
 1

Parallel Database Systems:
The Future of Database Processing or a Passing Fad?

 David J. DeWitt1 Jim Gray
 Computer Sciences Department San Francisco Systems Center
 University of Wisconsin Digital Equipment Corporation
 Madison, WI. 53706 455 Market St. 7th fl
 DeWitt @ cs.wisc.edu San Francisco, CA. 94105-2403
 JimGray @ SFbay.enet.dec.com

November 1991

Abstract: Parallel database machine architectures have evolved from the use of exotic
hardware to a software parallel dataflow architecture based on conventional shared-nothing
hardware. These new designs provide impressive speedup and scaleup when processing
relational database queries. This paper reviews the techniques used by such systems, and surveys
current commercial and research systems.

1 This research was partially supported by the Defense Advanced Research Projects Agency under contract N00039-86-C-0578,
by the National Science Foundation under grant DCR-8512862, and by research grants from Intel Scientific Computers, Tandem
Computers, and Digital Equipment Corporation.

 2

Table of Contents

1. Introduction..2
2. Basic Techniques for Parallel Database Machine Implementation........................5

2.1. Parallelism Goals and Metrics: Speedup and Scaleup5
2.2. Hardware Architecture, the Trend to Shared-Nothing Machines6
2.3. A Parallel Dataflow Approach to SQL Software..10

Data Partitioning ..12
Parallelism Within Relational Operators ...14
Specialized Parallel Relational Operators..17

3. The State of the Art..18
3.1. Teradata...18
3.2. Tandem NonStop SQL..18
3.3. Gamma..19
3.4. The Super Database Computer ...19
3.5. Bubba ..20
3.6. Other Systems ...21
Database Machines and Grosch's Law...21

4. Future Directions and Research Problems ...23
4.1. Mixing Batch and OLTP Queries ...23
4.2. Parallel Query Optimization ...23
4.3. Application Program Parallelism..24
4.4. Physical Database Design ...24
4.5. On-line Reorganization and Utilities ..25
4.6. Processing Highly Skewed Data ...25
4.7. Non-relational Parallel Database Machines ..25

5. Summary and Conclusions...27

 3

1. Introduction
Highly parallel database systems are beginning to displace traditional mainframe

computers for the largest database and transaction processing tasks. The success of these
systems refutes a 1983 paper predicting the demise of database machines [BORA83]. Ten years
ago the future of highly-parallel database machines seemed gloomy, even to their staunchest
advocates. Most database machine research had focused on specialized, often trendy, hardware
such as CCD memories, bubble memories, head-per-track disks, and optical disks. None of these
technologies fulfilled their promises; so there was a sense that conventional cpus, electronic RAM,
and moving-head magnetic disks would dominate the scene for many years to come. At that
time, disk throughput was predicted to double while processor speeds were predicted to increase
by much larger factors. Consequently, critics predicted that multi-processor systems would soon
be I/O limited unless a solution to the I/O bottleneck were found.

While these predictions were fairly accurate about the future of hardware, the critics were
certainly wrong about the overall future of parallel database systems. Over the last decade
Teradata, Tandem, and a host of startup companies have successfully developed and marketed
highly parallel database machines.

 Why have parallel database systems become more than a research curiosity? One
explanation is the widespread adoption of the relational data model. In 1983 relational database
systems were just appearing in the marketplace; today they dominate it. Relational queries are
ideally suited to parallel execution; they consist of uniform operations applied to uniform streams
of data. Each operator produces a new relation, so the operators can be composed into highly
parallel dataflow graphs. By streaming the output of one operator into the input of another
operator, the two operators can work in series giving pipelined parallelism. By partitioning the
input data among multiple processors and memories, an operator can often be split into many
independent operators each working on a part of the data. This partitioned data and execution
gives partitioned parallelism (Figure 1).

The dataflow approach to database system design needs a message-based client-server
operating system to interconnect the parallel processes executing the relational operators. This in
turn requires a high-speed network to interconnect the parallel processors. Such facilities seemed
exotic a decade ago, but now they are the mainstream of computer architecture. The client-server
paradigm using high-speed LANs is the basis for most PC, workstation, and workgroup software.
Those same client-server mechanisms are an excellent basis for distributed database technology.

 4

Source
Data

Scan

Sort

Source
Data

Scan

Sort

Source
Data

Scan

Sort

Source
Data

Scan

Sort

Source
Data

Scan

Sort

Merge

 pipeline parallelism partitioned data allows partitioned parallelism
Figure 1. The dataflow approach to relational operators gives both pipelined and partitioned
parallelism. Relational data operators take relations (uniform sets of records) as input and produce
relations as outputs. This allows them to be composed into dataflow graphs that allow pipeline parallelism
(left) in which the computation of one operator proceeds in parallel with another, and partitioned
parallelism in which operators (sort and scan in the diagram at the right) are replicated for each data
source, and the replicas execute in parallel.

Mainframe designers have found it difficult to build machines powerful enough to meet

the CPU and I/O demands of relational databases serving large numbers of simultaneous users or
searching terabyte databases. Meanwhile, multi-processors based on fast and inexpensive
microprocessors have become widely available from vendors including Encore, Intel, NCR,
nCUBE, Sequent, Tandem, Teradata, and Thinking Machines. These machines provide more
total power than their mainframe counterparts at a lower price. Their modular architectures
enable systems to grow incrementally, adding MIPS, memory, and disks either to speedup the
processing of a given job, or to scaleup the system to process a larger job in the same time.

In retrospect, special-purpose database machines have indeed failed; but, parallel database
systems are a big success. The successful parallel database systems are built from conventional
processors, memories, and disks. They have emerged as major consumers of highly parallel
architectures, and are in an excellent position to exploit massive numbers of fast-cheap
commodity disks, processors, and memories promised by current technology forecasts.

A consensus on parallel and distributed database system architecture has emerged. This
architecture is based on a shared-nothing hardware design [STON86] in which processors
communicate with one another only by sending messages via an interconnection network. In
such systems, tuples of each relation in the database are partitioned (declustered) across disk
storage units2 attached directly to each processor. Partitioning allows multiple processors to scan
large relations in parallel without needing any exotic I/O devices. Such architectures were
pioneered by Teradata in the late seventies and by several research projects. This design is now
used by Teradata, Tandem, Oracle-nCUBE, and several other products currently under

2 The term disk here is used as a shorthand for disk or other nonvolatile storage media. As the decade proceeds nonvolatile
electronic storage or some other media may replace or augment disks.

 5

development. The research community has also embraced this shared-nothing dataflow
architecture in systems like Arbre, Bubba, and Gamma.

The remainder of this paper is organized as follows. Section 2 describes the basic
architectural concepts used in these parallel database systems. This is followed by a brief
presentation of the unique features of the Teradata, Tandem, Bubba, and Gamma systems in
Section 3. Section 4 describes several areas for future research. Our conclusions are contained in
Section 5.

 6

2. Basic Techniques for Parallel Database Machine Implementation

2.1. Parallelism Goals and Metrics: Speedup and Scaleup
The ideal parallel system demonstrates two key properties: (1) linear speedup: Twice as

much hardware can perform the task in half the elapsed time, and (2) linear scaleup: Twice as
much hardware can perform twice as large a task in the same elapsed time (see Figures 2 and 3).

100GB 100GB 100GB 1 TB

Speedup Batch Scaleup
Figure 2. Speedup and Scaleup. A speedup design performs a one-hour job four times faster when run
on a four-times larger system. A scaleup design runs a ten-times bigger job is done in the same time by a
ten-times bigger system.

More formally, given a fixed job run on a small system, and then run on a larger system,

the speedup given by the larger system is measured as:

 Speedup =
small_system_elapsed_time
big_system_elapsed_time

Speedup is said to be linear, if an N-times large or more expensive system yields a speedup of N.
Speedup holds the problem size constant, and grows the system. Scaleup measures the

ability to grow both the system and the problem. Scaleup is defined as the ability of an N-times
larger system to perform an N-times larger job in the same elapsed time as the original system.
The scaleup metric is.

