threats to 
parallelism.  Initial startup costs may dominate at first.  As the number of processes increase, interference 
can increase.  Ultimately, the job is divided so finely, that the variance in service times (skew) causes a 
slowdown.   

Section 2.3 describes several basic techniques widely used in the design of shared-
nothing parallel database machines to overcome these barriers.  These techniques often achieve 
linear speedup and scaleup on relational operators.  

2.2. Hardware Architecture, the Trend to Shared-Nothing Machines  
The ideal database machine would have a single infinitely fast processor with an infinite 

memory with infinite bandwidth — and it would be infinitely cheap (free).  Given such a 
machine, there would be no need for speedup, scaleup, or parallelism.  Unfortunately, technology 
is not delivering such machines — but it is coming close.  Technology is promising to deliver 
fast one-chip processors, fast high-capacity disks, and high-capacity electronic RAM memories.  It 
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also promises that each of these devices will be very inexpensive by today's standards, costing 
only hundreds of dollars each. 

 So, the challenge is to build an infinitely fast processor out of infinitely many processors 

of finite speed, and to build an infinitely large memory with infinite memory bandwidth from 

infinitely many storage units of finite speed.  This sounds trivial mathematically; but in practice, 
when a new processor is added to most computer designs, it slows every other computer down 
just a little bit.  If this slowdown (interference) is 1%, then the maximum speedup is 37 and a 
thousand-processor system has 4% of the effective power of a single processor system.  

How can we build scaleable multi-processor systems?  Stonebraker suggested the 
following simple taxonomy for the spectrum of designs (see Figures 3 and 4)  [STON86]4:  

shared-memory: All processors share direct access to a common global memory and to all 
disks.  The IBM/370, and Digital VAX, and Sequent Symmetry multi-processors typify this 
design. 

shared-disks: Each processor has a private memory but has direct access to all disks.  The IBM 
Sysplex and original Digital VAXcluster typify this design. 

shared-nothing:  Each memory and disk is owned by some processor that acts as a server for 
that data.  Mass storage in such an architecture is distributed among the processors by 
connecting one or more disks.  The Teradata, Tandem, and nCUBE machines typify this 
design.  

Shared-nothing architectures minimize interference by minimizing resource sharing.  
They also exploit commodity processors and memory without needing an incredibly powerful 
interconnection network.  As Figure 4 suggests, the other architectures move large quantities of 
data through the interconnection network.  The shared-nothing design moves only questions and 
answers through the network.  Raw memory accesses and raw disk accesses are performed 
locally in a processor, and only the filtered (reduced) data is passed to the client program.  This 
allows a more scaleable design by minimizing traffic on the interconnection network. 

Shared-nothing characterizes the database systems being used by Teradata [TERA85], 
Gamma [DEWI90], Tandem [TAND88], Bubba [ALEX88], Arbre [LORI89], and nCUBE 
[GIBB91].  Significantly, Digital's VAXcluster has evolved to this design.  DOS and UNIX 
workgroup systems from 3com, Boreland, Digital, HP, Novel, Microsoft, and Sun also adopt a 
shared-nothing client-server architecture. 
  

                                                 
4  Single Instruction stream, Multiple Data stream (SIMD) machines such as ILLIAC IV and its derivatives like MASSPAR and the 
"old" Connection Machine are ignored here because to date they have few successes in the database area.  SIMD machines seem to 
have application in simulation, pattern matching, and mathematical search, but they do not seem to be appropriate for the 
multiuser, i/o intensive, and dataflow paradigm of database systems. 
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Figure 3. The basic shared-nothing design.  Each processor has a private memory and one or more 
disks.  Processors communicate via a high-speed interconnect network.  Teradata, Tandem, nCUBE, and 
the newer VAXclusters typify this design. 

The actual interconnection networks used by these systems vary enormously. Teradata 
employs a redundant tree-structured communication network.  Tandem uses a three-level 
duplexed network, two levels within a cluster, and rings connecting the clusters. Arbre, Bubba, 
and Gamma are independent of the underlying interconnection network, requiring only that 
network allow any two nodes to communicate with one another. Gamma operates on an Intel 
Hypercube. The Arbre prototype was implemented using IBM 4381 processors connected to one 
another in a point-to-point network.  Workgroup systems are currently making a transition from 
Ethernet to higher speed local networks.  

The main advantage of shared-nothing multi-processors is that they can be scaled up to 
hundreds and probably thousands of processors that do not interfere with one another.  Teradata, 
Tandem, and Intel have each shipped systems with more than 200 processors. Intel is 
implementing a 2000 node Hypercube.  The largest shared-memory multi-processors currently 
available are limited to about 32 processors.  
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Global Shared Memory

Shared Memory Multiprocessor Shared Disk Multiprocessor  
Figure 4. The shared-memory and shared-disk designs.  A shared-memory multi-processor connects 
all processors to a globally shared memory.  Multi-processor IBM/370, VAX, and Sequent computers are 
typical examples of shared-memory designs.  Shared-disk systems give each processor a private 
memory, but all the processors can directly address all the disks.  Digital's VAXcluster and IBM's Sysplex 
typify this design. 
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These shared-nothing architectures achieve near-linear speedups and scaleups on complex 
relational queries and on online-transaction processing workloads [DEWI90, TAND88, 
ENGL89].  Given such results, database machine designers see little justification for the 
hardware and software complexity associated with shared-memory and shared-disk designs. 

