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Abstract: An earlier paper described the Sloan Digital Sky Survey’s (SDSS) data management needs [Szalay1] by defining twenty database queries and twelve data visualization tasks that a good data management system should support.   We built a database and interfaces to support both the query load and also a website for ad-hoc access.  This paper reports on the database design, describes the data loading pipeline, and reports on the query implementation and performance. The queries typically translated to a single SQL statement.  Most queries run in a less than 20 seconds, allowing scientists to interactively explore the database.
Introduction

The SDSS is doing a 5-year survey of 1/3 of the celestial sphere using a modern ground-based telescope to about ½ arcsecond resolution [SDSS].  This will observe about 200M objects in 5 optical bands, and will measure the spectra of a million objects.   
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The raw telescope data is fed through a data analysis pipeline at Fermilab.  That pipeline analyzes the images and extracts many attributes for each celestial object.  The pipeline also processes the spectra extracting the absorption and emission lines, and many other attributes.    This pipeline embodies much of mankind’s knowledge of astronomy within a million lines of code [SDSS-EDR].  The pipeline software is a major part of the SDSS project: approximately 25% of the project’s total cost and effort.   The result is a very large and high-quality catalog of the Northern sky, and of a small stripe of the southern sky.   Table 1 summarizes the data sizes.  SDSS is a 5 year survey starting in 2000.  Each year 5TB more raw data is gathered.  The survey will be complete by the end of 2006.

Within a week or two of the observation, the reduced data is available to the SDSS astronomers for validation and analysis.  They have been building this telescope and the software since 1989, so they want to have “first rights” to the data.   They need great tools to analyze the data and maximize the value of their one-year exclusivity on the data.  After a year or so, the SDSS publishes the data to the astronomy community and the public – so in 2007 all the SDSS data will be available to everyone everywhere.

The first data from the SDSS, about 5% of the total survey, is now public.  The catalog is about 80GB containing about 14 million objects and 50 thousand spectra.   People can access it via the SkyServer (http://skyserver.sdss.org/) on the Internet or they may get a private copy of the data.  Amendments to this data will be released as the data analysis pipeline improves, and the data will be augmented as more becomes public.  In addition, the SkyServer will get better documentation and tools as we gain more experience with how it is used.       

Database Logical Design

The SDSS processing pipeline at Fermi Lab examines the 5-color images from the telescope and identifies objects as a star, a galaxy, or other (trail, cosmic ray, satellite, defect).  The classification is probabilistic—it is sometimes difficult to distinguish a faint star from a faint galaxy.   In addition to the basic classification, the pipeline extracts about 400 object attributes, including 5-color atlas cutout image of the object (the raw pixels).  
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The actual observations are taken in stripes that are about 2.5º wide and 120º long.   The stripes are processed one field at a time (a field has 5 color frames as in figure 2.)  Each field in turn contains many objects.   To further complicate things, these stripes are in fact the mosaic of two night’s observation (two strips) with about 10% overlap between the observations.   Also, the stripes themselves have some overlaps near the horizon.  Consequently, about 10% of the objects appear more than once in the pipeline.   The pipeline picks one object instance as primary but all instances are recorded in the database.   Even more challenging, one star or galaxy often overlaps another, or a star is part of a cluster.  In these cases child objects are deblended from the parent object, and each child also appears in the database (deblended parents are never primary.)   In the end about 80% of the objects are primary.

The photo objects have positional attributes (right ascension, declination, (x,y,z) in the J2000 coordinate system, and HTM index). Objects have the five magnitudes and five error bars in five color bands measured in six different ways.   Galactic extents are measured in several ways in each of the 5 color bands with error estimates (Petrosian, Stokes, DeVaucouleurs, and ellipticity metrics.) The pipeline assigns about a hundred properties to each object – these attributes are variously called flags, status, and type.   
SQL lacks arrays or other constructors.  So rather than representing the 5 colors as an array, they are represented by their names -- ModelMag_r is the name of the “red” magnitude as measured by the best model fit to the data.  In other cases, the use of names was less natural (for example in the profile array) and so the data is encapsulated by access functions that extract the array elements from a blob – for example dbo.2Dreal(profile,3,5) returns profile[3,5]. 

In addition to their attributes, objects have a profile array, giving the luminance in concentric rings around the object.  Spectrograms are measured for approximately 1% of the objects.  Many more have estimated (rather than measured) redshifts recorded in the photoZ table.  The neighbors table is computed after the data is loaded.  For every object the neighbors table contains a list of all other objects within ½ arcminute of the object (typically 10 objects).   `  

The pipeline also tries to correlate the object with objects in other catalogs: United States Naval Observatory [USNO], Röntgen Satellite [ROSAT], Faint Images of the Radio Sky at Twenty-centimeters [FIRST], and others.   These correlations are recorded in a set of relationship tables.   

The result is a star-schema with the photoObj table in the center and fields, frames, photoZ, neighbors, and connections to other surveys clustered about it.   The 14 million photoObj records each have about 400 attributes describing the object – about 2KB per record.   The frame table describes the processing for a particular color band of a field.  Not shown in Figure 3 is the metadata DataConstants table that holds the names, values, and documentation for all the photoObj  flags.  It allows us to use names rather than binary values  (e.g. flags & fPhotoFlags(‘primary’)).   
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Spectrograms are the second kind of object. About 600 spectra are observed at once using a single plate with optical fibers going to different CCDs.   The plate description is stored in the plate table, and the description of the spectrogram and its GIF are stored in the specObj table.  The pipeline processing extracts about 30 spectral lines from each spectrogram.  The spectral lines are stored in the SpecLine table.  The SpecLineIndex table has derived line attributes used by astronomers to characterize the types and ages of astronomical objects.  Each line is cross-correlated with a model and corrected for redshift.  The resulting line attributes are stored in the xcRedShift table. Lines characterized as emission lines (about one per spectrogram) are described in the elRedShift table.    

There are also a set of “miscellaneous” tables used to monitor the data loading process and to support the web interface.  Perhaps the most interesting is the Tables, Columns, DataConstants, Functions,  tables.   The SkyServer database schema is documented (in html) as comments in the schema text.  We wrote a parser that converts this schema to a collection of tables.  Part of the sky server website lets users explore this schema.  Having the documentation imbedded in the schema makes maintenance easier and assures that the documentation is consistent with reality (http://skyserver.sdss.org/en/help/docs/browser.asp.)  The comments are also presented in tool tips by the Query Tool we built 
Database Access Design – Views, Indices, and Access Functions

The photoObj table contains many types of objects (primaries, secondaries, stars, galaxies,…).  In some cases, users want to see all the objects, but typically, users are just interested in primary objects (best instance of a deblended child), or they want to focus on just Stars, or just Galaxies.   Several views are defined on the PhotoObj table to facilitate this subset access:

    PhotoPrimary:  photoObj records with flags(‘primary’)=true
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    PhotoSecondary:  photoObj records with flags(‘secondary’)=true

    PhotoFamily: photoObj that is not primary or secdondary.

    Sky: blank sky photoObj  recods (for calibration).

   Unknown: photoObj records of type “unknown”

    Star: PrimaryObjects subsetted with type=’star’

   Galaxy: PrimaryObjects subsetted with type=’galaxy’

   SpecObj:  Primary SpecObjAll (dups and errors removed)

Most users will work in terms of these views rather than the base table.  In fact, most of the queries are cast in terms of these views.  The SQL query optimizer rewrites such queries so that they map down to the base photoObj table with the additional qualifiers.

To speed access, the base tables are heavily indexed (these indices also benefit view access).   In a previous design based on an object-oriented database ObjectivityDB™ [Thakar], the architects replicated vertical data slices in tag tables that contain the most frequently accessed object attributes.  These tag tables are about ten times smaller than the base tables (100 bytes rather than 1,000 bytes) – so a disk-oriented query runs 10x faster if the query can be answered by data in the tag table.  

Our concern with the tag table design is that users must know which attributes are in a tag table and must know if their query is “covered” by the fields in the tag table.  Indices are an attractive alternative to tag tables.  An index on fields A, B, and C gives an automatically managed tag table on those 3 attributes plus the primary key – and the SQL query optimizer automatically uses that index if the query is covered by (contains) only those 3 fields.  So, indices perform the role of tag tables and lower the intellectual load on the user.   In addition to giving a column subset, thereby speeding access by 10x to 100x. Indices can also cluster data so that searches are limited to just one part of the object space.   The clustering can be by type (star, galaxy), or space, or magnitude, or any other attribute.  Microsoft’s SQL Server limits indices to 16 columns – that constrained our design choices.
Today, the SkyServer database has tens of indices, and more will be added as needed.  The nice thing about indices is that when they are added, they speed up any queries that can use them.  The downside is that they slow down the data insert process – but so far that has not been a problem.  About 30% of the SkyServer storage space is devoted to indices.