Scaleup =
small_system_elapsed_time_on_small_problem

big_system_elapsed_time_on_big_problem

If this scaleup equation evaluates to 1, then the scaleup is said to be linear3. There are two
distinct kinds of scaleup, batch and transactional. If the job consists of performing many small
independent requests submitted by many clients and operating on a shared database, then scaleup
consists of N-times as many clients, submitting N-times as many requests against an N-times
larger database. This is the scaleup typically found in transaction processing systems and
timesharing systems. This form of scaleup is used by the Transaction Processing Performance
Council to scale up their transaction processing benchmarks [GRAY91]. Consequently, it is
called transaction-scaleup. Transaction scaleup is ideally suited to parallel systems since each
transaction is typically a small independent job that can be run on a separate processor.

3 The execution cost of some operators increases super-linearly. For example, the cost of sorting n-tuples increases as nlog(n).
When n is in the billions, scalling up by a factor of a thousand, causes nlog(n) to increase by 3000. This 30% deviation from
linarity in a three-orders-of-magnitude scalup justifies the use of the term near-linear scaleup.

 7

A second form of scaleup, called batch scaleup, arises when the scaleup task is presented
as a single large job. This is typical of database queries and is also typical of scientific
simulations. In these cases, scaleup consists of using an N-times larger computer to solve an N-
times larger problem. For database systems batch scaleup translates to the same query on an N-
times larger database; for scientific problems, batch scaleup translates to the same calculation on
an N-times finer grid or on an N-times longer simulation.

The generic barriers to linear speedup and linear scaleup are the triple threats of:
startup: The time needed to start a parallel operation. If thousands of processes must be

started, this can easily dominate the actual computation time.
interference: The slowdown each new process imposes on all others when accessing shared

resources.
skew: As the number of parallel steps increases, the average sized of each step decreases, but

the variance can well exceed the mean. The service time of a job is the service time of the
slowest step of the job. When the variance dominates the mean, increased parallelism
improves elapsed time only slightly.

Processors & Discs

The Good Speedup
Curve

 Processors & Discs

A Bad Speedup Curve
3-Factors

Processors & Discs

A Bad Speedup Curve

Linearity

No Parallelism

Figure 2. Good and bad speedup curves. The standard speedup curves. The left curve is the ideal.
The middle graph shows no speedup as hardware is added. The right curve shows the three threats to
parallelism. Initial startup costs may dominate at first. As the number of processes increase, interference
can increase. Ultimately, the job is divided so finely, that the variance in service times (skew) causes a
slowdown.

Section 2.3 describes several basic techniques widely used in the design of shared-
nothing parallel database machines to overcome these barriers. These techniques often achieve
linear speedup and scaleup on relational operators.

2.2. Hardware Architecture, the Trend to Shared-Nothing Machines
The ideal database machine would have a single infinitely fast processor with an infinite

memory with infinite bandwidth — and it would be infinitely cheap (free). Given such a
machine, there would be no need for speedup, scaleup, or parallelism. Unfortunately, technology
is not delivering such machines — but it is coming close. Technology is promising to deliver
fast one-chip processors, fast high-capacity disks, and high-capacity electronic RAM memories. It

 8

also promises that each of these devices will be very inexpensive by today's standards, costing
only hundreds of dollars each.

 So, the challenge is to build an infinitely fast processor out of infinitely many processors

of finite speed, and to build an infinitely large memory with infinite memory bandwidth from

infinitely many storage units of finite speed. This sounds trivial mathematically; but in practice,
when a new processor is added to most computer designs, it slows every other computer down
just a little bit. If this slowdown (interference) is 1%, then the maximum speedup is 37 and a
thousand-processor system has 4% of the effective power of a single processor system.

How can we build scaleable multi-processor systems? Stonebraker suggested the
following simple taxonomy for the spectrum of designs (see Figures 3 and 4) [STON86]4:

shared-memory: All processors share direct access to a common global memory and to all
disks. The IBM/370, and Digital VAX, and Sequent Symmetry multi-processors typify this
design.

shared-disks: Each processor has a private memory but has direct access to all disks. The IBM
Sysplex and original Digital VAXcluster typify this design.

shared-nothing: Each memory and disk is owned by some processor that acts as a server for
that data. Mass storage in such an architecture is distributed among the processors by
connecting one or more disks. The Teradata, Tandem, and nCUBE machines typify this
design.

Shared-nothing architectures minimize interference by minimizing resource sharing.
They also exploit commodity processors and memory without needing an incredibly powerful
interconnection network. As Figure 4 suggests, the other architectures move large quantities of
data through the interconnection network. The shared-nothing design moves only questions and
answers through the network. Raw memory accesses and raw disk accesses are performed
locally in a processor, and only the filtered (reduced) data is passed to the client program. This
allows a more scaleable design by minimizing traffic on the interconnection network.

Shared-nothing characterizes the database systems being used by Teradata [TERA85],
Gamma [DEWI90], Tandem [TAND88], Bubba [ALEX88], Arbre [LORI89], and nCUBE
[GIBB91]. Significantly, Digital's VAXcluster has evolved to this design. DOS and UNIX
workgroup systems from 3com, Boreland, Digital, HP, Novel, Microsoft, and Sun also adopt a
shared-nothing client-server architecture.

4 Single Instruction stream, Multiple Data stream (SIMD) machines such as ILLIAC IV and its derivatives like MASSPAR and the
"old" Connection Machine are ignored here because to date they have few successes in the database area. SIMD machines seem to
have application in simulation, pattern matching, and mathematical search, but they do not seem to be appropriate for the
multiuser, i/o intensive, and dataflow paradigm of database systems.

 9

P 1 P
2

P n

Interconnection Network

Figure 3. The basic shared-nothing design. Each processor has a private memory and one or more
disks. Processors communicate via a high-speed interconnect network. Teradata, Tandem, nCUBE, and
the newer VAXclusters typify this design.

The actual interconnection networks used by these systems vary enormously. Teradata
employs a redundant tree-structured communication network. Tandem uses a three-level
duplexed network, two levels within a cluster, and rings connecting the clusters. Arbre, Bubba,
and Gamma are independent of the underlying interconnection network, requiring only that
network allow any two nodes to communicate with one another. Gamma operates on an Intel
Hypercube. The Arbre prototype was implemented using IBM 4381 processors connected to one
another in a point-to-point network. Workgroup systems are currently making a transition from
Ethernet to higher speed local networks.

The main advantage of shared-nothing multi-processors is that they can be scaled up to
hundreds and probably thousands of processors that do not interfere with one another. Teradata,
Tandem, and Intel have each shipped systems with more than 200 processors. Intel is
implementing a 2000 node Hypercube. The largest shared-memory multi-processors currently
available are limited to about 32 processors.

P 1 P
2

P n

Interconnection Network

P 1 P
2

P n

Interconnection Network

Global Shared Memory

Shared Memory Multiprocessor Shared Disk Multiprocessor
Figure 4. The shared-memory and shared-disk designs. A shared-memory multi-processor connects
all processors to a globally shared memory. Multi-processor IBM/370, VAX, and Sequent computers are
typical examples of shared-memory designs. Shared-disk systems give each processor a private
memory, but all the processors can directly address all the disks. Digital's VAXcluster and IBM's Sysplex
typify this design.

 10

These shared-nothing architectures achieve near-linear speedups and scaleups on complex
relational queries and on online-transaction processing workloads [DEWI90, TAND88,
ENGL89]. Given such results, database machine designers see little justification for the
hardware and software complexity associated with shared-memory and shared-disk designs.

Shared-memory and shared-disk systems do not scale well on database applications.
Interference is a major problem for shared-memory multi-processors. The interconnection
network must have the bandwidth of the sum of the processors and disks. It is difficult to build
such networks that can scale to thousands of nodes. To reduce network traffic and to minimize
latency, each processor is given a large private cache. Measurements of shared-memory multi-
processors running database workloads show that loading and flushing these caches considerably
degrades processor performance [THAK90]. As parallelism increases, interference on shared
resources limits performance. Multi-processor systems often use an affinity scheduling
mechanism to reduce this interference; giving each process an affinity to a particular processor.
This is a form of data partitioning; it represents an evolutionary step toward the shared-nothing
design. Partitioning a shared-memory system creates many of the skew and load balancing
problems faced by a shared-nothing machine; but reaps none of the simpler hardware
interconnect benefits. Based on this experience, we believe high-performance shared-memory
machines will not economically scale beyond a few processors when running database
applications.