Shared-memory and shared-disk systems do not scale well on database applications. 
Interference is a major problem for shared-memory multi-processors.  The interconnection 
network must have the bandwidth of the sum of the processors and disks.  It is difficult to build 
such networks that can scale to thousands of nodes.  To reduce network traffic and to minimize 
latency, each processor is given a large private cache.  Measurements of shared-memory multi-
processors running database workloads show that loading and flushing these caches considerably 
degrades processor performance [THAK90].  As parallelism increases, interference on shared 
resources limits performance.  Multi-processor systems often use an affinity scheduling 
mechanism to reduce this interference; giving each process an affinity to a particular processor.  
This is a form of data partitioning; it represents an evolutionary step toward the shared-nothing 
design.  Partitioning a shared-memory system creates many of the skew and load balancing 
problems faced by a shared-nothing machine; but reaps none of the simpler hardware 
interconnect benefits.  Based on this experience, we believe high-performance shared-memory 
machines will not economically scale beyond a few processors when running database 
applications.  

To ameliorate the interference problem, most shared-memory multi-processors have 
adopted a shared-disk architecture.  This is the logical consequence of affinity scheduling. If the 
disk interconnection network can scale to thousands of discs and processors, then a shared-disk 
design is adequate for large read-only databases and for databases where there is no concurrent 
sharing.  The shared-disk architecture is not very effective for database applications that read and 
write a shared database.  A processor wanting to update some data must first obtain the current 
copy of that data.  Since others might be updating the same data concurrently, the processor must 
declare its intention to update the data.  Once this declaration has been honored and 
acknowledged by all the other processors, the updator can read the shared data from disk and 
update it.  The processor must then write the shared data out to disk so that subsequent readers 
and writers will be aware of the update.  There are many optimizations of this protocol, but they 
all end up exchanging reservation messages and exchanging large physical data pages.  This 
creates processor interference and delays.  It creates heavy traffic on the shared interconnection 
network.  

For shared database applications, the shared-disk approach is much more expensive than 
the shared-nothing approach of exchanging small high-level logical questions and answers 
among clients and servers.  One solution to this interference has been to give data a processor 
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affinity; other processors wanting to access the data send messages to the server managing the 
data.  This has emerged as a major application of transaction processing monitors that partition 
the load among partitioned servers, and is also a major application for remote procedure calls.  
Again, this trend toward the partitioned data model and shared-nothing architecture on a shared-
disk system reduces interference.  Since the shared-disk system interconnection network is 
difficult to scale to thousands of processors and disks, many conclude that it would be better to 
adopt the shared-nothing architecture from the start.  

Given the shortcomings of shared-disk and shared-nothing architectures, why have 
computer architects been slow to adopt the shared-nothing approach?  The first answer is simple, 
high-performance low-cost commodity components have only recently become available.  
Traditionally, commodity components were relatively low performance and low quality. 

Today, old software is the most significant barrier to the use of parallelism.  Old software 
written for uni-processors gets no speedup or scaleup when put on any kind of multiprocessor.  It 
must be rewritten to benefit from parallel processing and multiple disks.  Database applications 
are a unique exception to this.  Today, most database programs are written in the relational 
language SQL that has been standardized by both ANSI and ISO.  It is possible to take standard 
SQL applications written for uni-processor systems and execute them in parallel on shared-
nothing database machines.  Database systems can automatically distribute data among multiple 
processors.  Teradata and Tandem routinely port SQL applications to their system and 
demonstrate near-linear speedups and scaleups.  The next section explains the basic techniques 
used by such parallel database systems. 

2.3. A Parallel Dataflow Approach to SQL Software 
Terabyte online databases, consisting of billions of records, are becoming common as the 

price of online storage decreases.  These databases are often represented and manipulated using 
the SQL relational model.  The next few paragraphs give a rudimentary introduction to relational 
model concepts needed to understand the rest of this paper. 

A relational database consists of relations (files in COBOL terminology) that in turn 
contain tuples (records in COBOL terminology).  All the tuples in a relation have the same set of 
attributes (fields in COBOL terminology).  

Relations are created, updated, and queried by writing SQL statements.  These statements 
are syntactic sugar for a simple set of operators chosen from the relational algebra.  Select-

project, here called scan, is the simplest and most common operator – it produces a row-and-
column subset of a relational table.  A scan of relation R using predicate P and attribute list L 
produces a relational data stream as output.  The scan reads each tuple, t, of R and applies the 
predicate P to it.  If P(t) is true, the scan discards any attributes of t not in L and inserts the 
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resulting tuple in the scan output stream.  Expressed in SQL, a scan of a telephone book relation 
to find the phone numbers of all people named Smith would be written: 

SELECT  telephone_number  /* the output attribute(s) */ 
FROM  telephone_book  /* the input relation  */ 
WHERE  last_name = 'Smith'; /* the predicate   */ 

A scan's output stream can be sent to another relational operator, returned to an application, 
displayed on a terminal, or printed in a report.  Therein lies the beauty and utility of the relational 
model.  The uniformity of the data and operators allow them to be arbitrarily composed into 
dataflow graphs. 

 The output of a scan may be sent to a sort operator that will reorder the tuples based on 
an attribute sort criteria, optionally eliminating duplicates.  SQL defines several aggregate 
operators to summarize attributes into a single value, for example, taking the sum, min, or max 
of an attribute, or counting the number of distinct values of the attribute.  The insert operator 
adds tuples from a stream to an existing relation.  The update and delete operators alter and 
delete tuples in a relation matching a scan stream. 

The relational model defines several operators to combine and compare two or more 
relations. It provides the usual set operators union, intersection, difference, and some more exotic 
ones like join and division. Discussion here will focus on the equi-join operator (here called 
join). The join operator composes two relations, A and B, on some attribute to produce a third 
relation. For each tuple, ta, in A, the join finds all tuples, tb, in B with attribute value equal to that 
of ta.  For each matching pair of tuples, the join operator inserts into the output steam a tuple 
built by concatenating the pair. 