In addition to the indices, the database design includes a fairly complete set of foreign key declarations to insure that every profile has an object; every object is within a valid field, and so on. We also insist that all fields are non-null.   These integrity constraints are invaluable tools in detecting errors during loading and they aid tools that automatically navigate the database. You can explore the database design using web interface at http://skyserver.sdss.org/en/help/docs/browser.asp.
Spatial Data Access
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The SDSS scientists are especially interested in the galactic clustering and large-scale structure of the universe.   In addition, the http://skyserver.sdss.org visual interface routinely asks for all objects in a certain rectangular or circular area of the celestial sphere.  The SkyServer uses three different coordinate systems.  First right-ascension and declination (comparable to latitude-longitude in celestial coordinates) are ubiquitous in astronomy.  To make arc-angle computations fast, the (x,y,z) unit vector in J2000 coordinates is stored.   The dot product or the Cartesian difference of two vectors are quick ways to determine the arc-angle or distance between them.   

To make spatial area queries run quickly, we integrated the Johns Hopkins hierarchical triangular mesh (HTM) code [HTM, Kunszt] with SQL Server.  Briefly, HTM inscribes the celestial sphere within an octahedron and projects each celestial point onto the surface of the octahedron.   This projection is approximately iso-area.  The 8 octahedron triangular faces are each recursively decomposed into 4 sub-triangles.   SDSS uses a 20-deep HTM so that the individual triangles are less than .1 square arcsecond.   
The HTM ID for a point very near the north pole (in galactic coordinates) would be something like 2,3,….,3 (see Figure 5).  These HTM IDs are encoded as 64-bit strings (bigints).   Importantly, all the HTM IDs within the triangle 6,1,2,2 have HTM IDs that are between 6,1,2,2 and 6,1,2,3.  When the HTM IDs are stored in a B-tree index, simple range queries provide quick index for all the objects within a given triangle. 
The HTM library is an external stored procedure wrapped in a table-valued stored procedure spHTM_Cover(<area>).   The <area> can be either a circle  (ra, dec, radius), a half-space (the intersection of planes), or a polygon defined by a sequence of points.  A typical area might be ‘CIRCLE J2000, 30.1, -10.2 .8’ which defines an 0.8 arc minute circle around the (ra,dec) = (30.1, -10.8)
.   The spHTM_Cover table valued function has the following template:


CREATE FUNCTION spHTM_Cover (@Area VARCHAR(8000))  

-- the area to cover

RETURNS @Triangles TABLE (



-- returns table




HTMIDstart BIGINT NOT NULL PRIMARY KEY,  
-- start of triangle




HTMIDend   BIGINT NOT NULL)


-- end of triangle

The procedure call:  select * from spHTM_Cover(‘Circle J2000 12 5.5 60.2 1’) returns the following table with four rows, each row defining the start and end of a 12-deep HTM triangle.  

	HTMIDstart
	HTMIDend

	3,3,2,0,0,1,0,0,1,3,2,2,2,0
	3,3,2,0,0,1,0,0,1,3,2,2,2,1

	3,3,2,0,0,1,0,0,1,3,2,2,2,2
	3,3,2,0,0,1,0,0,1,3,2,2,3,0

	3,3,2,0,0,1,0,0,1,3,2,3,0,0
	3,3,2,0,0,1,0,0,1,3,2,3,1,0

	3,3,2,0,0,1,0,0,1,3,2,3,3,1
	3,3,2,0,0,1,0,0,1,3,3,0,0,0


One can join this table with the photoObj or specObj tables to get spatial subsets.  There are many examples of this in the sample queries below (see Q1 for example).

The spHTM_Cover() function is a little too primitive for most users, they actually want the objects nearby a certain object, or they want all the objects in a certain area – and they do not want to have to pick the HTM depth.   So, the following family of functions is supported:


fGet{Nearest | Nearby} {Obj | Frame | Mosaic} Eq  (ra, dec, radius_arc_minutes)

 
fGet{Nearest | Nearby} {Obj | Frame | Mosaic} XYZ (x, y, z, radius_arc_minutes)

For example: fGetNeaestObjEq(1,1,1) returns the nearest object coordinates within one arcminute of equatorial coordinate (1º, 1º).  These procedures are frequently used in the 20 queries and in the website access pages.

In summary, the logical database design consists of photographic and spectrographic objects.  They are organized into a pair of snowflake schema.   Subsetting views and many indices give convenient access to the conventional subsets (stars, galaxies, ...).   Several procedures are defined to make spatial lookups convenient.  http://skyserver.sdss.org/en/help/docs/browser.asp  documents these functions in more detail.
Database Physical Design and Performance

The SkyServer initially took a simple approach to database design – and since that worked, we stopped there.  The design counts on the SQL Server data storage engine and query optimizer to make all the intelligent decisions about data layout and data access. 

The data tables are all created in one file group.  The file group consists of files spread across all the disks.  If there is only one disk, this means that all the data (about 80 GB) is on one disk, but more typically there are 4 or 8 disks.   Each of the N disks holds a file that starts out as size 80 GB/N and automatically grows as needed.  SQL Server stripes all the tables across all these files and hence across all these disks.  When reading or writing, this automatically gives the sum of the disk bandwidths without any special user programming.  SQL Server detects the sequential access, creates the parallel prefetch threads, and uses multiple processors to analyze the data as quickly as the disks can produce it.  Using commodity low-end servers we measure read rates of  150 MBps to 450 MBps depending on how the disks are configured.
Beyond this file group striping; SkyServer uses all the SQL Server default values.  There is no special tuning.  This is the hallmark of SQL Server – the system aims to have “no knobs” so that the out-of-the box performance is quite good.  The SkyServer is a testimonial to that goal.

So, how well does this work?  The appendix gives detailed timings on the twenty queries; but, to summarize, a typical index lookup runs primarily in memory and completes within a second or two.  SQL Server expands the database buffer pool to cache frequently used data in the available memory.   Index scans of the 14M row photo table run in 7 seconds “warm” (2 m records per second when cpu bound), and 18 seconds cold (100 MBps when disk bound), on a 4-disk 2-cpu Server.   Queries that scan the entire 30 GB photoObj table run at about 150MBps and so take about 3 minutes.   These scans use the available CPUs and disks to run in parallel.  In general we see 4-disk workstation-class machines running at the 150 MBps, while 8-disk server-class machines can run at 300 MBps.     


When the SkyServer project began, the existing software was delivering 0.5 MBps and heavy cpu consumption.  That performance has now improved to 300 MBps and about 20 instructions per byte (measured at the SQL level).  This gives 5-second response to simple queries, and 5-minute response to full database scans.  The SkyServer goal was 50MBps at the user level on a single machine.  As it stands SQL Server and the Compaq hardware exceeded these performance goals by 500% -- so we are very pleased with the design.  As the SDSS data grows, arrays of more powerful machines should allow the SkyServer to return most answers within seconds or minutes depending on whether it is an index search, or a full-database scan.   

Database Load Process

The SkyServer is a data warehouse:  new data is added in batches, but mostly the data is queried.    Of course these queries create intermediate results and may deposit their answers in temporary tables, but the vast bulk of the data is read-only.

Occasionally, a brand new schema must be loaded, so the disks were chosen to be large enough to hold three complete copies of the database (70GB disks).  

From the SkyServer administrator’s perspective, the main task is data loading -- which includes data validation.   When new photo objects or spectrograms come out of the pipeline, they must be added to the database quickly.  We are the system administrators – so we wanted this loading process to be as automatic as possible. 

The Beowulf data pipeline produces FITS files [FITS], but was also modified it to produce column-separated lists (csv) files, and PNG files [SDSS-EDR].  These files are then copied to the SkyServer.   From there, a script-level utility we wrote loads the data using the SQL Server’s Data Transformation Service (DTS).  DTS does both data conversion and the integrity checks.  It also recognizes file names in some fields, and uses the name to insert the image file (PNG or JPEG) as a blob field of the record.  There is a DTS script for each table load step.  In addition to loading the data, these DTS scripts write records in a loadEvents table recording the time of the load, the number of records in the source file and the number of inserted records.  The DTS steps also write trace files indicating the success or errors in the load step.    A particular load step may fail because the data violates foreign key constraints, or because the data is invalid (violates integrity constraints.)  A web user interface displays the load-events table and makes it easy to examine the CSV file and the load trace file.  The operator can (1) undo the load step, (2) diagnose and fix the data problem, and (3) re-execute the load on the corrected data.  If the input file is easily repaired, that is done by the administrator, but often the data needs to be regenerated.   In either case the first step is to UNDO the failed load step.  Hence, the web interface has an UNDO button for each step.    

The UNDO function works as follows.   Each table in the database has an additional timestamp field that records when the record was inserted (the field has Current_Timestamp as its default value.)  The load event record records the table name and the start and stop time of the load step.   Undo consists of deleting all records from the target table with an insert time between that start and stop time.

Loading runs at about 5 GB per hour (data conversion is very cpu intensive), so the current SkyServer loads in about 12 hours.  More than ½ this time goes into building or maintaining the indices.
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	Figure 6:  A screen shot of the SkyServer Database operations interface.  The SkyServer is operated via the Internet using Windows™ Terminal Server, a remote desktop facility built into the operating system.  Both loading and software maintenance are done in this way.   This screen shot shows a window into the backend system after a load step has completed.  It shows the loader utility, the load monitor, a performance monitor window and a database query window.  This remote operation has proved a godsend, allowing the Johns Hopkins, Microsoft, and Fermi Lab participants to perform operations tasks from their offices, homes, or hotel rooms.