To ameliorate the interference problem, most shared-memory multi-processors have
adopted a shared-disk architecture. This is the logical consequence of affinity scheduling. If the
disk interconnection network can scale to thousands of discs and processors, then a shared-disk
design is adequate for large read-only databases and for databases where there is no concurrent
sharing. The shared-disk architecture is not very effective for database applications that read and
write a shared database. A processor wanting to update some data must first obtain the current
copy of that data. Since others might be updating the same data concurrently, the processor must
declare its intention to update the data. Once this declaration has been honored and
acknowledged by all the other processors, the updator can read the shared data from disk and
update it. The processor must then write the shared data out to disk so that subsequent readers
and writers will be aware of the update. There are many optimizations of this protocol, but they
all end up exchanging reservation messages and exchanging large physical data pages. This
creates processor interference and delays. It creates heavy traffic on the shared interconnection
network.

For shared database applications, the shared-disk approach is much more expensive than
the shared-nothing approach of exchanging small high-level logical questions and answers
among clients and servers. One solution to this interference has been to give data a processor

 11

affinity; other processors wanting to access the data send messages to the server managing the
data. This has emerged as a major application of transaction processing monitors that partition
the load among partitioned servers, and is also a major application for remote procedure calls.
Again, this trend toward the partitioned data model and shared-nothing architecture on a shared-
disk system reduces interference. Since the shared-disk system interconnection network is
difficult to scale to thousands of processors and disks, many conclude that it would be better to
adopt the shared-nothing architecture from the start.

Given the shortcomings of shared-disk and shared-nothing architectures, why have
computer architects been slow to adopt the shared-nothing approach? The first answer is simple,
high-performance low-cost commodity components have only recently become available.
Traditionally, commodity components were relatively low performance and low quality.

Today, old software is the most significant barrier to the use of parallelism. Old software
written for uni-processors gets no speedup or scaleup when put on any kind of multiprocessor. It
must be rewritten to benefit from parallel processing and multiple disks. Database applications
are a unique exception to this. Today, most database programs are written in the relational
language SQL that has been standardized by both ANSI and ISO. It is possible to take standard
SQL applications written for uni-processor systems and execute them in parallel on shared-
nothing database machines. Database systems can automatically distribute data among multiple
processors. Teradata and Tandem routinely port SQL applications to their system and
demonstrate near-linear speedups and scaleups. The next section explains the basic techniques
used by such parallel database systems.

2.3. A Parallel Dataflow Approach to SQL Software
Terabyte online databases, consisting of billions of records, are becoming common as the

price of online storage decreases. These databases are often represented and manipulated using
the SQL relational model. The next few paragraphs give a rudimentary introduction to relational
model concepts needed to understand the rest of this paper.

A relational database consists of relations (files in COBOL terminology) that in turn
contain tuples (records in COBOL terminology). All the tuples in a relation have the same set of
attributes (fields in COBOL terminology).

Relations are created, updated, and queried by writing SQL statements. These statements
are syntactic sugar for a simple set of operators chosen from the relational algebra. Select-

project, here called scan, is the simplest and most common operator – it produces a row-and-
column subset of a relational table. A scan of relation R using predicate P and attribute list L
produces a relational data stream as output. The scan reads each tuple, t, of R and applies the
predicate P to it. If P(t) is true, the scan discards any attributes of t not in L and inserts the

 12

resulting tuple in the scan output stream. Expressed in SQL, a scan of a telephone book relation
to find the phone numbers of all people named Smith would be written:

SELECT telephone_number /* the output attribute(s) */
FROM telephone_book /* the input relation */
WHERE last_name = 'Smith'; /* the predicate */

A scan's output stream can be sent to another relational operator, returned to an application,
displayed on a terminal, or printed in a report. Therein lies the beauty and utility of the relational
model. The uniformity of the data and operators allow them to be arbitrarily composed into
dataflow graphs.

 The output of a scan may be sent to a sort operator that will reorder the tuples based on
an attribute sort criteria, optionally eliminating duplicates. SQL defines several aggregate
operators to summarize attributes into a single value, for example, taking the sum, min, or max
of an attribute, or counting the number of distinct values of the attribute. The insert operator
adds tuples from a stream to an existing relation. The update and delete operators alter and
delete tuples in a relation matching a scan stream.

The relational model defines several operators to combine and compare two or more
relations. It provides the usual set operators union, intersection, difference, and some more exotic
ones like join and division. Discussion here will focus on the equi-join operator (here called
join). The join operator composes two relations, A and B, on some attribute to produce a third
relation. For each tuple, ta, in A, the join finds all tuples, tb, in B with attribute value equal to that
of ta. For each matching pair of tuples, the join operator inserts into the output steam a tuple
built by concatenating the pair.

Codd, in a classic paper, showed that the relational data model can represent any form of
data, and that these operators are complete [CODD70]. Today, SQL applications are typically a
combination of conventional programs and SQL statements. The programs interact with clients,
perform data display, and provide high-level direction of the SQL dataflow.

The SQL data model was originally proposed to improve programmer productivity by
offering a non-procedural database language. Data independence was and additional benefit;
since the programs do not specify how the query is to be executed, SQL programs continue to
operate as the logical and physical database schema evolves.

Parallelism is an unanticipated benefit of the relational model. Since relational queries
are really just relational operators applied to very large collections of data, they offer many
opportunities for parallelism. Since the queries are presented in a non-procedural language, they
offer considerable latitude in executing the queries.

Relational queries can be executed as a dataflow graph. As mentioned in the
introduction, these graphs can use both pipelined parallelism and partitioned parallelism. If one

 13

operator sends its output to another, the two operators can execute in parallel giving potential
speedup of two.

The benefits of pipeline parallelism are limited because of three factors: (1) Relational
pipelines are rarely very long - a chain of length ten is unusual. (2) Some relational operators do
not emit their first output until they have consumed all their inputs. Aggregate and sort operators
have this property. One cannot pipeline these operators. (3) Often, the execution cost of one
operator is much greater than the others (this is an example of skew). In such cases, the speedup
obtained by pipelining will be very limited.

Partitioned execution offers much better opportunities for speedup and scaleup. By
taking the large relational operators and partitioning their inputs and outputs, it is possible to use
divide-and-conquer to turn one big job into many independent little ones. This is an ideal
situation for speedup and scaleup. Partitioned data is the key to partitioned execution.

Data Partitioning
Partitioning a relation involves distributing its tuples over several disks. Data partitioning

has its origins in centralized systems that had to partition files, either because the file was too big
for one disk, or because the file access rate could not be supported by a single disk. Distributed
databases use data partitioning when they place relation fragments at different network sites
[RIES78]. Data partitioning allows parallel database systems to exploit the I/O bandwidth of
multiple disks by reading and writing them in parallel. This approach provides I/O bandwidth
superior to RAID-style systems without needing any specialized hardware [SALE84, PATT88].

 The simplest partitioning strategy distributes tuples among the fragments in a round-

robin fashion. This is the partitioned version of the classic entry-sequence file. Round robin
partitioning is excellent if all applications want to access the relation by sequentially scanning all
of it on each query. The problem with round-robin partitioning is that applications frequently
want to associatively access tuples, meaning that the application wants to find all the tuples
having a particular attribute value. The SQL query looking for the Smith's in the phone book is
an example of an associative search.

P 1 P 2 P n

a---c d---g w--z

P 1 P 2 P n P 1 P 2 P n

 range partitioning round-robin hashing

 14

Figure 5: The three basic partitioning schemes. Range partitioning maps contiguous attribute ranges
of a relation to various disks. Round-robin partitioning maps the i’th tuple to disk i mod n. Hashed
partitioning, maps each tuple to a disk location based on a hash function. Each of these schemes
spreads data among a collection of disks, allowing parallel disk access and parallel processing.

Hash partitioning is ideally suited for applications that want only sequential and

associative access to the data. Tuples are place by applying a hashing function to the key
attribute of each tuple. The function specifies the placement of the tuple on a particular disk.
Associative access to the tuples with a specific attribute value can be directed to a single disk,
avoiding the overhead of starting queries on multiple disks. Hash partitioning mechanisms are
provided by Arbre, Bubba, Gamma, and Teradata.