Codd, in a classic paper, showed that the relational data model can represent any form of 
data, and that these operators are complete [CODD70].  Today, SQL applications are typically a 
combination of conventional programs and SQL statements.  The programs interact with clients, 
perform data display, and provide high-level direction of the SQL dataflow. 

The SQL data model was originally proposed to improve programmer productivity by 
offering a non-procedural database language. Data independence was and additional benefit;  
since the programs do not specify how the query is to be executed, SQL programs continue to 
operate as the logical and physical database schema evolves.  

Parallelism is an unanticipated benefit of the relational model.  Since relational queries 
are really just relational operators applied to very large collections of data, they offer many 
opportunities for parallelism.  Since the queries are presented in a non-procedural language, they 
offer considerable latitude in executing the queries. 

Relational queries can be executed as a dataflow graph.  As mentioned in the 
introduction, these graphs can use both pipelined parallelism and partitioned parallelism.  If one 
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operator sends its output to another, the two operators can execute in parallel giving potential 
speedup of two.  

The benefits of pipeline parallelism are limited because of three factors: (1) Relational 
pipelines are rarely very long - a chain of length ten is unusual. (2) Some relational operators do 
not emit their first output until they have consumed all their inputs.  Aggregate and sort operators 
have this property.  One cannot pipeline these operators.  (3) Often, the execution cost of one 
operator is much greater than the others (this is an example of skew).  In such cases, the speedup 
obtained by pipelining will be very limited. 

Partitioned execution offers much better opportunities for speedup and scaleup.  By 
taking the large relational operators and partitioning their inputs and outputs, it is possible to use 
divide-and-conquer to turn one big job into many independent little ones. This is an ideal 
situation for speedup and scaleup.  Partitioned data is the key to partitioned execution. 

Data Partitioning  
Partitioning a relation involves distributing its tuples over several disks. Data partitioning 

has its origins in centralized systems that had to partition files, either because the file was too big 
for one disk, or because the file access rate could not be supported by a single disk.  Distributed 
databases use data partitioning when they place relation fragments at different network sites 
[RIES78].  Data partitioning allows parallel database systems to exploit the I/O bandwidth of 
multiple disks by reading and writing them in parallel.  This approach provides I/O bandwidth 
superior to RAID-style systems without needing any specialized hardware [SALE84, PATT88].  

 The simplest partitioning strategy distributes tuples among the fragments in a round-

robin fashion.  This is the partitioned version of the classic entry-sequence file.  Round robin 
partitioning is excellent if all applications want to access the relation by sequentially scanning all 
of it on each query.  The problem with round-robin partitioning is that applications frequently 
want to associatively access tuples, meaning that the application wants to find all the tuples 
having a particular attribute value.  The SQL query looking for the Smith's in the phone book is 
an example of an associative search. 
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Figure 5: The three basic partitioning schemes.  Range partitioning maps contiguous attribute ranges 
of a relation to various disks.  Round-robin partitioning maps the i’th tuple to disk i mod n.  Hashed 
partitioning, maps each tuple to a disk location based on a hash function.  Each of these schemes 
spreads data among a collection of disks, allowing parallel disk access and parallel processing. 

 
Hash partitioning is ideally suited for applications that want only sequential and 

associative access to the data.  Tuples are place by applying a hashing function to the key 
attribute of each tuple.  The function specifies the placement of the tuple on a particular disk.  
Associative access to the tuples with a specific attribute value can be directed to a single disk, 
avoiding the overhead of starting queries on multiple disks.  Hash partitioning mechanisms are 
provided by Arbre, Bubba, Gamma, and Teradata.  

Database systems pay considerable attention to clustering related data together in physical 
storage.  If a set of tuples are routinely accessed together, the database system attempts to store 
them on the same physical page.  For example, if the Smith's of the phone book are routinely 
accessed in alphabetical order, then they should be stored on pages in that order, these pages 
should be clustered together on disk to allow sequential prefetching and other optimizations.  
Clustering is very application specific.  For example, tuples describing nearby streets should be 
clustered together in geographic databases, tuples describing the line items of an invoice should 
be clustered with the invoice tuple in an inventory control application. 

Hashing tends to randomize data rather than cluster it. Range partitioning clusters tuples 
with similar attributes together in the same partition.  It is good for sequential and associative 
access, and is also good for clustering data.  Figure 5 shows range partitioning based on 
lexicographic order, but any clustering algorithm is possible. The B-tree is the most common 
clustering algorithm.  Range partitioning derives its name from the typical SQL range queries 
such as 

latitude BETWEEN 37o AND 39o  

Arbre, Bubba, Gamma, Oracle, and Tandem provide range partitioning 
The problem with range partitioning is that it risks data skew, where all the data is place 

in one partition, and execution skew in which all the execution occurs in one partition.  Hashing 
and round-robin are less susceptible to these skew problems. Range partitioning can minimize 
skew by picking non-uniformly-distributed partitioning criteria.  Bubba uses this concept by 
considering the access frequency (heat) of each tuple when creating partitions a relation; the goal 
being to balance the frequency with which each partition is accessed (its temperature) rather than 
the actual number of tuples on each disk (its volume) [COPE88]. 

While partitioning is a simple concept that is easy to implement, it raises several new 
physical database design issues.  Each relation must now have a partitioning strategy and a set of 
disk fragments. Increasing the degree of partitioning usually reduces the response time for an 
individual query and increases the overall throughput of the system. For sequential scans, the 
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response time decreases because more processors and disks are used to execute the query. For 
associative scans, the response time improves because fewer tuples are stored at each node and 
hence the size of the index that must be searched decreases.  