Personal SkyServer

A 1% subset of the SkyServer database (about 1/2 GB) that can fit on a CD or downloaded over the web (http://research.microsoft.com/~Gray/PersonalSkyServerV3.zip.)  This includes the web site and all the photo and spectrographic objects in a 6º square of the sky.   This personal SkyServer fits on laptops and desktops.  It is useful for experimenting with queries, for developing the web site, and for giving demos.  We also believe SkyServer will be great for education --teaching both how to build a web site and how to do computational science.   Essentially, any classroom can have a mini-SkyServer per student.    With disk technology improvements, a large slice of the public data will fit on a single disk by 2003.

Hardware design and Raw Performance

This is Jan’s section.
The database is currently about 60 GB.  It can be run on a single processor system with just one disk, but SkyServer uses RAID10 (stripes of mirrors) for sequential performance and for data protection and a separate mirrored disk for the log.   The SkyServer at Fermilab runs on hardware generously donated by Compaq Computer Corporation.

	
[image: image2]
	Figure 7: The SkyServer hardware configuration.  The web front-end is a dual processor running IIS on a Compaq D1380.  The Backend is SQL Server running on a Compaq M1530 with eight UltraI160 SCSI disk drives.  The machines communicate via 100Mbps Ethernet.  There web server is connected to the Fermilab Internet interface.


Figure 7 shows the hardware configuration.   The http://skyserver.sdss.org/ web server runs IIS and Windows2000 on a Compaq™ DL380 dual 1Ghz PentiumIII processors. This machine has 1GB of 133MHz SDRAM, a 64bit/33MHz PCI bus, a 32bit/33MHz PCI bus for expansion slots, a Compaq-Adaptec 29160 ultra160 SCSI controller with a mirrored disk.  This web server does almost no disk IO during normal operation, but we clocked the disk subsystem at over 30MBps.

The web server is also a firewall, it does not do routing and it has a separate “private” 100Mbps Ethernet link to the backend database server.  That database server machine runs SQL Server 2000 and Windows2000 on a Compaq ProLiant ML530.  This machine has two 1GHz Pentium III Xeon processors, 2GB of 133MHz SDRAM; a 64bit/66MHz PCI bus, a 64bit/33MHz PIC bus, and a 32bit PCI bus.  This server has eight Compaq 37GB 10K rpm Ultra160 SCSI disks.  They are managed as a RAID10 array (stripes of mirrors).  SQL Server does the striping across the logical volumes.   Windows2000 mirrors the disks between the two controllers (raid1).  The two Compaq- Adaptec 29160 ultra160 SCSI controllers attached to the 64/66 PCI bus each manage their 4 disks as a jbod (just a bunch of disks). This configuration can scan data at 162MBps for a simple query like select count(*) from photoObj where (r-g)>1.  
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	Figure 8:  Many of the SQL queries access data sequentially, so sequential speed is important.  This graph shows the raw speed (megabytes per second) and record-speed (million records per second – using 128-byte tag records) for a sequential scan as more disks and controllers are added (a 2nd controller was added beyond 4 disks).  It indicates that the system can speed up to about 240MBps (and 1.9 million records per second) before the IO system saturates.   For very simple queries, the system is IO bound at this speed, but for complex queries it is cpu bound.


 We tried various configurations test maximum IO speed.  Eight disks on two controllers can deliver 247MBps to the SQL application.  More controllers and disks did not do much better - the bottleneck at this point appears to be the memory bus (250MBps is approximately the memcpy() speed).   More detailed measurements will be presented in a separate technical report, but the highlights of the measurements done using RAID0 are: 

· The dual processor system can scan at 240 megabytes per second.  This appears to be the IO limit. 

· At that rate, for these 128-byte tag records, SQL is evaluating 1.9 million records per second.

· At that rate for count(*) the cpu utilization is 65% -- 10 clocks/byte, 1300 clocks per record.

· The more complex query count(*) where (r-g)>1 is cpu bound, using 19 cpb and 2300 cpr.

· A single disk delivers  up to 37MBps.

· Four disks on one controller deliver about 130MBps (95% scale up)

· Four disks nearly saturate the controller, beyond that additional controllers are needed.

· Eight disks on two controllers can deliver 240MBps. 

· When the data is all in main memory, the SQL System scans the data at 5 million records per second
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A Summary of the Experience Implementing the Twenty Queries 

The Appendix has each of the 20 queries along with a description of the query plans and measurements of the cpu time, elapsed time, and IO demand.    This section just summarizes the appendix with general comments.

First, all the 20 queries have fairly simple SQL equivalents.  This was not obvious when we started -- and we were very pleased to find it was true.  Often the query can be expressed as a single SQL statement.  In some cases, the query is iterative, the results of one query feeds into the next.  These queries correspond to typical tasks astronomers would do with a tcl script driving a C++ program, extracting data from the archive, and then analyzing it.   Traditionally most of these queries would have taken a few days to write in C++ and then a few hours or days to run against the binary files.  So, being able to do the query simply and quickly is a real productivity gain for the Astronomy community. 


Many of the queries run in a few seconds.  Some involving a sequential scan of the database take about 3 minutes.  One involves a spatial join and takes ten minutes.   As the data grows from 60GB to 1TB, the queries will slow down by a factor of 20.   Moore’s law will probably save us 3x in that time, but still, things will be 7x slower.   So, future SkySevers will need more than 2 processors and more than 4 disks.  By using cpu and disk parallelism, we should be able to keep response times in the “few minutes” range.

The spatial data queries are both simple to state and execute quickly using the HTM index.   We circumvented a limitation in SQL Server by pre-computing the neighbors of each object.  Even without being forced to do it, we might have created this materialized view to speed queries.  In general, the queries benefited from indices on the popular fields.

In looking at the queries in the Appendix, it is no obvious how they were constructed – they are the finished product.  In fact, they were constructed incrementally.  First we explored the data a bit to see the rough statistics – either counting (select count(*) from…) or selecting the first 10 answers (select top 10 a from...).   These component queries were then composed to form the final query shown in the appendix.

The problem is that it takes both a good understanding of astronomy, a good understanding of SQL, and a good understanding of the database to translate the queries into SQL.   In watching how “normal” astronomers access the SX web site, it is clear that they use very simple SQL queries.  It appears that they use SQL to extract a subset of the data and then analyze that data on their own system using their own tools.   SQL, especially complex SQL involving joins and spatial queries, is not just part of the current astronomy toolkit.

Indeed, our actual query set includes the 15 additional queries posed by astronomers using the Objectivity™ archive at (http://archive.stsci.edu/sdss/software/).  Those “real” queries are much simpler and run more quickly than most of the 20 queries.

A good visual query tool that makes it easier to compose SQL would ameliorate part of this problem, but this stands as a barrier to wider use of the SkyServer by the astronomy community.  Once the data is produced, there is still a need to understand it. We have not made any progress on the problem of data visualization. 

ALEX: PLEASE CHECK THESE TWO PARAGRAPHS FOR CORRECTNESS
It is interesting to close with two anecdotes about the use of the SkyServer for Datamining.    First, when it was realized that the query 15 (find asteroids) had a trivial solution, one colleague challenged us to find the “fast moving” asteroids (the pipeline detects slow-moving asteroids).   This was an excellent test case – our colleague had written a 12 page tcl script that had run for 3 days on the dataset.  So we had a benchmark to work against.   It took a long day to debug our understanding of the database and to develop a query (see query 15A).  The resulting query runs in about 10 minutes and finds 3 objects.   If we create a supporting index (takes about 10 minutes) then the query runs in less than a minute.  Being able to pose questions in a few hours and get answers in a few minutes changes the way one views the data:  you can experiment with it almost interactively.   When queries take 3 days hundreds of lines of code, one asks questions cautiously.   Indeed, we have found other fast-moving objects by experimenting with the query parameters.
A second story relates to the fact that 99% of the object’s spectrograms will not be measured and so their redshifts will not be measured.  As it turns out, the objects’ redshifts can be estimated by their 5-color optical measurements.   These estimates are surprisingly good (ref).  However, we discovered one galaxy class that was poorly characterized – there were only 3 such galaxies in the training data and so the estimator did a poor job.   To address this, we wanted to measure the spectrograms of 1,000 such galaxies.  Doing that required building some plates that measure the spectrogram.   The plate drilling program is huge and not designed for this task.   We were afraid to touch it.   But, by writing some SQL and playing with the data, we were able to develop a drilling plan in an evening.  Over the ensuing 6 months the plates were drilled and used for observation and the data came back.   Within an hour of getting the data, it was loaded into the SkyServer database and now the redshift predictor is much more accurate on that class of galaxies.   Now others are asking us to design specialized plates for their research.   
We believe these experiences and others, along with the 20+15 queries in the appendix is a very promising sign that commercial database tools can indeed help scientists organize their data for data mining and easy access.
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Appendix:  A Detailed Narrative of the Twenty Queries 

This section presents each query, its translation to SQL, and a discussion of how the Query performs on the SkyServer at Fermi Lab.  The computer is a Compaq ProLiant Ml530 with two 1GHz Pentium III Xeon processors, 2GB of 133MHz SDRAM; a 64bit/66MHz PCI bus with eight 10K rpm SCIS disks configured as 4 mirrored volumes.  The database, log, and temporary database, and logs are all spread across these disks.    