Database systems pay considerable attention to clustering related data together in physical
storage. If a set of tuples are routinely accessed together, the database system attempts to store
them on the same physical page. For example, if the Smith's of the phone book are routinely
accessed in alphabetical order, then they should be stored on pages in that order, these pages
should be clustered together on disk to allow sequential prefetching and other optimizations.
Clustering is very application specific. For example, tuples describing nearby streets should be
clustered together in geographic databases, tuples describing the line items of an invoice should
be clustered with the invoice tuple in an inventory control application.

Hashing tends to randomize data rather than cluster it. Range partitioning clusters tuples
with similar attributes together in the same partition. It is good for sequential and associative
access, and is also good for clustering data. Figure 5 shows range partitioning based on
lexicographic order, but any clustering algorithm is possible. The B-tree is the most common
clustering algorithm. Range partitioning derives its name from the typical SQL range queries
such as

latitude BETWEEN 37o AND 39o

Arbre, Bubba, Gamma, Oracle, and Tandem provide range partitioning
The problem with range partitioning is that it risks data skew, where all the data is place

in one partition, and execution skew in which all the execution occurs in one partition. Hashing
and round-robin are less susceptible to these skew problems. Range partitioning can minimize
skew by picking non-uniformly-distributed partitioning criteria. Bubba uses this concept by
considering the access frequency (heat) of each tuple when creating partitions a relation; the goal
being to balance the frequency with which each partition is accessed (its temperature) rather than
the actual number of tuples on each disk (its volume) [COPE88].

While partitioning is a simple concept that is easy to implement, it raises several new
physical database design issues. Each relation must now have a partitioning strategy and a set of
disk fragments. Increasing the degree of partitioning usually reduces the response time for an
individual query and increases the overall throughput of the system. For sequential scans, the

 15

response time decreases because more processors and disks are used to execute the query. For
associative scans, the response time improves because fewer tuples are stored at each node and
hence the size of the index that must be searched decreases.

There is a point beyond which further partitioning actually increases the response time of
a query. This point occurs when the cost of starting a query on a node becomes a significant
fraction of the actual execution time [COPE88, DEWI88, GHAN90a].

 Parallelism Within Relational Operators
Data partitioning is the first step in partitioned execution of relational dataflow graphs.

The basic idea is to use parallel data streams instead of writing new parallel operators
(programs). This approach enables the use of unmodified, existing sequential routines to execute
the relational operators in parallel. Each relational operator has a set of input ports on which
input tuples arrive and an output port to which the operator's output stream is sent. The parallel
dataflow works by partitioning and merging data streams into these sequential ports. This
approach allows the he use of existing sequential relational operators to execute in parallel.

Consider a scan of a relation, A, that has been partitioned across three disks into
fragments A0, A1, and A2. This scan can be implemented as three scan operators that send their
output to a common merge operator. The merge operator produces a single output data stream to
the application or to the next relational operator. The parallel query executor creates the three
scan processes shown in Figure 6 and directs them to take their inputs from three different
sequential input streams (A0, A1, A2). It also directs them to send their outputs to a common
merge node. Each scan can run on an independent processor and disk. So the first basic
parallelizing operator is a merge that can combine several parallel data streams into a single
sequential stream.

SCAN

A

SCAN

A2

C

SCAN

A1

SCAN

A0

merge
operatorC

Figure 6: Partitioned data parallelism. A simple relational dataflow graph showing a relational scan
(project and select) decomposed into three scans on three partitions of the input stream or relation.
These three scans send their output to a merge node that produces a single data stream.

The merge operator tends to focus data on one spot. If a multi-stage parallel operation is
to be done in parallel, a single data stream must be split into several independent streams. A split

operator is used to partition or replicate the stream of tuples produced by a relational operator. A

 16

split operator defines a mapping from one or more attribute values of the output tuples to a set of
destination processes (see Figure 7).

Process
Executing
Operator

Split
operator

 output
portinput

ports

Merge
operator

Figure 7: Merging the inputs and partitioning the output of an operator. A relational dataflow graph
showing a relational operator’s inputs being merged to a sequential steam per port. The operator's output
is being decomposed by a split operator into several independent streams. Each stream may be a
duplicate or a partitioning of the operator output stream into many disjoint streams. With the split and
merge operators, a web of simple sequential dataflow nodes can be connected to form a parallel
execution plan.

As an example, consider the two split operators shown in Figure 8 in conjunction with the
query shown in Figure 9. Assume that three processes are used to execute the join operator, and
that five other processes execute the two scan operators — three scanning partitions of relation A
while two scan partitions of relation B. Each of the three relation A scan nodes will have the
same split operator, sending all tuples between “A-H” to port 1 of join process 0, all between “I-
Q” to port 1 of join process 1, and all between “R-Z” to port 1 of join process 2. Similarly the
two relation B scan nodes have the same split operator except that their outputs are merged by
port 1 (not port 0) of each join process. Each join process sees a sequential input stream of A
tuples from the port 0 merge (the left scan nodes) and another sequential stream of B tuples from
the port 1 merge (the right scan nodes). For each process executing the scan, the split operator
applies the predicates to the join attribute of each output tuple. If the predicate is satisfied, the
tuple is sent to the corresponding destination . Each join process has two ports, each of which
merges the outputs from the various scan split operators. The outputs of each join and in turn
split into three steams based on the partitioning criterion of relation C.

 17

Relation A Scan Split Operator Relation B Scan Split Operator

Predicate Destination Process Predicate Destination Process

“A-H” (cpu #5, Process #3, Port #0) “A-H” (cpu #5, Process #3, Port #1)
“I-Q” (cpu #7, Process #8, Port #0) “I-Q” (cpu #7, Process #8, Port #1)
“R-Z” (cpu #2, Process #2, Port #0) “R-Z” (cpu #2, Process #2, Port #1)

Figure 8. Sample split operators. Each split operator maps tuples to a set of output streams (ports of
other processes) depending on the range value (predicate) of the input tuple. The split operator on the left
is for the relation A scan in Figure 7, while the table on the right is for the relation B scan. The tables
above partition the tuples among three data streams. If the predicates were TRUE for all the tuples, the
split operator would replicate the tuples on all three output streams.

To clarify this example, consider the second join process in Figure 9 (processor 7, process

8, ports 1 and 2). It will get all the relation A “I-Q” tuples from the three relation A scan
operators merged as a single stream on port 0, and will get all the “I-Q” tuples from relation B
merged as a single stream on port 1. It will join them using a hash-join, sort-merge join, or even
a nested join if the tuples arrive in the proper order. This join node in turn sends its output to the
merge node, much as the scans did in Figure 6.

JOIN

SCAN SCAN

A B

C

JOIN

SCAN

A2

JOIN

SCAN SCAN

A1 B1

JOIN

SCAN SCAN

A0 B0

split each B scan output into 3 streams
merge the 3 input streams
 at each join node

INSERT

C1

INSERT

C3

INSERT

C2

INSERT
split each join output into 3 streams
merge the 3 join input streams
 at each insert node

Perform 1/3 of the join

Figure 9: A simple relational dataflow graph. It shows two relational scans (project and select)
consuming two input relations, A and B and feeding their outputs to a join operator that in turn produces a
data stream C.

If each of these processes is on an independent processor with an independent disk, there
will be little interference among them. Such dataflow designs are a natural application for
shared-nothing machine architectures.

The split operator in Figure 8 is just an example. Other split operators might duplicate
the input stream, or partition it round-robin, or partition it by hash. The partitioning function can
be an arbitrary program. Gamma, Volcano, and Tandem use this approach [GRAE90]. It has
several advantages including the automatic parallelism of any new operator added to the system,
plus support for a many kinds of parallelism.

 18

The split and merge operators have flow control and buffering built into them. This
prevents one operator from getting too far ahead in the computation. When a split-operator's
output buffers fill, it stalls the relational operator until the data target requests more output.

For simplicity, these examples have been stated in terms of an operator per process. But
it is entirely possible to place several operators within a process to get coarser grained
parallelism. The fundamental idea though is to build a self-pacing dataflow graph and distribute
it in a shared-nothing machine in a way that minimizes interference.