There is a point beyond which further partitioning actually increases the response time of 
a query.  This point occurs when the cost of starting a query on a node becomes a significant 
fraction of the actual execution time [COPE88, DEWI88, GHAN90a]. 

 Parallelism Within Relational Operators  
Data partitioning is the first step in partitioned execution of relational dataflow graphs.  

The basic idea is to use parallel data streams instead of writing new parallel operators 
(programs). This approach enables the use of unmodified, existing sequential routines to execute 
the relational operators in parallel.  Each relational operator has a set of input ports on which 
input tuples arrive and an output port to which the operator's output stream is sent. The parallel 
dataflow works by partitioning and merging data streams into these sequential ports.  This 
approach allows the he use of existing sequential relational operators to execute in parallel.  

Consider a scan of a relation, A, that has been partitioned across three disks into 
fragments A0, A1, and A2.  This scan can be implemented as three scan operators that send their 
output to a common merge operator.  The merge operator produces a single output data stream to 
the application or to the next relational operator.  The parallel query executor creates the three 
scan processes shown in Figure 6 and directs them to take their inputs from three different 
sequential input streams (A0, A1, A2). It also directs them to send their outputs to a common 
merge node.  Each scan can run on an independent processor and disk. So the first basic 
parallelizing operator is a merge that can combine several parallel data streams into a single 
sequential stream. 

 

SCAN

A 

SCAN

A2

C 

SCAN

A1

SCAN

A0

merge 
operatorC 

 
Figure 6: Partitioned data parallelism.  A simple relational dataflow graph showing a relational scan 
(project and select) decomposed into three scans on three partitions of the input stream or relation.  
These three scans send their output to a merge node that produces a single data stream.  

The merge operator tends to focus data on one spot.  If a multi-stage parallel operation is 
to be done in parallel, a single data stream must be split into several independent streams. A split 

operator is used to partition or replicate the stream of tuples produced by a relational operator.  A 
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split operator defines a mapping from one or more attribute values of the output tuples to a set of 
destination processes (see Figure 7). 

Process   
Executing 
Operator

Split   
operator    

  output  
portinput 

ports 

Merge   
operator    
  

 
Figure 7:  Merging the inputs and partitioning the output of an operator. A relational dataflow graph 
showing a relational operator’s inputs being merged to a sequential steam per port.   The operator's output 
is being decomposed by a split operator into several independent streams.  Each stream may be a 
duplicate or a partitioning of the operator output stream into many disjoint streams.  With the split and 
merge operators, a web of simple sequential dataflow nodes can be connected to form a parallel 
execution plan. 

As an example, consider the two split operators shown in Figure 8 in conjunction with the 
query shown in Figure 9.  Assume that three processes are used to execute the join operator, and 
that five other processes execute the two scan operators — three scanning partitions of relation A 
while two scan partitions of relation B.  Each of the three relation A scan nodes will have the 
same split operator, sending all tuples between “A-H” to port 1 of join process 0, all between “I-
Q” to port 1 of join process 1, and all between “R-Z” to port 1 of join process 2.  Similarly the 
two relation B scan nodes have the same split operator except that their outputs are merged by 
port 1 (not port 0) of each join process.  Each join process sees a sequential input stream of A 
tuples from the port 0 merge (the left scan nodes) and another sequential stream of B tuples from 
the port 1 merge (the right scan nodes). For each process executing the scan, the split operator 
applies the predicates to the join attribute of each output tuple.  If the predicate is satisfied, the 
tuple is sent to the corresponding destination . Each join process has two ports, each of which 
merges the outputs from the various scan split operators. The outputs of each join and in turn 
split into three steams based on the partitioning criterion of relation C. 
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Relation A Scan Split Operator Relation B Scan Split Operator 

Predicate Destination Process Predicate Destination Process 

“A-H” (cpu #5, Process #3, Port #0)  “A-H” (cpu #5, Process #3, Port #1)  
“I-Q” (cpu #7, Process #8, Port #0)  “I-Q” (cpu #7, Process #8, Port #1)  
“R-Z” (cpu #2, Process #2, Port #0)  “R-Z” (cpu #2, Process #2, Port #1)  

Figure 8. Sample split operators.  Each split operator maps tuples to a set of output streams (ports of 
other processes) depending on the range value (predicate) of the input tuple.  The split operator on the left 
is for the relation A scan in Figure 7, while the table on the right is for the relation B scan.  The tables 
above partition the tuples among three data streams.  If the predicates were TRUE for all the tuples, the 
split operator would replicate the tuples on all three output streams.   

 
To clarify this example, consider the second join process in Figure 9 (processor 7, process 

8, ports 1 and 2).  It will get all the relation A “I-Q” tuples from the three relation A scan 
operators merged as a single stream on port 0, and will get all the “I-Q” tuples from relation B 
merged as a single stream on port 1.  It will join them using a hash-join, sort-merge join, or even 
a nested join if the tuples arrive in the proper order.  This join node in turn sends its output to the 
merge node, much as the scans did in Figure 6. 
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Figure 9: A simple relational dataflow graph.  It shows two relational scans (project and select) 
consuming two input relations, A and B and feeding their outputs to a join operator that in turn produces a 
data stream C. 

If each of these processes is on an independent processor with an independent disk, there 
will be little interference among them.  Such dataflow designs are a natural application for 
shared-nothing machine architectures. 

The split operator in Figure 8 is just an example.  Other split operators might duplicate 
the input stream, or partition it round-robin, or partition it by hash.  The partitioning function can 
be an arbitrary program.   Gamma, Volcano, and Tandem use this approach [GRAE90]. It has 
several advantages including the automatic parallelism of any new operator added to the system, 
plus support for a many kinds of parallelism.  
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The split and merge operators have flow control and buffering built into them.  This 
prevents one operator from getting too far ahead in the computation.  When a split-operator's 
output buffers fill, it stalls the relational operator until the data target requests more output. 