Some queries first define constants (see for example query 1) that are later used in the query – rather than calling the constant function within the query.  If we do not do this, the SQL query optimizer takes the very conservative view that the function is not a constant and so the query plan calls the function for every tupel.  It also suspects that the function may have side effects, so the optimizer turns off parallelism.   So, function calls inside queries cause a 10x or more slowdown for the query and corresponding cpu cost increase.  As a workaround, we rarely use functions within a query – rather we define variables (e.g. @saturated in Q1) and assign the function value to the variable before the query runs.  Then the query uses these (constant) variables.
Q1:  Find all galaxies without saturated pixels within 1' of a given point. 

The query uses the table valued function getNearbyObjEq() that does an HTM cover search  to find nearby objects. This handy function returns the object’s ID, distance, and a few other attributes.  The query also uses the Galaxy view to filter out everything but primary (good) galaxy objects.    
declare @saturated bigint;


    -- initialized “saturagted” flag
set     @satruated = dbo.fPhotoFlags('saturated'); -- avoids SQL2K optimizer problem

select
G.objID, GN.distance  


    -- return Galaxy Object ID and 

into 
##results  



    -- angular distance (arc minutes)

from 
Galaxy                       as G  
    -- join Galaxies with

 join
fGetNearbyObjEq(185,-0.5, 1) as GN
    -- objects within 1’ of ra=185 & dec=-.5

                   on G.objID = GN.objID
    -- connects G and GN

where (G.flags & @satruated) = 0  

    -- not saturated

order by distance



    -- sorted nearest first

The query returns 19 galaxies in 60 milliseconds of cpu time and 0.25 seconds of elapsed time.    The following picture shows the query plan (the rows from the table-valued function GetNerabyObjEQ() are nested-loop joined with the photoObj table – each row from the function is used to probe the photoObj table to test the saturated flag, the primary object flag,  and the galaxy type.).  The function returns 22 rows that are joined with the photoObj table on the ObjID primary key to get the object’s flags.  19 of the objects are not saturated and are primary galaxies, so they are sorted by distance an inserted in the ##results temporary table. 
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Q2: Find all galaxies with blue surface brightness between and 23 and 25 magnitude per square arcseconds, and -10<super galactic latitude (sgb) between (-10º. 10º), and declination less than zero.     
The surface brightness is defined as the logarithm of flux per unit area on the sky. Since the magnitude is -2.5 log(flux),  the SB is –2.5 log(flux/R2(). The SkyServer pipeline precomputed the value rho = -5 log( R ) – 2.5 log ((), where R is the radius of the galaxy. Thus, for a constraint on the surface brightness in the g band we can use the combination g+rho.
select objID


-- Get the object identifier

into ##results

from Galaxy 


-- of all the galaxies that have

where  ra between 170 and 190 -- designated ra/dec   (need galactic coordinates)

 and dec < 0 


-- declination less than zero.

 and g+rho between 23 and 25
-- g = blue magnitude, 





-- rho= 5*ln(r) 





-- g+rho = SB per sq arc sec is between 23 and 25

This query finds 191,062 objects in 18.6 seconds elapsed, 14 seconds of cpu time. This is a parallel scan of the XYZ index of the PhotoObj table (Galaxy is a view of that table that only shows primary objects that are of type Galaxy). The XYZ index covers this query (contains all the necessary fields). The query spends 2 seconds inserting the answers in the ##results set, if the query just counts the objects, it runs in 16 seconds.
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Q3:  Find all galaxies brighter than magnitude 22, where the local extinction is >0.175. 
The extinction indicates how much light is absorbed by that dust that is between the object and the earth.    There is an extinction table, giving the extinction for every “cell”, but the extinction is also stored as an attribute of each element of the PhotoObj table, so the simple query is:

  select objID 


-- find the object IDs

  into ##results

  from Galaxy     


-- join Galaxies with Extinction table

    where  
r < 22 


-- where brighter than 22 magnitude

    and  
reddening_r> 0.175  
-- extinction more than 0.175

The query returns 488,183 objects in 168 seconds and 50 seconds of cpu time. The query plan does a sequential scan of the 14 million records in the PhotoObj.xyz index to find the approximately 500,000 galaxy objIDs that have magnitude less than 22.   Then it does a lookup of each of these objects in the base table (1/2 a million “bookmark” lookups) to check the reddening.    The query uses about 30% of one of the two cpus – much of this is spent inserting the ½ million answer records.  If the extinction matrix were used, this query could use the HTM index and run about five times faster.  The choice of a bookmark lookup may be controversial, but it does run quickly.
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Q4: Find galaxies with an isophotal surface brightness (SB) larger than 24 in the red band, with an ellipticity>0.5, and with the major axis of the ellipse between 30” and 60”arc seconds (a large galaxy).
Each of the five color bands has been pre-processed into a bitmap image that is broken into 15 concentric rings. The rings are further divided into octants.  This information is stored in the object’s profile.  The intensity of the light in each ring and octant is pre-processed to compute surface brightness, ellipticity, major axis, and other attributes. These derived attributes are stored with the PhotoObj, so the query operates on these derived quantities.  

select ObjID

   
-- put the qualifying galaxies in a table

into ##results

from Galaxy       

-- select galaxies   

where r + rho < 24   
    
-- brighter than magnitude 24 in the red spectral band  

  and  isoA_r between 30 and 60  -- major axis between 30" and 60"

  and  (power(q_r,2) + power(u_r,2)) > 0.25 -- square of ellipticity is > 0.5 squared. 

The query returns 787 rows in 18 seconds elapsed, 9 seconds of cpu time.  It does a parallel scan of the NEO index on the photoObj Table that covers the object type, status, flags, and also isoA, q_r, and  r.   The query then does a bookmark lookup on the qualifying galaxies to check the r+rho and q_r2+u_r2 terms.   The resulting records are inserted in the answer set.
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Q5: Find all galaxies with a deVaucouleours profile (r¼ falloff of intensity on disk) and the photometric colors consistent with an elliptical galaxy.   As discussed in Q4, the deVaucouleours profile information is precomputed from the concentric rings during the pipeline processing. There is a likelihood value stored in the table, which tells whether the deVaucouleours profile or an exponential disk is a better fit to the galaxy.

declare @binned    
bigint;


 
-- initialized “binned” literal

set     @binned = 
dbo.fPhotoFlags('BINNED1') +
-- avoids SQL2K optimizer problem

   


dbo.fPhotoFlags('BINNED2') +

   


dbo.fPhotoFlags('BINNED4') ;

declare @blended   
bigint;


 
-- initialized “blended” literal

set     @blended = 
dbo.fPhotoFlags('BLENDED');  
-- avoids SQL2K optimizer problem

declare @noDeBlend 
bigint;


 
-- initialized “noDeBlend” literal

set     @noDeBlend = 
dbo.fPhotoFlags('NODEBLEND'); -- avoids SQL2K optimizer problem

declare @child     
bigint;


 
-- initialized “child” literal

set     @child = 
dbo.fPhotoFlags('CHILD');  
-- avoids SQL2K optimizer problem

declare @edge     
bigint;


 
-- initialized “edge” literal

set     @edge = 
dbo.fPhotoFlags('EDGE');  
-- avoids SQL2K optimizer problem

declare @saturated 
bigint;


 
-- initialized “saturated” literal

set     @saturated = 
dbo.fPhotoFlags('SATURATED'); -- avoids SQL2K optimizer problem

select objID

into ##results  

from Galaxy as G 

-- count galaxies

where
lDev_r > 1.1 * lExp_r
-- red DeVaucouleurs fit likelihood greater than disk fit 

   and 
lExp_r > 0

-- exponential disk fit likelihood in red band > 0

   -- Color cut for an elliptical galaxy courtesy of James Annis of Fermilab

   and (G.flags & @binned) > 0  

   and (G.flags & ( @blended + @noDeBlend + @child)) != @blended

   and (G.flags & (@edge + @saturated)) = 0  

   and (G.petroMag_i > 17.5)

   and (G.petroMag_r > 15.5 OR G.petroR50_r > 2)

   and (G.petroMag_r < 30 and G.g < 30 and G.r < 30 and G.i < 30)

   and ((G.petroMag_r-G.reddening_r) < 19.2

   and ((G.petroMag_r - G.reddening_r) < (13.1 +     
-- deRed_r < 13.1 +

                     (7/3)*(G.g - G.r) + 


-- 0.7 / 0.3 * deRed_gr

                        4 *(G.r - G.i) -4 * 0.18 )) 

-- 1.2 / 0.3 * deRed_ri          

             and (( G.r - G.i - (G.g - G.r)/4 - 0.18) BETWEEN -0.2 AND  0.2 ) 

             )

    or (((G.petroMag_r - G.reddening_r) < 19.5 )

-- deRed_r < 19.5 +

             and (( G.r - G.i -(G.g - G.r)/4 -.18) >    
-- cperp = deRed_ri             

                         (0.45 - 4*( G.g - G.r)))  

-- 0.45 - deRed_gr/0.25

             and ((G.g - G.r) > ( 1.35 + 0.25 *(G.r - G.i)))          

             )          )

The query found 488,183  objects in 166 seconds elapsed, 66 seconds of cpu time. This is parallel table scan of PhotoObj table because there is no covering index.  The fairly complex query evaluation all hides in the parallel scan and parallel filter nodes at the right of the figure below. 
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Q6: Find galaxies that are blended with a star and output the deblended galaxy magnitudes.   