Specialized Parallel Relational Operators
Some algorithms for relational operators are especially appropriate for parallel execution,

either because they minimize data flow, or because they better tolerate data and execution skew.
Improved algorithms have been found for most of the relational operators. The evolution of join
operator algorithms is sketched here as an example of these improved algorithms.

Recall that the join operator combines two relations, A and B, to produce a third relation
containing all tuple pairs from A and B with matching attribute values. The conventional way of
computing the join is to sort both A and B into new relations ordered by the join attribute. These
two intermediate relations are then compared in sorted order, and matching tuples are inserted in
the output stream. This algorithm is called sort-merge join.

Many optimizations of sort-merger join are possible, but since sort has execution cost
nlog(n), sort-merge join has an nlog(n) execution cost. Sort-merge join works well in a parallel
dataflow environment unless there is data skew. In case of data skew, some sort partitions may
be much larger than others. This in turn creates execution skew and limits speedup and scaleup.
These skew problems do not appear in centralized sort-merge joins.

Hash-join is an alternative to sort-merge join. It has linear execution cost rather than
nlog(n) execution cost, and it is more resistant to data skew. It is superior to sort-merge join
unless the input streams are already in sorted order. Hash join works as follows. Each of the
relations A and B are first hash partitioned on the join attribute. A hash partition of relation A is
hashed into memory. The corresponding partition of table relation B is scanned, and each tuple
is compared against the main-memory hash table for the A partition. If there is a match, the pair
of tuples are sent to the output stream. Each pair of hash partitions is compared in this way.

The hash join algorithm breaks a big join into many little joins. If the hash function is
good and if the data skew is not too bad, then there will be little variance in the hash bucket size.
In these cases hash-join is a linear-time join algorithm with linear speedup and scaleup. Many
optimizations of the parallel hash-join algorithm have been discovered over the last decade. In
pathological skew cases, when many or all tuples have the same attribute value, one bucket may
contain all the tuples. In these cases no algorithm is known to speedup or scaleup.

 19

The hash-join example shows that new parallel algorithms can improve the performance
of relational operators. This is a fruitful research area [BORA90, DEWI86, KITS83, KITS90,
PIRA90, SCHN90, SCHN91, WALT91, WOLF90, ZELL90]. Even though conventional
sequential relational operators can be composed with split and join operators, we expect many
new algorithms will be added in years to come.

 20

3. The State of the Art

3.1. Teradata
Teradata quietly pioneered many of the ideas presented here. Since 1978 they have been

building shared-nothing highly-parallel SQL systems based on commodity microprocessors,
disks, and memories. Teradata systems act as SQL servers to client programs operating on
conventional computers.

Teradata systems may have over a thousand processors and many thousands of disks.
The Teradata processors are functionally divided into two groups: Interface Processors (IFPs) and
Access Module Processors (AMPs). The IFPs handle communication with the host, query
parsing and optimization, and coordination of AMPs during query execution. The AMPs are
responsible for executing queries. Each AMP typically has several disks and a large memory
cache. IFPs and AMPs are interconnected by a dual redundant, tree-shaped interconnect called
the Y-net [TERA83, TERA85].

Each relation is hash partitioned over a subset of the AMPs. When a tuple is inserted into
a relation, a hash function is applied to the primary key of the tuple to select an AMP for storage.
Once a tuple arrives at a AMP, a second hash function determines the tuple's placement in its
fragment of the relation. The tuples in each fragment are in hash-key order. Given a value for the
key attribute, it is possible to locate the tuple in a single AMP. The AMP examines its cache,
and if the tuple is not present, fetches it in a single and disk read. Hash secondary indices are
also supported.

 Hashing is used to spit the outputs of relational operators into intermediate relations. Join
operators are executed using a parallel sort-merge algorithm. Rather than using pipelined parallel
execution, during the execution of a query, each operator is run to completion on all participating
nodes before the next operator is initiated.

Teradata has installed many systems containing over one hundred processors and
hundreds of disks. These systems demonstrate near-linear speedup and scaleup on relational
queries, and far exceed the speed of traditional mainframes in their ability to process large
(terabyte) databases.

3.2. Tandem NonStop SQL
 The Tandem NonStop SQL system is composed of processor clusters interconnected via

4-plexed fiber optic rings. Unlike most other systems discussed here, the Tandem systems run
the applications on the same processors and operating system as the database servers. There is
no front-end back-end distinction between programs and machines. The systems are configured
at a disk per MIPS, so each ten-MIPS processor has about ten disks. Disks are typically duplexed
[BITT88]. Each disk is served by a set of processes managing a large shared RAM cache, a set of

 21

locks, and log records for the data on that disk pair. Considerable effort is spent on optimizing
sequential scans by prefetching large units, and by filtering and manipulating the tuples with SQL
predicates at these disk servers. This minimizes traffic on the shared interconnection network .

Relations may be range partitioned across multiple disks. Entry-sequenced, relative, and
B-tree organizations are supported. Only B-tree secondary indices are supported. Nested join,
sort-merge join, and hash join algorithms are provided. Parallelization of operators in a query
plan is achieved by inserting a merge and split parallel operators between operator nodes in the
query tree. Scans, aggregates, joins, updates, and deletes are executed in parallel. In addition
several utilities use parallelism (e.g., load, reorganize, ...) [TAND87, ZELL90].

Tandem systems are primary designed for online transaction processing (OLTP) - running
many simple transactions against a large shared database. Beyond the parallelism inherent in
running many independent transactions in parallel, the main parallelism feature for OLTP is
parallel index update. SQL relations typically have five indices on them, although it is not
uncommon to see ten indices on a relation. These indices speed reads, but slow down inserts,
updates, and deletes. By doing the index maintenance in parallel, the maintenance time for
multiple indices can be held almost constant if the indices are spread among many processors and
disks.

Overall, the Tandem systems demonstrate near-linear scaleup on transaction processing
workloads, and near-linear speedup and scaleup on large relational queries [TAND87, ENGL89].

3.3. Gamma
 The current version of Gamma runs on a 32 node Intel iPSC/2 Hypercube with disk

attached to each node. In addition to range and hash partitioning, Gamma provides hybrid-range
partitioning that combines the best features of the hash and range partitioning strategies
[GHAN90b]. Once a relation has been partitioned, Gamma provides both clustered and non-
clustered indices. The indices are implemented as B-trees or hash-tables.

 Gamma uses split and merge operators to execute relational algebra operators in parallel.
Sort-merge and three different hash join methods are supported [KITS83, DEWI84]. Near-linear
speedup and scaleup for relational queries has been measured on this architecture [SCHN89,
DEWI90, SCHN90].

3.4. The Super Database Computer
 The Super Database Computer (SDC) project at the University of Tokyo presents an

interesting contrast to other database systems [KITS90, HIRA90, KITS87]. SDC takes a
combined hardware and software approach to the performance problem. The basic unit, called a
processing module (PM), consists of one or more processors on a shared memory. These
processors are augmented by a special purpose sorting engine that sorts at high speed (3MB/s at

 22

present), and by a disk subsystem. Clusters of processing modules are connected via an omega
network that provides both non-blocking NxN interconnect and some dynamic routing minimize
skewed data distribution during hash joins [LAWR75, KITS90]. The SDC is designed to scale
to thousands of PMs, and so considerable attention is paid to the problem of data skew.

 Data is partitioned among the PMs by hashing. The SDC software includes a unique
operating system, and a relational database query executor. The SDC is a shared-nothing design
with a software dataflow architecture. This is consistent with our assertion that current parallel
database machines systems use conventional hardware. But the special-purpose design of the
omega network and of the hardware sorter clearly contradict the thesis that special-purpose
hardware is not a good investment of development resources. Time will tell whether these
special-purpose components offer better price performance or peak performance than shared-
nothing designs built of conventional hardware.