For simplicity, these examples have been stated in terms of an operator per process.  But 
it is entirely possible to place several operators within a process to get coarser grained 
parallelism.  The fundamental idea though is to build a self-pacing dataflow graph and distribute 
it in a shared-nothing machine in a way that minimizes interference. 

Specialized Parallel Relational Operators 
Some algorithms for relational operators are especially appropriate for parallel execution, 

either because they minimize data flow, or because they better tolerate data and execution skew.  
Improved algorithms have been found for most of the relational operators.  The evolution of join 
operator algorithms is sketched here as an example of these improved algorithms.   

Recall that the join operator combines two relations, A and B, to produce a third relation 
containing all tuple pairs from A and B with matching attribute values.  The conventional way of 
computing the join is to sort both A and B into new relations ordered by the join attribute.  These 
two intermediate relations are then compared in sorted order, and matching tuples are inserted in 
the output stream.  This algorithm is called sort-merge join.   

Many optimizations of sort-merger join are possible, but since sort has execution cost 
nlog(n), sort-merge join has an nlog(n) execution cost.  Sort-merge join works well in a parallel 
dataflow environment unless there is data skew.  In case of data skew, some sort partitions may 
be much larger than others. This in turn creates execution skew and limits speedup and scaleup.  
These skew problems do not appear in centralized sort-merge joins. 

Hash-join is an alternative to sort-merge join.  It has linear execution cost rather than 
nlog(n) execution cost, and it is more resistant to data skew.  It is superior to sort-merge join 
unless the input streams are already in sorted order.  Hash join works as follows.  Each of the 
relations A and B are first hash partitioned on the join attribute.  A hash partition of relation A is 
hashed into memory.  The corresponding partition of table relation B is scanned, and each tuple 
is compared against the main-memory hash table for the A partition.  If there is a match, the pair 
of tuples are sent to the output stream.  Each pair of hash partitions is compared in this way. 

The hash join algorithm breaks a big join into many little joins.  If the hash function is 
good and if the data skew is not too bad, then there will be little variance in the hash bucket size.  
In these cases hash-join is a linear-time join algorithm with linear speedup and scaleup.  Many 
optimizations of the parallel hash-join algorithm have been discovered over the last decade.  In 
pathological skew cases, when many or all tuples have the same attribute value, one bucket may 
contain all the tuples.  In these cases no algorithm is known to speedup or scaleup. 
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The hash-join example shows that new parallel algorithms can improve the performance 
of relational operators.  This is a fruitful research area [BORA90, DEWI86, KITS83, KITS90, 
PIRA90, SCHN90, SCHN91, WALT91, WOLF90, ZELL90]. Even though conventional 
sequential relational operators can be composed with split and join operators, we expect many 
new algorithms will be added in years to come.  



    20 

3. The State of the Art 

3.1. Teradata 
Teradata quietly pioneered many of the ideas presented here.  Since 1978 they have been 

building shared-nothing highly-parallel SQL systems based on commodity microprocessors, 
disks, and memories.  Teradata systems act as SQL servers to client programs operating on 
conventional computers.  

Teradata systems may have over a thousand processors and many thousands of disks.  
The Teradata processors are functionally divided into two groups: Interface Processors (IFPs) and 
Access Module Processors (AMPs).  The IFPs handle communication with the host, query 
parsing and optimization, and coordination of AMPs during query execution. The AMPs are 
responsible for executing queries.  Each AMP typically has several disks and a large memory 
cache.  IFPs and AMPs are interconnected by a dual redundant, tree-shaped interconnect called 
the Y-net [TERA83, TERA85].  

Each relation is hash partitioned over a subset of the AMPs. When a tuple is inserted into 
a relation, a hash function is applied to the primary key of the tuple to select an AMP for storage. 
Once a tuple arrives at a AMP, a second hash function determines the tuple's placement in its 
fragment of the relation. The tuples in each fragment are in hash-key order.  Given a value for the 
key attribute, it is possible to locate the tuple in a single AMP.  The AMP examines its cache, 
and if the tuple is not present, fetches it in a single and disk read.  Hash secondary indices are 
also supported.  

 Hashing is used to spit the outputs of relational operators into intermediate relations. Join 
operators are executed using a parallel sort-merge algorithm.  Rather than using pipelined parallel 
execution, during the execution of a query, each operator is run to completion on all participating 
nodes before the next operator is initiated.   

Teradata has installed many systems containing over one hundred processors and 
hundreds of disks.  These systems demonstrate near-linear speedup and scaleup on relational 
queries, and far exceed the speed of traditional mainframes in their ability to process large 
(terabyte) databases. 

3.2. Tandem NonStop SQL  
 The Tandem NonStop SQL system is composed of processor clusters interconnected via 

4-plexed fiber optic rings.  Unlike most other systems discussed here, the Tandem systems run 
the applications on the same processors and operating system as the database servers.  There is 
no front-end back-end distinction between programs and machines.  The systems are configured 
at a disk per MIPS, so each ten-MIPS processor has about ten disks.  Disks are typically duplexed 
[BITT88].  Each disk is served by a set of processes managing a large shared RAM cache, a set of 
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locks, and log records for the data on that disk pair.  Considerable effort is spent on optimizing 
sequential scans by prefetching large units, and by filtering and manipulating the tuples with SQL 
predicates at these disk servers.  This minimizes traffic on the shared interconnection network . 