Some objects overlap others.  The most common cases are a star in front of a galaxy or a star in the halo of another star.  These “deblended” objects, record their “parent” objects in the database.   So this query starts with a deblended galaxy (one with a parent) and then looks for all stars that have the same parent.  It then outputs the five color magnitudes of the star and the parent galaxy.

select ObjID, u,g,r,i,z  



-- output galaxy and magnitudes.

into   ##results

from 
galaxy G, star S  



-- for each galaxy

where
G.parentID > 0




-- galaxy has a “parent”

  and  G.parentID = S.parentID


-- star has the same parent 

The query found 1,088,806 galaxy-star pairs in 67 seconds. Without an index on the parent attribute, this is a Cartesian product of two very large tables and would involve about 1016 join steps.  So, it makes good sense to create an index or intermediate table that has the deblended stars.   Fortunately, SkyServer already has a parent index on the photoObj table, since we often want to find the children of a common parent.  The clause parentID>0 excludes galaxies with no parent. These two steps cut the task from about 1020 down to a near-linear 108 steps (because ½ the objects are galaxies and about 25% of them have parents).      The plan scans the Parent index and builds a hash table of parent IDs, galaxy IDs that have parents (about 3.7M objects, so about 40MB).   It then scans over the index a second time looking at stars that have parents.   It looks in the hash table to see if the parent is also a parent of a galaxy.  If so, the galaxy ID and star ID are inserted in the answer set. 
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Q7: Provide a list of star-like objects that are 1% rare.

The survey gets magnitude information about stars in 5 color bands.  This query looks at the ratios of the brightness in each band. (Luminosity ratios are magnitude differences because magnitudes are logarithms of the actual brightness in that band).  The query “bins” these magnitudes based on the 4-space of u-g, g-r, r-i, i-z.  Experimentation showed that dividing the bins in integer units worked well.  We built a results table that contains all the bins.  The large-population bins are deleted, leaving only the rare ones (less than 500 members).

select
cast(round((u-g),0) as int) as UG, 


cast(round((g-r),0) as int) as GR, 


cast(round((r-i),0) as int) as RI, 


cast(round((i-z),0) as int) as IZ,


count(*) as pop

count(*)           as pop 

into  ##results

from  star

where (u+g+r+i+z) < 150   -- exclude bogus magnitudes (== 999)

group by
cast(round((u-g),0) as int), cast(round((g-r),0) as int), 

 
cast(round((r-i),0) as int), cast(round((i-z),0) as int)
order by count(*) 

This query found 15,528 buckets in less than a minute.  The first 140 buckets have 99% of the objects.  The query scans the UGRIZ index of the photoObj table in parallel to populate a hash table containing the counts.  When the scan is done, the hash table is sorted put into the results table.   The query uses 90 seconds of cpu time in 53 seconds elapsed time (this is a dual processor system).
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OK, now use this as a filter to return rare stars.

delete  ##results

where pop > 500   

This whole scenario uses less than 2 minutes of computer time.   

Q8: Find all objects with unclassified spectra.   

A search for all objects that have spectra that do not match any known category.

 set    @unknown = dbo.fSpecClass('UNKNOWN')  
 select specObjID

 into   ##results

 from   SpecObj

 where  SpecClass = @unknown
This is a simple scan of the SpectraObj table looking for those spectra that have not yet been classified. It finds 260 rows in .126 seconds and .03 seconds of cpu time.
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Q9: Find quasars with a line width >2000 km/s and 2.5<redshift<2.7.   

This is a sequential scan of quasars in the Spectra table with a predicate on the redshift and line width. The Spectra table has about 53 thousand objects having a known spectrum but there are only 4,300 known quasars. We need to do a join with the SpecLine table, for all the emission lines used in the redshift determination, look for the highest amplitude one. The line width can be computed from the sigma attribute of the line, which is the width of the line in Angstroms. The conversion to km/s is :  lineWidth = sigma * 300000 / wave.
declare

@qso int;
set

@qso = dbo.fSpecClass('QSO') ;
declare

@hiZ_qso int;
set

@hiZ_qso =dbo.fSpecClass('HIZ-QSO');
select         s.specObjID, 




-- object id
 

max(l.sigma*300000.0/l.wave) as veldisp, 
-- velocity dispersion

 

avg(s.z) as z




-- redshift

into    ##results 
from     SpecObj s, specLine l          
-- from the spectrum table and lines 
where  s.specObjID=l.specObjID 

-- line belongs to spectrum of this obj

   and ( (s.specClass = @qso) or   

-- quasar 
         (s.specClass = @hiZ_qso)) 

-- or hiZ_qso. 
   and  s.z between 2.5 and 2.7   

-- redshift of 2.5 to 2.7
   and  l.sigma*300000.0/l.wave >2000.0
-- convert sigma to km/s         
   and  s.zConf > 0.9                     
-- high confidence on redshift estimate 
group by s.specObjID
This is a sequential scan of the Spectra table with a predicate looking for quasars with the specified redshift (and good credibility on the redshift estimate). When it finds such a quasar, it does a nested loops join with the spectral lines to see if they have acceptable line width. The Spectra table has about 53 thousand objects having a known spectrum but there are only 4,300 known quasars. The acceptable spectra (and their lines are passed to an aggregator that computes the maximum velocity and the average redshift. The query returns 14 rows in 436 ms.   
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Q10: Find galaxies with spectra that have an equivalent width in Ha >40Å  (Ha is the main hydrogen spectral line.)    

This is a simple 4-way join of Galaxies with Spectra and then their lines and then the line names.

select G.ObjID 


-- return qualifying galaxies

 into  ##results

 from
Galaxies   as G, 

-- G is the galaxy


SpecObj    as S, 

-- S is the spectra of galaxy G

 
SpecLine   as L,

-- L is a line of S


DataConstants as LN

-- the names of the lines

 where G.ObjID = S.ObjID 

-- connect the galaxy to the spectrum 

   and S.SpecObjID = L.SpecObjID
-- L is a line of S.

   and L.LineId = LN.value

-- L is the H alpha line

   and LN.field  = 'SpecLineNames'

 

   and LN.name =  'Ha_6565'   

   and L.ew > 40


-- H alpha is at least 40 angstroms wide. 

This query runs in parallel and uses 5 cpu seconds in 5 seconds of elapsed time.  It finds 5,496 galaxies with the desired property.  Interestingly, SQL decides to do this query inside-out.  It first finds all lines that qualify, then it finds the parent spectra, and then it sees if the parent spectrum is a galaxy.  The middle join is a parallel hash join; while the inner and outer are nested loops joins (qualifying spectra with photo objects).
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That was easy, so lets also find objects with a weak Hbeta line (Halpha/Hbeta > 20.)

select G.ObjID 


-- return qualifying galaxies

 into  ##results

 from
Galaxy     as G, 

-- G is the galaxy

 
SpecObj    as S, 

-- S is the spectra of galaxy G

 
SpecLine   as L1, 

-- L1 is a line of S


SpecLine   as L2,

-- L2 is a second line of S


DataConstants as LN1,

-- the names of the lines (Halpha)


DataConstants as LN2

-- the names of the lines (Hbeta)

where G.ObjID = S.ObjID 

-- connect the galaxy to the spectrum   

  and S.SpecObjID = L1.SpecObjID
-- L1 is a line of S.

  and S.SpecObjID = L2.SpecObjID
-- L2 is a line of S.  and L1.LineId = LN1.LineId


  and LN1.field  = 'SpecLineNames'
  and L1.LineId = LN1. value

  and LN1.name =  'Ha_6565'   

-- L1 is the H alpha line
  and L2.LineId = LN2.value

-- L2 is the H alpha line
  and LN2.name =  'Hb_4863'     
--  
  and LN1.field  = 'SpecLineNames'
  and L1.ew > 200


-- BIG Halpha

  and L2.ew > 10


-- significant Hbeta emission line 

  and L2.ew * 20 < L1.ew 

-- Hbeta is comparatively small

This query uses 1.9 seconds of cpu time in 1.3 seconds elapsed time.  It is slightly more complex than the plan for query 10, involving two more nested loops joins. 
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Q11: Find all elliptical galaxies with spectra that have an anomalous emission line.   