3.5. Bubba
The Bubba prototype was implemented using a 40 node FLEX/32 multi-processor with

40 disks [BORA90]. Although this is a shared-memory multi-processor, Bubba was designed as
a shared-nothing system and the shared-memory is only used for message passing. Nodes are
divided into three groups: Interface Processors for communicating with external host processors
and coordinating query execution, Intelligent Repositories for data storage and query execution,
and Checkpoint/Logging Repositories. While Bubba also uses partitioning as a storage
mechanism (both range and hash partitioning mechanisms are provided) and dataflow processing
mechanisms, Bubba is unique in several ways. First, Bubba uses FAD rather than SQL as its
interface language. FAD is an extended-relational persistent programming language. FAD
provides support for complex objects via several type constructors including shared sub-objects,
set-oriented data manipulation primitives, and more traditional language constructs. The FAD
compiler is responsible for detecting operations that can be executed in parallel according to how
the data objects being accessed are partitioned. Program execution is performed using a dataflow
execution paradigm. The task of compiling and parallelizing a FAD program is significantly
more difficult than parallelizing a relational query. Another Bubba feature is its use of a single-
level store mechanism in which the persistent database at each node is mapped to the virtual
memory address space of each process executing at the node. This is in contrast to the traditional
approach of files and pages. Similar mechanisms are used in IBM's AS400 mapping of SQL
databases into virtual memory, HP's mapping of the Image Database into the operating system
virtual address space, and Mach's mapped file [TEVA87] mechanism. This approach simplified
the implementation of the upper levels of the Bubba software.

 23

3.6. Other Systems
 Other parallel database system prototypes include XPRS [STON88], Volcano

[GRAE90], Arbre [LORI89], and the PERSIST project under development at IBM Research
Labs in Hawthorne and Almaden. While both Volcano and XPRS are implemented on shared-
memory multi-processors, XPRS is unique in its exploitation of the availability of massive
shared-memory in its design. In addition, XPRS is based on several innovative techniques for
obtaining extremely high performance and availability.

Recently, the Oracle database system has been implemented atop a 64-node nCUBE
shared-nothing system. The resulting system is the first to demonstrate more than 1000
transactions per second on the industry-standard TPC-B benchmark. This is far in excess of
Oracle's performance on conventional mainframe systems - both in peak performance and in
price/performance [GIBB91].

NCR has announced the 3600 and 3700 product lines that employ shared-nothing
architectures running System V R4 of Unix on Intel 486 and 586 processors. The interconnection
network for the 3600 product line uses an enhanced Y-Net licensed from Teradata while the 3700
is based on a new multistage interconnection network being developed jointly by NCR and
Teradata. Two software offerings have been announced. The first, a port of the Teradata
software to a Unix environment, is targeted toward the decision-support marketplace. The
second, based on a parallelization of the Sybase DBMS is intended primarily for transaction
processing workloads.

Database Machines and Grosch's Law
Today shared-nothing database machines have the best peak performance and best price

performance available. When compared to traditional mainframes, the Tandem system scales
linearly well beyond the largest reported mainframes on the TPC-A transaction processing
benchmark. Its price/performance on these benchmarks is three times cheaper than the
comparable mainframe numbers. Oracle on an nCUBE has the highest reported TPC-B numbers,
and has very competitive price performance [GRAY91, GIBB91]. These benchmarks
demonstrate linear scaleup on transaction processing benchmarks.

Gamma, Tandem, and Teradata have demonstrated linear speedup and scaleup on
complex relational database benchmarks. They scale well beyond the size of the largest
mainframes. Their performance and price performance is generally superior to mainframe
systems.

These observations defy Grosch's law. In the 1960's, Herb Grosch observed that there is
an economy-of-scale in computing. At that time, expensive computers were much more
powerful than inexpensive computers. This gave rise to super-linear speedups and scaleups. The

 24

current pricing of mainframes at 25,000$/mips and 1000$/MB of RAM reflects this view.
Meanwhile, microprocessors are selling for 250$/mips and 100$/MB of RAM.

By combining hundreds or thousands of these small systems, one can build an incredibly
powerful database machine for much less money than the cost of a modest mainframe. For
database problems, the near-linear speedup and scaleup of these shared-nothing machines allows
them to outperform current shared-memory and shared disk mainframes.

So, at least for database and transaction processing problems, Grosch's law no longer
applies. At best one can expect linear speedup and scaleup of microprocessor performance and
price/performance. Fortunately, shared-nothing database architectures achieve this near-linear
performance.

 25

4. Future Directions and Research Problems

4.1. Mixing Batch and OLTP Queries
Section 2 concentrated on the basic techniques used for processing complex relational

queries in a parallel database system. Tandem and Teradata have demonstrated that the same
architecture can be used successfully to process many simple transaction-processing workloads
and to process large ad-hoc queries [TAND88, ENGB89]. Concurrently running a mix of both
simple and complex queries concurrently presents several unsolved problems.

One problem is that large relational queries tend to acquire a many locks and tend to hold
them for a relatively long time. This prevents concurrent updates the data by simple online
transactions. Two solutions are currently offered: give the ad-hoc queries a fuzzy picture of the
database, not locking any data as they browse it. Such a "dirty-read" solution is not acceptable
for some applications. The solution offered by Rdb [HOBB91], Oracle, and XPRS [STON88], is
to use a versioning mechanism to enable readers to read a consistent (old) version of the database
while updators are allowed to create newer versions of objects. Other, perhaps better, solutions
for this problem may also exist.

Priority scheduling is another mixed-workload problem. Batch jobs have a tendency to
monopolize the processor, flood the memory cache, and make large demands on the I/O
subsystem. It is up to the underlying operating system to quantize and limit the resources used by
such batch jobs to insure short response times and low variance in response times for short
transactions. A particularly difficult problem, is the priority inversion problem, in which a low-
priority client makes a request to a high priority server. The server must run at high priority
because it is managing critical resources. Given this, the work of the low priority client is
effectively promoted to high priority when the low priority request is serviced by the high-
priority server. There have been several ad-hoc attempts at solving this problem, but
considerably more work is needed.

4.2. Parallel Query Optimization
 Currently, the query optimizers for most parallel database systems/machines do not

consider many query tree formats when optimizing a relational query. Typically only left-deep
query trees are considered and not right deep or bushy trees. [GRAE89] proposes to dynamically
select from among several plans at run time depending on, for example, the amount of physical
memory actually available and the cardinalities of the intermediate results. While cost models
for relational queries running on a single processor are now well-understood [SELI79, JARK84,
MACK86], they still depend on cost estimators that are a guess at best. The situation with
parallel join algorithms running in a mixed batch and online environment is even more complex.
Only recently have we begun to understand the relative performance of the various parallel join

 26

methods and query tree organizations in a parallel database machine environment [SCHN90]. To
date, no query optimizers consider the all the parallel algorithms for each operator and all the
query tree organizations. While the necessary query optimizer technology exists, accurate cost
models have not been developed, let alone validated. More work is needed in this area.

4.3. Application Program Parallelism
 While machines like Teradata and Gamma separate the application program running on a

host processor from the database software running on the parallel processor, both the Tandem
and Bubba systems use the same processors for both application programs and for the parallel
database software. This arrangement has the disadvantage of requiring a complete, full-function
operating system on the parallel processor, but it avoids any potential load imbalance between
the two systems and allows parallel applications. Missing, however, are tools that would allow
the application programs themselves to take advantage of parallelism inherent of these integrated
parallel systems. While automatic parallelization of applications programs written in Cobol may
not be feasible, library packages to facilitate explicitly parallel application programs are needed.
Support for the SQL3 NOWAIT option in which the application can launch several SQL statements
at once would be an advance. Ideally the SPLIT and MERGE operators could be packaged so that
applications could benefit from them.

4.4. Physical Database Design
 As discussed in Section 3, Gamma currently provides four partitioning strategies in

addition to the ususal access methods. While this is a richer set than what is currently available
commercially, the results in [GHAN90a, GHAN90b] demonstrate that there is no one best
partitioning strategy. In addition, for a given database and workload there are many possible
indexing and partitioning combinations. Database design tools are needed to help the database
administrator select the correct combination. Such a tool might accept as input a description of
the queries comprising the workload (including their frequency of execution), statistical
information about the relations in the database, and a description of the target environment. The
resulting output would include a specification of which partitioning strategy should be used for
each relation (including which nodes the relation should be partitioned over) plus a specification
of the indices to be created on each relation. Such a tool would undoubtedly need to be integrated
with the query optimizer as query optimization must incorporate information on partitioning and
indices that, in turn, impact what plan is chosen for a particular query.