Relations may be range partitioned across multiple disks.  Entry-sequenced, relative, and 
B-tree organizations are supported.  Only B-tree secondary indices are supported.  Nested join, 
sort-merge join, and hash join algorithms are provided.  Parallelization of operators in a query 
plan is achieved by inserting a merge and split parallel operators between operator nodes in the 
query tree.  Scans, aggregates, joins, updates, and deletes are executed in parallel.  In addition 
several utilities use parallelism (e.g., load, reorganize, ...) [TAND87, ZELL90].  

Tandem systems are primary designed for online transaction processing (OLTP) - running 
many simple transactions against a large shared database.  Beyond the parallelism inherent in 
running many independent transactions in parallel, the main parallelism feature for OLTP is 
parallel index update.  SQL relations typically have five indices on them, although it is not 
uncommon to see ten indices on a relation.  These indices speed reads, but slow down inserts, 
updates, and deletes.  By doing the index maintenance in parallel, the maintenance time for 
multiple indices can be held almost constant if the indices are spread among many processors and 
disks. 

Overall, the Tandem systems demonstrate near-linear scaleup on transaction processing 
workloads, and near-linear speedup and scaleup on large relational queries [TAND87, ENGL89].   

3.3. Gamma 
 The current version of Gamma runs on a 32 node Intel iPSC/2 Hypercube with disk 

attached to each node. In addition to range and hash partitioning, Gamma provides hybrid-range 
partitioning that combines the best features of the hash and range partitioning strategies 
[GHAN90b]. Once a relation has been partitioned, Gamma provides both clustered and non-
clustered indices.  The indices are implemented as B-trees or hash-tables.  

 Gamma uses split and merge operators to execute relational algebra operators in parallel. 
Sort-merge and three different hash join methods are supported [KITS83, DEWI84].  Near-linear 
speedup and scaleup for relational queries has been measured on this architecture [SCHN89, 
DEWI90, SCHN90].    

3.4. The Super Database Computer 
 The Super Database Computer (SDC) project at the University of Tokyo presents an 

interesting contrast to other database systems [KITS90, HIRA90, KITS87].  SDC takes a 
combined hardware and software approach to the performance problem.  The basic unit, called a 
processing module (PM), consists of one or more processors on a shared memory.  These 
processors are augmented by a special purpose sorting engine that sorts at high speed (3MB/s at 
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present), and by a disk subsystem.  Clusters of processing modules are connected via an omega 
network that provides both non-blocking NxN interconnect and some dynamic routing minimize 
skewed data distribution during hash joins [ LAWR75, KITS90].  The SDC is designed to scale 
to thousands of PMs, and so considerable attention is paid to the problem of data skew.   

 Data is partitioned among the PMs by hashing.  The SDC software includes a unique 
operating system, and a relational database query executor.  The SDC is a shared-nothing design 
with a software dataflow architecture. This is consistent with our assertion that current parallel 
database machines systems use conventional hardware.  But the special-purpose design of the 
omega network and of the hardware sorter clearly contradict the thesis that special-purpose 
hardware is not a good investment of development resources.  Time will tell whether these 
special-purpose components offer better price performance or peak performance than shared-
nothing designs built of conventional hardware. 

3.5. Bubba 
The Bubba prototype was implemented using a 40 node FLEX/32 multi-processor with 

40 disks [BORA90]. Although this is a shared-memory multi-processor, Bubba was designed as 
a shared-nothing system and the shared-memory is only used for message passing. Nodes are 
divided into three groups: Interface Processors for communicating with external host processors 
and coordinating query execution, Intelligent Repositories for data storage and query execution, 
and Checkpoint/Logging Repositories. While Bubba also uses partitioning as a storage 
mechanism (both range and hash partitioning mechanisms are provided) and dataflow processing 
mechanisms, Bubba is unique in several ways.  First, Bubba uses FAD rather than SQL as its 
interface language. FAD is an extended-relational persistent programming language.  FAD 
provides support for complex objects via several type constructors including shared sub-objects, 
set-oriented data manipulation primitives, and more traditional language constructs.  The FAD 
compiler is responsible for detecting operations that can be executed in parallel according to how 
the data objects being accessed are partitioned.  Program execution is performed using a dataflow 
execution paradigm.  The task of compiling and parallelizing a FAD program is significantly 
more difficult than parallelizing a relational query.  Another Bubba feature is its use of a single-
level store mechanism in which the persistent database at each node is mapped to the virtual 
memory address space of each process executing at the node.  This is in contrast to the traditional 
approach of files and pages. Similar mechanisms are used in IBM's AS400 mapping of SQL 
databases into virtual memory, HP's mapping of the Image Database into the operating system 
virtual address space, and Mach's mapped file [TEVA87] mechanism.  This approach simplified 
the implementation of the upper levels of the Bubba software.  
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3.6. Other Systems  
 Other parallel database system prototypes include XPRS [STON88], Volcano 

[GRAE90], Arbre [LORI89], and the PERSIST project under development at IBM Research 
Labs in Hawthorne and Almaden. While both Volcano and XPRS are implemented on shared-
memory multi-processors, XPRS is unique in its exploitation of the availability of massive 
shared-memory in its design. In addition, XPRS is based on several innovative techniques for 
obtaining extremely high performance and availability.   

Recently, the Oracle database system has been implemented atop a 64-node nCUBE 
shared-nothing system.  The resulting system is the first to demonstrate more than 1000 
transactions per second on the industry-standard TPC-B benchmark.  This is far in excess of 
Oracle's performance on conventional mainframe systems - both in peak performance and in 
price/performance [GIBB91].  