This is a search for galaxies that match the elliptical template, and that have an “unknown” spectral line with the property that there is no nearby (within 0.01 angstroms) line that has been identified.    

select
distinct G.ObjID 

-- return qualifying galaxies

into   ##results

from
Galaxiy        as G, 

-- G is the galaxy


SpecObj

as S, 

-- S is the spectra of galaxy G

 
SpecLine       as L, 

-- L is a line of S

 
DataConstants  as LN,

-- the type of line

 
XCRedshift     as XC

-- the template cross-correlation 

where G.ObjID = S.ObjID   

-- connect galaxy to the spectrum 

  and S.SpecObjID = L.SpecObjID
-- L is a line of S

  and S.SpecObjID = XC.SpecObjID 
-- CC is a cross-correlation with templates 

  and XC.tempNo = 8                  -- Template('Elliptical') -- CC says "elliptical"

  and LN.field  = 'SpecLineNames'
  and L.LineID = LN.value

-- line type is found  
  and LN.Name = 'UNKNOWN'

--       but not identified
  and L.ew > 10


-- a prominent (wide) line

  and S.SpecObjID not in (

-- insist that there are no other lines

select S.SpecObjID

-- that are know and are very close to this one

from   
SpecLine       as L1,
-- L1 is another line 



DataConstants  as LN1


where S.SpecObjID = L1.SpecObjID 
-- for this object 

  and abs(L.wave - L1.wave) <.01 
-- at nearly the same wavelength

  and LN1.field  = 'SpecLineNames'
-- line found
  and L1.LineID = LN1.value

  and LN1.Name != 'UNKNOWN' 

--       it IS identified
)      
This query finds 22 thousand galaxies in 33 seconds of cpu time and 28 seconds of clock time.  It starts by building a list of all the prominent unknown lines (the nested loops join at the far right of the picture below). Then it joins that list with the SpecObj table. Then it does a nested loops join with photoObj to discard objects that are not galaxies.  Now it does a nested loops join of the lines of that specObj that are nearby the unknown line and are in fact know.   If none are fond, then it does a hash join with the XCredshift table to discard any galaxy that does not qualify as elliptical. 
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Q12: Create a grided count of galaxies with u-g>1 and r<21.5 over -5<declination<5, and 175<right ascension<185, on a grid of 2’ arc minutes.  Create a map of masks over the same grid. 

Scan the table for galaxies and group them in cells 2 arc-minutes on a side filtering with predicates on the u-g magnitude ratio and the r magnitude. To limit the search to the portion of the sky defined by the right ascension and declination conditions, the query uses the fHTM_Cover() procedure to constrain the HTM ranges of candidate objects.  The query returns the count of qualifying galaxies in each cell. We then run a second query with the same grouping, but with a predicate to include only objects such as satellites, planets, and airplanes that obscure the cell.  The second query returns a list of cell coordinates that serve as a mask for the first query. The mask is stored in a temporary table and may be joined with the first query to delete or mask cells erroneous cells.  

--- First find the grided galaxy count (with the color cut)

--- In local tangent plane, ra/cos(dec) is a “linear” degree.

declare @LeftShift16 bigint;

-- used to convert 20-deep htmIds to 6-deep IDs
set     @LeftShift16 = power(2,28);
select cast((ra/cos(cast(dec*30 as int)/30.0))*30 as int)/30.0 as raCosDec, 

       cast(dec*30 as int)/30.0                                as dec, 

       count(*)                                                as pop

into ##GalaxyGrid

from   Galaxy as G , 

       dbo.fHTM_Cover('CONVEX J2000 6 6 175 -5 175 5 185 5 185 -5') as T

where  htmID between T.HTMIDstart*@LeftShift16 and T. HTMIDstop*@LeftShift16
  and  ra between 175 and 185

  and  dec between -5 and 5

  and  u-g > 1

  and  r < 21.5

group by  cast((ra/cos(cast(dec*30 as int)/30.0))*30 as int)/30.0, 

          cast(dec*30 as int)/30.0 

This query first builds a 6-deep htm mesh and then does a nested loops join on the HTMindex of the PhotoObj table.  The matching htm tuples are checked for acceptable ra and dec, ane u-g, and r values.  If they pass this test they are streamed to a hash aggregation table and added to the appropriate bin.  When the scan is complete, the counts in the hash aggregate table is dumped to the answer set. 
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--- now build mask grid.

select cast((ra/cos(cast(dec*30 as int)/30.0))*30 as int)/30.0 as raCosDec, 

cast(dec*30 as int)/30.0                                as dec, 

count(*)                                                as pop

into ##MaskGrid                                                
from  photoObj as PO, 

      dbo.fHTM_Cover('CONVEX J2000 6 6 175 -5 175 5 185 5 185 -5') as T,

      DataConstants as PT
where htmID between T.HTMIDstart*@LeftShift16 and T. HTMIDstop*@LeftShift16
  and ra between 175 and 185

  and dec between -5 and 5
  and PT.field = 'PhotoType'

  and PO.type = PT.value
  and PT.name in (‘COSMIC RAY’, ‘DEFECT’, ‘GHOST’, ‘TRAIL’, ‘UNKNOWN’)

group by  cast((ra/cos(cast(dec*30 as int)/30.0))*30 as int)/30.0, 

          cast(dec*30 as int)/30.0    

This query is similar to the previous one except that the photo objects are filtered by the bad flags.
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Q13: Create a count of galaxies for each of the HTM triangles which satisfy a certain color cut, like 0.7u-0.5g-0.2i<1.25  and r<21.75, output it in a form adequate for visualization.   

Return the ra and dec and count for every 8-deep htm bucket (each bucket is about 1  square degree).

declare @RightShift12 bigint;

set     @RightShift12 = power(2,24);

select (htmID /@RightShift12) as htm_8, -- group by 8-deep HTMID (rshift HTM by 12)

avg(ra)  as ra, 

avg(dec) as [dec], 

count(*) as pop

-- return center point and count for display

 into  ##results


-- put the answer in the results set.

 from 
Galaxy



-- only look at galaxies

 where  (0.7*u - 0.5*g - 0.2*i) < 1.25 
-- meeting this color cut

   and  r < 21.75


-- fainter than 21.75 magnitude in red band.

 group by (htmID /@RightShift12) 
-- group into 8-deep HTM buckets..HTM buckets

The query returns 7,604 buckets in 20 seconds. A hash aggregate based on a scan of the xyz index, runs in 20 seconds elapsed, 28 seconds of cpu time.
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Q14: Find stars with multiple measurements that have magnitude variations >0.1.      

This is a spatial join of the PhotoObj table with itself using the neighbors table to cut down on the search.  Stars within ½ arcsecond of one another in two different observations are considered to be identical (½ second is approximately the minimum telescope resolution.)
declare @star int;


    
-- initialized “star” literal
set     @star = dbo.fPhotoType('Star'); 
-- avoids SQL2K optimizer problem

select s1.objID as ObjID1, s2.objID as ObjID2 -- select object IDs of star and its pair

into  ##results


from   star      as   s1,


-- the primary star

       photoObj  as   s2,


-- the second observation of the star

       neighbors as   N


-- the neighbor record

where s1.objID = N.objID


-- insist the stars are neighbors

  and s2.objID = N.neighborObjID

-- using precomputed neighbors table

  and distanceMins < 0.5/60


-- distance is ½ arc second or less

  and s1.run != s2.run



-- observations are two different runs

  and s2.type = @star



-- s2 is indeed a star
  and  s1.u between 1 and 27


-- S1 magnitudes are reasonable

  and  s1.g between 1 and 27

  and  s1.r between 1 and 27

  and  s1.i between 1 and 27

  and  s1.z between 1 and 27

  and  s2.u between 1 and 27


-- S2 magnitudes are reasonable.

  and  s2.g between 1 and 27

  and  s2.r between 1 and 27

  and  s2.i between 1 and 27

  and  s2.z between 1 and 27

  and (    
                       
-- and one of the colors is  different.

           abs(S1.u-S2.u) > .1 + (abs(S1.Err_u) + abs(S2.Err_u))  


        or abs(S1.g-S2.g) > .1 + (abs(S1.Err_g) + abs(S2.Err_g)) 


        or abs(S1.r-S2.r) > .1 + (abs(S1.Err_r) + abs(S2.Err_r)) 

        or abs(S1.i-S2.i) > .1 + (abs(S1.Err_i) + abs(S2.Err_i)) 

        or abs(S1.z-S2.z) > .1 + (abs(S1.Err_z) + abs(S2.Err_z)) 


)

This is a parallel merge join of the neighbors table with the PhotoObj table to find all stars that are within ½ arcsecond of some other object and such that the star has a reasonable magnitude.  The result of that join is parallel hash match join with the PhotoObj table filtered by the “reasonable magnitude” predicate,  that join feeds to a filter that discards objects where the differences of the magnitudes is less than the threshold.  The query runs in 232 seconds and uses 288 cpu seconds.
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Q15: Provide a list of moving objects consistent with an asteroid.    