 Another area where additional research is needed is in the area of multidimensional
partitioning algorithms. All current algorithms partitioning the tuples in a relation using the
values of a single attribute. While this arrangement allows selections against the partitioning
attribute to be localized to a limited number of nodes, selections on any other attribute must be

 27

sent to all the nodes over which the relation is partitioned for processing. While this is acceptable
in a small configuration, it is not in a system with thousands of processors.

4.5. On-line Reorganization and Utilities
 Loading, reorganizing, or dumping a terabyte database at a megabyte per second takes

over twelve days and nights. Clearly parallelism is needed if utilities are to complete within a
few hours or days. Even then, it will be essential that the data be available while the utilities are
operating. In the SQL world, typical utilities create indices, add or drop attributes, add
constraints, and physically reorganize the data, changing its clustering.

 One unexplored and difficult problem is how to process database utility commands while
the system remains operational and the data remains available for concurrent reads and writes by
others. The fundamental properties of such algorithms is that they must be online (operate
without making data unavailable), incremental (operate on parts of a large database), parallel
(exploit parallel processors), and recoverable (allow the operation to be canceled and return to
the old state). A technique for reorganizing indices was proposed in [STON88].

4.6. Processing Highly Skewed Data
 Another interesting research area is algorithms to handle relations with highly skewed

attribute values distributions. Both range partitioning and hybrid-range partitioning help alleviate
the problem of data skew, especially if the heat of the tuples in the relation is considered
[COPE88]. Problems can still occur when the data is redistributed as part of processing a
complex operator such as a join. One possible solution is use a range-split operator with non-
uniformly distributed entries for partitioning the tuples of two relations to be joined. Other
approaches to solving this problem have been proposed in [KITS90, WOLF90, HUA91,
WALT91]. Certainly other solutions remain to be explored and evaluated.

4.7. Non-relational Parallel Database Machines
 While open research issues remain in the area of parallel database machines for relational

database systems, building a highly parallel database machine for an object-oriented database
system (OODBMS) presents several new challenges. One of the first issues to resolve is how
partitioning should be handled. For example, should one partition all sets (such as set-valued
attributes of a complex object) or just top-level sets? Another question is how should inter-object
references be handled. In a relational database machine, such references are handled by doing a
join between the two relations of interest, but in an object-oriented DBMS references are
generally handled via pointers. In particular, a tension exists between partitioning a set in order to
execute parallel scan operations on that set and clustering an object and the objects it references
to reduce the number of disk accesses necessary to access the components of a complex object.
Since clustering in a standard object-oriented database system remains an open research issue,

 28

mixing in partitioning makes the problem even more challenging. A treatment of these issues
can be found in [GHAN91].

 Another open area is parallel query processing in an OODBMS. Most OODBMS provide
a query language based on an extension to relational algebra. While it is possible to execute these
operators in parallel, how should class-specific methods be handled? If the method operates on a
single object it is certainly not worthwhile parallelizing it. However, if the method operates on a
set of values or objects that are partitioned, then it must have intra-operator parallelism if one is
going to avoid moving all the data referenced to a single processor for execution. It is impossible
to parallelize arbitrary method code. One possible solution is to insist that if a method is to be
executed in parallel, that it must be constructed using the primitives from the underlying algebra,
perhaps embedded in a normal programming language.

 29

5. Summary and Conclusions
Like most applications, database systems want cheap, fast hardware. Today that means

commodity processors, memories, and disks. Consequently, the hardware concept of a database

machine built of exotic hardware is inappropriate for current technology. On the other hand, the
availability of fast microprocessors, and small inexpensive disks packaged as standard
inexpensive but fast computers is an ideal platform for parallel database systems. A shared-
nothing architecture is relatively straightforward to implement and, more importantly, has
demonstrated both speedup and scaleup to hundreds of processors. Furthermore, shared-nothing
architectures actually simplify the software implementation. If the software techniques of data
partitioning, dataflow, and intra-operator parallelism are employed, the task of converting an
existing database management system to a highly parallel one becomes a relatively
straightforward. Finally, there are certain applications (e.g., data mining in terabyte databases)
that require the computational and I/O resources available only from a parallel architecture.

 While the successes of both commercial products and prototypes demonstrates the
viability of highly parallel database machines, several open research issues remain unsolved
including techniques for mixing ad-hoc queries and with online transaction processing without
seriously limiting transaction throughput, improved optimizers for parallel queries, tools for
physical database design, on-line database reorganization, and algorithms for handling relations
with highly skewed data distributions. Some application domains are not well supported by the
relational data model. It appears that a new class of database systems based on an object-oriented
data model are needed. Such systems pose a host of interesting research problems that required
further examination.

 30

References

[ALEX88] Alexander, W., et. al., "Process and Dataflow Control in Distributed Data-Intensive Systems," Proc.
ACM SIGMOD Conf., Chicago, IL, June 1988. October, 1983.

[BITT88] Bitton, D. and J. Gray, "Disk Shadowing," Proceedings of the Fourteenth International Conference on
Very Large Data Bases, Los Angeles, CA, August, 1988.

[BOYN83] Boyne, R.D., D.K. Hsiao, D.S. Kerr, and A. Orooji, A Message-Oriented Implementation of a Multi-
Backend Database System (MDBS), Proceedings of the 1983 Workshop on Database Machines, edited by H.-O.
Leilich and M. Missikoff, Springer-Verlag, 1983.

[BORA83] Boral, H. and D. DeWitt, "Database Machines: An Idea Whose Time has Passed? A Critique of the
Future of Database Machines," Proceedings of the 1983 Workshop on Database Machines, edited by H.-O.
Leilich and M. Missikoff, Springer-Verlag, 1983.

[BORA90] Boral, H. et. al., "Prototyping Bubba: A Highly Parallel Database System," IEEE Knowledge and Data
Engineering, Vol. 2, No. 1, March, 1990.

[CODD70] Codd, E. F. ,“A Relational Model of Data for Large Shared Databanks.” CACM. Vol. 13, No 6., June
1970.

[COPE89] Copeland, G. and T. Keller, "A Comparison of High-Availability Media Recovery Techniques,"
Proceedings of the ACM-SIGMOD International Conference on Management of Data, Portland, Oregon June
1989.

[COPE88] Copeland, G., Alexander, W., Boughter, E., and T. Keller, "Data Placement in Bubba," Proceedings of
the ACM-SIGMOD International Conference on Management of Data, Chicago, May 1988.

[DEWI79] DeWitt, D.J., "DIRECT - A Multiprocessor Organization for Supporting Relational Database
Management Systems," IEEE Transactions on Computers, June, 1979.

[DEWI84] DeWitt, D. J., Katz, R., Olken, F., Shapiro, D., Stonebraker, M. and D. Wood, "Implementation
Techniques for Main Memory Database Systems", Proceedings of the 1984 SIGMOD Conference, Boston, MA,
June, 1984.

[DEWI86] DeWitt, D., et. al., "GAMMA - A High Performance Dataflow Database Machine," Proceedings of the
1986 VLDB Conference, Japan, August 1986.

[DEWI88] DeWitt, D., Ghandeharizadeh, S., and D. Schneider, "A Performance Analysis of the Gamma Database
Machine," Proceedings of the ACM-SIGMOD International Conference on Management of Data, Chicago, May
1988.

[DEWI90] DeWitt, D., et. al., "The Gamma Database Machine Project," IEEE Knowledge and Data Engineering,
Vol. 2, No. 1, March, 1990.

[ENGL89] Englert, S, J. Gray, T. Kocher, and P. Shah, "A Benchmark of NonStop SQL Release 2 Demonstrating
Near-Linear Speedup and Scaleup on Large Databases," Tandem Computers, Technical Report 89.4, Tandem
Part No. 27469, May 1989.

[GIBB91] Gibbs, J, " Massively Parallel Systems, Rethinking Computing for Business and Science," Oracle, Vol. 6,
No.1 December, 1991.

[GHAN90a] Ghandeharizadeh, S., and D.J. DeWitt, "Performance Analysis of Alternative Declustering Strategies",
Proceedings of the 6th International Conference on Data Engineering, Feb. 1990.