NCR has announced the 3600 and 3700 product lines that employ shared-nothing 
architectures running System V R4 of Unix on Intel 486 and 586 processors. The interconnection 
network for the 3600 product line uses an enhanced Y-Net licensed from Teradata while the 3700 
is based on a new multistage interconnection network being developed jointly by NCR and 
Teradata.  Two software offerings have been announced.  The first, a port of the Teradata 
software to a Unix environment, is targeted toward the decision-support marketplace.  The 
second, based on a parallelization of the Sybase DBMS is intended primarily for transaction 
processing workloads. 

Database Machines and Grosch's Law 
Today shared-nothing database machines have the best peak performance and best price 

performance available.  When compared to traditional mainframes, the Tandem system scales 
linearly well beyond the largest reported mainframes on the TPC-A transaction processing 
benchmark.  Its price/performance on these benchmarks is three times cheaper than the 
comparable mainframe numbers.  Oracle on an nCUBE has the highest reported TPC-B numbers, 
and has very competitive price performance [GRAY91, GIBB91].  These benchmarks 
demonstrate linear scaleup on transaction processing benchmarks. 

Gamma, Tandem, and Teradata have demonstrated linear speedup and scaleup on 
complex relational database benchmarks.  They scale well beyond the size of the largest 
mainframes.  Their performance and price performance is generally superior to mainframe 
systems. 

These observations defy Grosch's law.  In the 1960's, Herb Grosch observed that there is 
an economy-of-scale in computing.  At that time, expensive computers were much more 
powerful than inexpensive computers.  This gave rise to super-linear speedups and scaleups.  The 
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current pricing of mainframes at 25,000$/mips and 1000$/MB of RAM reflects this view.  
Meanwhile, microprocessors are selling for 250$/mips and 100$/MB of RAM. 

By combining hundreds or thousands of these small systems, one can build an incredibly 
powerful database machine for much less money than the cost of a modest mainframe.  For 
database problems, the near-linear speedup and scaleup of these shared-nothing machines allows 
them to outperform current shared-memory and shared disk mainframes.   

So, at least for database and transaction processing problems, Grosch's law no longer 
applies.  At best one can expect linear speedup and scaleup of microprocessor performance and 
price/performance.  Fortunately, shared-nothing database architectures achieve this near-linear 
performance. 



    25 

4. Future Directions and Research Problems 

4.1. Mixing Batch and OLTP Queries  
Section 2 concentrated on the basic techniques used for processing complex relational 

queries in a parallel database system.  Tandem and Teradata have demonstrated that the same 
architecture can be used successfully to process many simple transaction-processing workloads 
and to process large ad-hoc queries [TAND88, ENGB89].  Concurrently running a mix of both 
simple and complex queries concurrently presents several unsolved problems.   

One problem is that large relational queries tend to acquire a many locks and tend to hold 
them for a relatively long time.  This prevents concurrent updates the data by simple online 
transactions. Two solutions are currently offered: give the ad-hoc queries a fuzzy picture of the 
database, not locking any data as they browse it.  Such a "dirty-read" solution is not acceptable 
for some applications. The solution offered by Rdb [HOBB91], Oracle, and XPRS [STON88], is 
to use a versioning mechanism to enable readers to read a consistent (old) version of the database 
while updators are allowed to create newer versions of objects.  Other, perhaps better, solutions 
for this problem may also exist. 

Priority scheduling is another mixed-workload problem.  Batch jobs have a tendency to 
monopolize the processor, flood the memory cache, and make large demands on the I/O 
subsystem.  It is up to the underlying operating system to quantize and limit the resources used by 
such batch jobs to insure short response times and low variance in response times for short 
transactions.  A particularly difficult problem, is the priority inversion problem, in which a low-
priority client makes a request to a high priority server.  The server must run at high priority 
because it is managing critical resources.  Given this, the work of the low priority client is 
effectively promoted to high priority when the low priority request is serviced by the high-
priority server.  There have been several ad-hoc attempts at solving this problem, but 
considerably more work is needed.   

4.2. Parallel Query Optimization 
 Currently, the query optimizers for most parallel database systems/machines do not 

consider many query tree formats when optimizing a relational query. Typically only left-deep 
query trees are considered and not right deep or bushy trees.  [GRAE89] proposes to dynamically 
select from among several plans at run time depending on, for example, the amount of physical 
memory actually available and the cardinalities of the intermediate results.  While cost models 
for relational queries running on a single processor are now well-understood [SELI79, JARK84, 
MACK86], they still depend on cost estimators that are a guess at best. The situation with 
parallel join algorithms running in a mixed batch and online environment is even more complex. 
Only recently have we begun to understand the relative performance of the various parallel join 
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methods and query tree organizations in a parallel database machine environment [SCHN90].  To 
date, no query optimizers consider the all the parallel algorithms for each operator and all the 
query tree organizations. While the necessary query optimizer technology exists, accurate cost 
models have not been developed, let alone validated. More work is needed in this area.  

4.3. Application Program Parallelism   
 While machines like Teradata and Gamma separate the application program running on a 

host processor from the database software running on the parallel processor, both the Tandem 
and Bubba systems use the same processors for both application programs and for the parallel 
database software.  This arrangement has the disadvantage of requiring a complete, full-function 
operating system on the parallel processor, but it avoids any potential load imbalance between 
the two systems and allows parallel applications.  Missing, however, are tools that would allow 
the application programs themselves to take advantage of parallelism inherent of these integrated 
parallel systems.  While automatic parallelization of applications programs written in Cobol may 
not be feasible, library packages to facilitate explicitly parallel application programs are needed.  
Support for the SQL3 NOWAIT option in which the application can launch several SQL statements 
at once would be an advance.  Ideally the SPLIT and MERGE operators could be packaged so that 
applications could benefit from them.  