Objects are classified as moving if their positions change over the time of observation.  SDDS makes 5 successive observations from the 5 color bands over a 5 minute period.  If an object is moving, the successive images see a moving image against the fixed background of the galaxies.  The processing pipeline computes this movement velocity as rowV (the row velocity) and colV the column velocity.   So query 15 becomes a simple table scan computing the velocities and selecting those objects that have high velocity.  

 select
objID,  




-- return object ID

 
sqrt( power(rowv,2) + power(colv, 2) ) as velocity, – velocity


dbo.fGetUrlEQ(objID) as Url


-- url of image so we can examine it.

 into  ##results

 from
PhotoObj  




-- check each object.

 where (power(rowv,2) + power(colv, 2)) > 50  
-- square of velocity (units?)

   and rowv >= 0 and colv >=0



-- negative values indicate error

This is a sequential scan of the PhotoObj table (there is no covering index. It uses 72 seconds of cpu time in 162 second of elapsed time to evaluate the predicate on each of the 14M objects. It finds 1,303 candidates. Here is a picture of one of the objects:   
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These are “slow moving” objects.  To find fast moving objects we write a different query (based on a tcl script written by Steve Kent).  This query looks for streaks in the sky that line up.   These streaks are not close enough to be identified as a single object. The query starts out with all pairs of objects in a given area (run,camcol,field) that have a fiberMag_r between 6 and 22, and are elongated.   We first select the red and green candidates, by requiring that they are fainter in all the other colors. These two are much rarer than the i candidates.    Also, there is one candidate, where the i' image is blended with the r'.    Next we do a join on these two, and also require that the magnitudes in g and r are within 2, and they are within 4 arcminutes of one another, in the same run and camcol, but they can be on adjacent fields.  We found 4 pairs, in one of them the red objects is degenerate, probably deblended. Each of the other three is a NEO.
SELECT r.objID as rId, g.objId as gId, 
r.run, r.camcol, 
r.field as field, g.field as gField,


r.ra as ra_r, r.dec as dec_r, 
g.ra as ra_g, g.dec as dec_g, --(note acos(x) ~ x for x~1)

sqrt(power(r.cx-g.cx,2)+power(r.cy-g.cy,2)+power(r.cz-g.cz,2))
(180*60/PI()) as distance,

       dbo.fGetUrlId(r.objID) as rURL,      -- returns URL for image of object
       dbo.fGetUrlId(g.objID) as gURL

    FROM PhotoObj r, PhotoObj g

    WHERE 




-- the match criteria


r.run = g.run and r.camcol=g.camcol  -- same run and camera column

and abs(g.field-r.field) <= 1

-- adjacent fields 

-- the red selection criteria


and ((power(r.q_r,2) + power(r.u_r,2)) > 0.111111 )  -- q/u is ellipticity 

and r.fiberMag_r between 6 and 22 
and r.fiberMag_r < r.fiberMag_u
and r.fiberMag_r < r.fiberMag_g 
and r.fiberMag_r < r.fiberMag_i
and r.fiberMag_r < r.fiberMag_z


and r.parentID=0 

and r.isoA_r/r.isoB_r > 1.5 
and r.isoA_r > 2.0


-- the green selection criteria


and ((power(g.q_g,2) + power(g.u_g,2)) > 0.111111 )


and g.fiberMag_g between 6 and 22 
and g.fiberMag_g < g.fiberMag_u

and g.fiberMag_g < g.fiberMag_r 
and g.fiberMag_g < g.fiberMag_i 
and g.fiberMag_g < g.fiberMag_z


and g.parentID=0 
and g.isoA_g/g.isoB_g > 1.5 
and g.isoA_g > 2.0


-- the matchup of the pair --(note acos(x) ~ x for x~1)


and sqrt(power(r.cx-g.cx,2)+power(r.cy-g.cy,2)+power(r.cz-g.cz,2))*(180*60/PI()) 
< 4.0


and abs(r.fiberMag_r-g.fiberMag_g)< 2.0
This query is a scan of the NEO index that that has the fiberMag array and also the iso parameters.  It is nested loops join of this array with itself on the run, camcol, field keys, doing a nested loops join, for each object that qualifies in the red band, finding all the qualifying green objects.  When it finds a matching pair, it checks to see if the parentID is zero for both of them.  It with the index it finds 4 objects in 55 seconds elapsed and 51 seconds of cpu time.  Without the NEO index it takes about 10 minutes. 
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You can see one of the example objects at:

http://skyServer.sdss.org/en/tools/navi/getimg.asp?zoom=1&ra=171.161254&dec=-0.0108500 
Q16: Find all objects similar to the colors of a quasar at 5.5<redshift<6.5.   

Scan all objects with a predicate to select objects that satisfy the quasar color cut.  Produce a table counting the total, the objects classed as galaxies, those classed as stars and those classed as “other”.  This is a parallel sequential scan of the ugriz index. It runs in 15 seconds of cpu time (1 M records per second) and 14 seconds of clock time. It is IO bound, needing 15 seconds to read the index at 80MBps. It finds 1,826 objects, 1,489 Galaxies, and 337 stars. 

select count(*) 




 as 'total', 


sum( case when (type=3) then 1 else 0 end) 

 as 'Galaxies',

sum( case when (type=6) then 1 else 0 end) 

 as 'Stars',

sum( case when (type not in (3,6)) then 1 else 0 end) as 'Other'

from 
PhotoPrimary



-- for each object

 



 where (( u - g > 2.0) or (u > 22.3) ) 
-- apply the quasar color cut.

   and ( i between 0 and 19 ) 

   and ( g - r > 1.0 ) 

   and ( (r - i < 0.08 + 0.42 * (g - r - 0.96)) or (g - r > 2.26 ) )

   and 
( i - z < 0.25 )

[image: image22.png]i - g - 4 - i B - B —h

Compute Scalar Stream Aggregat..Parallelism/Gat... Compute Scalar Stream Aggregat... Filter PhotoOb] . ugriz
Cost: 0% Cost: 0% Cost: 0% Cost: 0% Cost: 0% Cost: 28% Cost: 72%




   

Q17:  Find binary stars where at least one of them has the colors of a white dwarf. 

White dwarf color cut courtesy of Paul Szkody.    

declare @star int;


    
-- initialized “star” literal
set     @star = dbo.fPhotoType('Star'); 
-- avoids SQL2K optimizer problem

select
s1.objID as s1, s2.objID as s2 
-- return star pairs

into   ##results

from
Star       S1,



-- S1 is the white dwarf

   
Neighbors  N,



-- N is the precomputed neighbors links

   
Star       S2



-- S2 is the second star

  where S1.objID = N. objID 


-- S1 and S2 are neighbors-within 30 arc sec

    and S2.objID = N.NeighborObjID  

    and N.NeighborObjType = @star
 
-- and S2 is a star

    and N.DistanceMins < .05


-- the 3 arcsecond test

    and (S1.u - S1.g) < 0.4   

-- and S1 meets Paul Szkody’s color cut for

    and (S1.g - S1.r) < 0.7 


-- white dwarfs.

    and (S1.r - S1.i) > 0.4 

    and (S1.i - S1.z) > 0.4     

The query finds 2,773 objects in 18 seconds.  It scans the ugriz index of the photoObj table for stars with white dwarf colors.  Then it does a nested-loops join with the neighbors table to find objects within 3 arcseconds of qualifying stars.  Now it joins those objects with the photoObj table to make sure that the neighbor is a star.   
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Q18: Find all objects within 30 arcseconds of one another that have very similar colors: that is where the color ratios u-g, g-r, r-i are less than 0.05m.   

Magnitudes are logarithms so these differences are really ratios. This is a gravitational lens query.  It scans for objects in the PhotoPrimary view and compares them to all objects within one arcminute of the object.  If the color ratios match, this is a candidate object.   

 select
 distinct P.ObjID 


-- count distinct cases (will get min objid)

 into ##results



-- oid compare gets minimum object

  From
photoPrimary   P,


-- P is the primary object

Neighbors      N, 


-- N is the neighbor link

photoPrimary   L


-- L is the lens candidate of P

 where P.ObjID = N.ObjID


-- N is a neighbor record

   and L.ObjID = N.NeighborObjID  

-- L is a neighbor of P

   and P.ObjID < L.ObjID 


-- avoid duplicates

   and abs((P.u-P.g)-(L.u-L.g))<0.05 

-- L and P have similar spectra.

   and abs((P.g-P.r)-(L.g-L.r))<0.05

   and abs((P.r-P.i)-(L.r-L.i))<0.05  

   and abs((P.i-P.z)-(L.i-L.z))<0.05  

This query finds 4,442 objects in 930 seconds elapsed and 1475 seconds of cpu time.  It is the longest-running of the 20 queries.  This is quite similar to Query14, it uses the neighbors table to join objects to nearby neighbors. It is a scan of ugriz index picking up the object’s colors, and then a nested-loops join to the neighbors table which in turn is a join back to the PhotoObj ugriz.  This query runs for a very long time because it is comparing every primary object to all its’ neighbors.  This is about 150 million comparisons (whereas Query 14 was comparing a few objects to their closest neighbor 
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Q19: Find quasars with a broad absorption line in their spectra and at least one galaxy within 10 arcseconds. Return both the quasars and the galaxies.   