[GHAN90b] Ghandeharizadeh, S. and D. J. DeWitt, "Hybrid-Range Partitioning Strategy: A New Declustering
Strategy for Multiprocessor Database Machines" Proceedings of the Sixteenth International Conference on Very
Large Data Bases", Melbourne, Australia, August, 1990.

[GHAN91] Ghandeharizadeh, S., et. al., "Object Placement in Parallel Hypermedia Systems," Proceedings of the
Seventeenth International Conference on Very Large Data Bases", Barcelon a, Spain, September, 1991.

[GOOD81] Goodman, J. R., "An Investigation of Multiprocessor Structures and Algorithms for Database
Management", University of California at Berkeley, Technical Report UCB/ERL, M81/33, May, 1981.

[GRAE89] Graefe, G., and K. Ward, "Dynamic Query Evaluation Plans", Proceedings of the 1989 SIGMOD
Conference, Portland, OR, June 1989.

[GRAE90] Graefe, G., "Encapsulation of Parallelism in the Volcano Query Processing System," Proceedings of the
1990 ACM-SIGMOD International Conference on Management of Data, May 1990.

[GRAY91] The Performance Handbook for Database and Transaction Processing Systems, J. Gray editor. Morgan
Kuffman, San Mateo. 1991.

 31

[HIRA90] Hirano, M, S. et al, “Architecture of SDC, the Super Database Computer”, Proceedings of JSPP ‘90.
1990.

[HOBB91] Hobbs, L., England, K. Rdb/VMS A Comprehensive Guide, Digital Press, Maynard. 1991.
[HSIA90] Hsiao, H. I. and D. J. DeWitt, "Chained Declustering: A New Availability Strategy for Multiprocessor

Database Machines", Proceedings of the 6th International Conference on Data Engineering, Feb. 1990.
[HUA91] Hua, K.A. and C. Lee, "Handling Data Skew in Multiprocessor Database Computers Using Partition

Tuning," Proceedings of the Seventeenth International Conference on Very Large Data Bases", Barcelon a,
Spain, September, 1991.

[JARK84] Jarke, M. and J. Koch, "Query Optimization in Database System," ACM Computing Surveys, Vol. 16,
No. 2, June, 1984.

[KIM86] Kim, M., "Synchronized Disk Interleaving," IEEE Transactions on Computers, Vol. C-35, No. 11,
November 1986.

[KITS83] Kitsuregawa, M., Tanaka, H., and T. Moto-oka, "Application of Hash to Data Base Machine and Its
Architecture", New Generation Computing, Vol. 1, No. 1, 1983.

[KITS87] Kitsuregawa, M., M. Nakano, and L. Harada, "Functional Disk System for Relational Database",
Proceedings of the 6th International Workshop on Database Machines, Lecture Notes in Computer Science,
#368, Springer Verlag, June 1989.

[KITS89] Kitsuregawa, M., W. Yang, S. Fushimi, "Evaluation of 18-Stage Pipeline Hardware Sorter", Proceedings
of the 3rd International Conference on Data Engineering, Feb. 1987.

[KITS90] Kitsuregawa, M., and Y. Ogawa, "A New Parallel Hash Join Method with Robustness for Data Skew in
Super Database Computer (SDC)", Proceedings of the Sixteenth International Conference on Very Large Data
Bases", Melbourne, Australia, August, 1990.

[LAWR75] Lawrie, D.H., “Access and Alignment of Data in an Array Processor”, IEEE Transactions on Computers,
V. 24.12, Dec. 1975.

[LIVN87] Livny, M., S. Khoshafian, and H. Boral, "Multi-Disk Management Algorithms", Proceedings of the 1987
SIGMETRICS Conference, Banff, Alberta, Canada, May, 1987.

[LORI89] Lorie, R., J. Daudenarde, G. Hallmark, J. Stamos, and H. Young, "Adding Intra-Transaction Parallelism to
an Existing DBMS: Early Experience", IEEE Data Engineering Newsletter, Vol. 12, No. 1, March 1989.

[MACK86] Mackert, L. F. and G. M. Lohman, "R* Optimizer Validation and Performance Evaluation for Local
Queries," Proceedings of the 1986 SIGMOD Conference, Washington, D.C., May, 1986.

[PATT88] Patterson, D. A., G. Gibson, and R. H. Katz, "A Case for Redundant Arrays of Inexpensive Disks
(RAID)," Proceedings of the ACM-SIGMOD International Conference on Management of Data, Chicago, May
1988.

[PIRA90] Pirahesh, H., C. Mohan, J. Cheng, T.S. Liu, P. Selinger, “Parallelism in Relational Database Systems:
Architectural Issues and Design Approaches,” Proc. 2nd Int. Symposium on Databases in Parallel and
Distributed Systems, IEEE Press, Dublin, July, 1990.

[RIES78] Ries, D. and R. Epstein, "Evaluation of Distribution Criteria for Distributed Database Systems,"
UCB/ERL Technical Report M78/22, UC Berkeley, May, 1978.

[SALE84] Salem, K. and H. Garcia-Molina, “Disk Striping”, Department of Computer Science Princeton University
Technical Report EEDS-TR-332-84, Princeton N.J., Dec. 1984

[SCHN89] Schneider, D. and D. DeWitt, "A Performance Evaluation of Four Parallel Join Algorithms in a Shared-
Nothing Multiprocessor Environment", Proceedings of the 1989 SIGMOD Conference, Portland, OR, June
1989.

[SCHN90] Schneider, D. and D. DeWitt, "Tradeoffs in Processing Complex Join Queries via Hashing in
Multiprocessor Database Machines," Proceedings of the Sixteenth International Conference on Very Large Data
Bases", Melbourne, Australia, August, 1990.

[SELI79] Selinger,P. G., et. al., "Access Path Selection in a Relational Database Management System," Proceedings
of the 1979 SIGMOD Conference, Boston, MA., May 1979.

[STON79] Stonebraker, M., "Muffin: A Distributed Database Machine," ERL Technical Report UCB/ERL M79/28,
University of California at Berkeley, May 1979.

[STON86] Stonebraker, M., "The Case for Shared Nothing," Database Engineering, Vol. 9, No. 1, 1986.
[STON88] Stonebraker, M., R. Katz, D. Patterson, and J. Ousterhout, "The Design of XPRS", Proceedings of the

Fourteenth International Conference on Very Large Data Bases, Los Angeles, CA, August, 1988.

 32

[TAND87] Tandem Database Group, "NonStop SQL, A Distributed, High-Performance, High-Reliability
Implementation of SQL," Workshop on High Performance Transaction Systems, Asilomar, CA, September
1987.

[TAND88] Tandem Performance Group, "A Benchmark of Non-Stop SQL on the Debit Credit Transaction,"
Proceedings of the 1988 SIGMOD Conference, Chicago, IL, June 1988.

[TERA83] Teradata: DBC/1012 Data Base Computer Concepts & Facilities, Teradata Corp. Document No. C02-
0001-00, 1983.

[TERA85] Teradata, "DBC/1012 Database Computer System Manual Release 2.0," Document No. C10-0001-02,
Teradata Corp., NOV 1985.

[TEVA87] Tevanian, A., et. al, "A Unix Interface for Shared Memory and Memory Mapped Files Under Mach,"
Dept. of Computer Science Technical Report, Carnegie Mellon University, July, 1987.

[THAK90] Thakkar, S.S. and M. Sweiger, "Performance of an OLTP Application on Symmetry Multiprocessor
System," Proceedings of the 17th Annual International Symposium on Computer Architecture, Seattle, WA.,
May, 1990.

[WALT91] Walton, C.B., Dale, A.G., and R.M. Jenevein, "A Taxonomy and Performance Model of Data Skew
Effects in Parallel Joins," Proceedings of the Seventeenth International Conference on Very Large Data Bases",
Barcelon a, Spain, September, 1991.

[WOLF90] Wolf, J.L., Dias, D.M., and P.S. Yu, "An Effective Algorithm for Parallelizing Sort-Merge Joins in the
Presence of Data Skew," 2nd International Symposium on Databases in Parallel and Distributed Systems,
Dublin, Ireland, July, 1990.

[ZELL90] Zeller, H.J. and J. Gray, “Adaptive Hash Joins for a Multiprogramming Environment”, Proceedings of the
1990 VLDB Conference, Australia, August 1990.