4.4. Physical Database Design  
  As discussed in Section 3, Gamma currently provides four partitioning strategies in 

addition to the ususal access methods. While this is a richer set than what is currently available 
commercially, the results in [GHAN90a, GHAN90b] demonstrate that there is no one best 
partitioning strategy. In addition, for a given database and workload there are many possible 
indexing and partitioning combinations. Database design tools are needed to help the database 
administrator select the correct combination. Such a tool might accept as input a description of 
the queries comprising the workload (including their frequency of execution), statistical 
information about the relations in the database, and a description of the target environment. The 
resulting output would include a specification of which partitioning strategy should be used for 
each relation (including which nodes the relation should be partitioned over) plus a specification 
of the indices to be created on each relation. Such a tool would undoubtedly need to be integrated 
with the query optimizer as query optimization must incorporate information on partitioning and 
indices that, in turn, impact what plan is chosen for a particular query.  

 Another area where additional research is needed is in the area of multidimensional 
partitioning algorithms. All current algorithms partitioning the tuples in a relation using the 
values of a single attribute. While this arrangement allows selections against the partitioning 
attribute to be localized to a limited number of nodes, selections on any other attribute must be 
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sent to all the nodes over which the relation is partitioned for processing. While this is acceptable 
in a small configuration, it is not in a system with thousands of processors.   

4.5. On-line Reorganization and Utilities 
 Loading, reorganizing, or dumping a terabyte database at a megabyte per second takes 

over twelve days and nights.  Clearly parallelism is needed if utilities are to complete within a 
few hours or days.  Even then, it will be essential that the data be available while the utilities are 
operating.  In the SQL world, typical utilities create indices, add or drop attributes, add 
constraints, and physically reorganize the data, changing its clustering. 

 One unexplored and difficult problem is how to process database utility commands while 
the system remains operational and the data remains available for concurrent reads and writes by 
others.  The fundamental properties of such algorithms is that they must be online (operate 
without making data unavailable), incremental (operate on parts of a large database), parallel 
(exploit parallel processors), and recoverable (allow the operation to be canceled and return to 
the old state).  A technique for reorganizing indices was proposed in [STON88]. 

4.6. Processing Highly Skewed Data 
 Another interesting research area is algorithms to handle relations with highly skewed 

attribute values distributions.  Both range partitioning and hybrid-range partitioning help alleviate 
the problem of data skew, especially if the heat of the tuples in the relation is considered 
[COPE88].  Problems can still occur when the data is redistributed as part of processing a 
complex operator such as a join. One possible solution is use a range-split operator with non-
uniformly distributed entries for partitioning the tuples of two relations to be joined.  Other 
approaches to solving this problem have been proposed in [KITS90, WOLF90, HUA91, 
WALT91].  Certainly other solutions remain to be explored and evaluated.  

4.7. Non-relational Parallel Database Machines 
 While open research issues remain in the area of parallel database machines for relational 

database systems, building a highly parallel database machine for an object-oriented database 
system (OODBMS) presents several new challenges. One of the first issues to resolve is how 
partitioning should be handled. For example, should one partition all sets (such as set-valued 
attributes of a complex object) or just top-level sets? Another question is how should inter-object 
references be handled. In a relational database machine, such references are handled by doing a 
join between the two relations of interest, but in an object-oriented DBMS references are 
generally handled via pointers. In particular, a tension exists between partitioning a set in order to 
execute parallel scan operations on that set and clustering an object and the objects it references 
to reduce the number of disk accesses necessary to access the components of a complex object. 
Since clustering in a standard object-oriented database system remains an open research issue, 
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mixing in partitioning makes the problem even more challenging.  A treatment of these issues 
can be found in [GHAN91]. 

 Another open area is parallel query processing in an OODBMS. Most OODBMS provide 
a query language based on an extension to relational algebra. While it is possible to execute these 
operators in parallel, how should class-specific methods be handled? If the method operates on a 
single object it is certainly not worthwhile parallelizing it. However, if the method operates on a 
set of values or objects that are partitioned, then it must have intra-operator parallelism if one is 
going to avoid moving all the data referenced to a single processor for execution. It is impossible 
to parallelize arbitrary method code.  One possible solution is to insist that if a method is to be 
executed in parallel, that it must be constructed using the primitives from the underlying algebra, 
perhaps embedded in a normal programming language.  
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5. Summary and Conclusions  
Like most applications, database systems want cheap, fast hardware.  Today that means 

commodity processors, memories, and disks.  Consequently, the hardware concept of a database 

machine built of exotic hardware is inappropriate for current technology.  On the other hand, the 
availability of fast microprocessors, and small inexpensive disks packaged as standard 
inexpensive but fast computers is an ideal platform for parallel database systems.  A shared-
nothing architecture is relatively straightforward to implement and, more importantly, has 
demonstrated both speedup and scaleup to hundreds of processors.  Furthermore, shared-nothing 
architectures actually simplify the software implementation. If the software techniques of data 
partitioning, dataflow, and intra-operator parallelism are employed, the task of converting an 
existing database management system to a highly parallel one becomes a relatively 
straightforward. Finally, there are certain applications (e.g., data mining in terabyte databases) 
that require the computational and I/O resources available only from a parallel architecture.  

 While the successes of both commercial products and prototypes demonstrates the 
viability of highly parallel database machines, several open research issues remain unsolved 
including techniques for mixing ad-hoc queries and with online transaction processing without 
seriously limiting transaction throughput, improved optimizers for parallel queries, tools for 
physical database design, on-line database reorganization, and algorithms for handling relations 
with highly skewed data distributions.  Some application domains are not well supported by the 
relational data model.  It appears that a new class of database systems based on an object-oriented 
data model are needed. Such systems pose a host of interesting research problems that required 
further examination.  
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