Scan for quasars with a predicate for a broad absorption line and use them in a spatial join with galaxies that are within 10 arc-seconds.  The neighbor’s within 10 arcseconds is precomputed in the neighbors table, so join with that and subset the search.   

select Q.ObjID as Quasar_candidate_ID, G.ObjID as Galaxy_ID

into ##results   

from  SpecObj       
as Q, 

-- Q is the specObj of the quasar candidate
      Neighbors
as N,

-- N is the Neighbors list of Q

      Galaxy

as G,

-- G is the nearby galaxy

      DataConstants
as SC,

      SpecLine   
as L, 

-- L is the broad line we are looking for 

      DataConstants
as LN 

where Q.SpecClass  = SC.class

  and SC.name  in ('QSO', 'HIZ_QSO') 
-- Spectrum says "QSO"

  and SC.field = 'SpecClass'
  and Q.SpecObjID = L.SpecObjID
-- L is a spectral line of Q.
  and L.LineID = LN.value

-- line found and  
  and LN.Name != 'UNKNOWN' 

--      not not identified
  and LN.field = 'SpecLineNames'
  and L.ew < -10


-- but its a prominent absorption line

  and Q.ObjID = N.ObjID

-- N is a neighbor record

  and G.ObjID = N.NeighborObjID  
-- G is a neighbor of Q

  and N.NeighborObjType = @galaxy 
-- and G is a galaxy

  and N.distanceMins < (10.0/60.0)
-- and it is within 10 arcseconds of the Q.

The query finds 975 objects in 5 seconds elapsed and 4 seconds of cpu time.  The diagram below shows that the optimizer first parallel hash joins  the SpecObj table with the QSO class, and then streams the result to a parallel hash join of the SpecLine table.  Any tuples that qualify are then nested loops joined to the Neighbors table to find qualifying neighbors (within 10 arcseconds).  Qualifying objects are then joined with the photoObj table to see if they are primary galaxies.  If so, the QSO and galaxy pair is output.  [image: image25.png]



Q20: For each galaxy in the LRG data set (Luminous Red Galaxy), in 160<right ascension<170, count of galaxies within 30"of it that have a photoZ within 0.05  of that galaxy.

First form the LRG (Luminous Red Galaxy) table. Then scan for galaxies in clusters (the cluster is their parent object) with a predicate to limit the region of the sky. For each galaxy, test with a sub-query that no other galaxy in the same cluster is brighter.  Then do a spatial join of this table with the galaxies to return the desired counts. For a galaxy in the BCG data set (brightest color galaxy), in 160<right ascension<170, 25<declination<35, give a count of galaxies within 30" which have a photoZ within 0.05 of the BCG.    

declare @binned    
bigint;


 
-- initialized “binned” literal
set     @binned = 
dbo.fPhotoFlags('BINNED1') +
-- avoids SQL2K optimizer problem

   

dbo.fPhotoFlags('BINNED2') +

   

dbo.fPhotoFlags('BINNED4') ;

declare @blended   
bigint;


 
-- initialized “blended” literal
set     @blended = 
dbo.fPhotoFlags('BLENDED');  
-- avoids SQL2K optimizer problem

declare @noDeBlend 
bigint;


 
-- initialized “noDeBlend” literal
set     @noDeBlend = 
dbo.fPhotoFlags('NODEBLEND'); -- avoids SQL2K optimizer problem

declare @child     
bigint;


 
-- initialized “child” literal
set     @child = 
dbo.fPhotoFlags('CHILD');  
-- avoids SQL2K optimizer problem

declare @edge      
bigint;


 
-- initialized “edge” literal
set     @edge = 
dbo.fPhotoFlags('EDGE');  
-- avoids SQL2K optimizer problem

declare @saturated 
bigint;


 
-- initialized “saturated” literal
set     @saturated= 
dbo.fPhotoFlags('SATURATED'); -- avoids SQL2K optimizer problem

select  G.objID, count(*) as pop

into  ##results

from 
Galaxy     as G, 


-- first gravitational lens candidate   


Neighbors  as N,


-- precomputed list of neighbors


Galaxy     as U, 


-- a neighbor galaxy of G


PhotoZ     as GpZ,


-- photoZ of first galaxy


PhotoZ     as NpZ 


-- photoZ of second galaxy

  
where G.objID = N.objID

-- connect G and U via the neighbors table


and U.objID = N.neighborObjID 
-- so that we know G and U are within 

 
and N.objID < N.neighborObjID 
-- 30 arcseconds of one another.


and G.objID = GpZ.objID,

-- join to photoZ of G


and U.objID = NpZ.objID,

-- join to photoZ of N


and G.ra between 160 and 170    
-- restrict search to a part of the sky

and G.dec between -5 and 5

-- that is in database


and abs(GpZ.photoZ – NpZ.photoZ) < 0.05
-- restrict the photoZ differences

   -- Color cut for an BCG courtesy of James Annis of Fermilab

   
and (G.flags & @binned) > 0  

   
and (G.flags & ( @blended + @noDeBlend + @child)) != @blended

   
and (G.flags & (@edge + @saturated)) = 0  

   
and  G.petroMag_i > 17.5

   
and (G.petroMag_r > 15.5 or G.petroR50_r > 2)

   
and (G.petroMag_r < 30 and G.g < 30 and G.r < 30 and G.i < 30)

   
and ((G.petroMag_r - G.reddening_r) < 19.2

   
    and ((G.petroMag_r - G.reddening_r) < (13.1 +     
-- deRed_r < 13.1 +

                     (7/3)*(G.g - G.r) + 


-- 0.7 / 0.3 * deRed_gr

                        4 *(G.r - G.i) -4 * 0.18 )) 

-- 1.2 / 0.3 * deRed_ri          

         
and (( G.r - G.i - (G.g - G.r)/4 - 0.18) between -0.2 and  0.2 )


  
and ((G.petroMag_r - G.reddening_r +    
-- petSB - deRed_r + 

 







--  2.5 log10(2Pi*petroR50^2)

                    2.5 * LOG( 2 * 3.1415 * G.petroR50_r * G.petroR50_r )) < 24.2 )  

                )

             or (((G.petroMag_r - G.reddening_r) < 19.5 )

               and (( G.r - G.i -(G.g - G.r)/4 -.18) >    
-- - deRed_gr/4 - 0.18      








-- cperp = deRed_ri             

                         (0.45 - 4*( G.g - G.r)))  

-- 0.45 - deRed_gr/0.25

               and ((G.g - G.r) > ( 1.35 + 0.25 *(G.r - G.i)))

               and ((G.petroMag_r - G.reddening_r  + 

-- petSB - deRed_r + 

 







--   2.5log10(2Pi*petroR50^2)          

                 2.5 * LOG( 2 * 3.1415 * G.petroR50_r * G.petroR50_r )) < 23.3 )

                ) 

             )

group by G.objID   

The query returns 4 objects in 12 seconds elapsed and 16 seconds of cpu time.  This query nested loops joins the qualifying BCG galaxies with their neighbors table to get a list of neighbor object IDs.  It then nested loops joins with the PhotoZ to get the PhotoZ of the BCG.   It then Picks up the neighbor’s details, and if that qualifies, it picks up the photoZ of the neighbor, all using parallel nested loops joins.   
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	query
	cpu
	elapsed
	IO
	records

	Q01
	0.06
	0.22
	49
	19

	Q02
	14.1
	18.626
	28740
	191062

	Q03
	50.1
	168.9
	407369
	488183

	Q04
	8.52
	17.766
	26311
	787

	Q05
	65.8
	166.1
	406377
	39997

	Q06
	49.6
	66.5
	35750
	1088806

	Q07
	90.2
	53.393
	21197
	476

	Q08
	0.03
	0.126
	85
	260

	Q09
	0.09
	0.436
	316
	14

	Q10
	4.83
	4.64
	9441
	5496

	Q10A
	1.91
	1.313
	53
	33

	Q11 
	32.8
	28.03
	28413
	22086

	Q12
	3.69
	4.936
	2002
	135

	Q13
	28.1
	20.126
	28404
	7604

	Q14
	288
	231.73
	520328
	48245

	Q15A
	72.2
	165.17
	406385
	1303

	Q15B
	50.4
	55.436
	20958
	4

	Q16
	14.9
	13.61
	21131
	1

	Q17
	70.8
	60.906
	149219
	2775

	Q18
	1475
	929.89
	562320
	4442

	Q19
	3.95
	4.673
	8070
	975

	Q20
	15.8
	11.66
	21080
	4

	QSX01
	151
	152
	321957
	341870

	QSX02
	72.7
	170.81
	408357
	239996

	QSX03
	56.1
	168.42
	408503
	988441

	QSX04
	1.75
	2.983
	4286
	24

	QSX05
	544
	354.08
	2337686
	1700975

	QSX06
	1.06
	1.503
	4390
	1048

	QSX07
	51.5
	166.64
	406453
	4089

	QSX08
	11.3
	21.533
	30368
	925

	QSX09
	9.28
	4.72
	17
	0

	QSX10
	63.4
	166.19
	406331
	2383

	QSX11
	13.2
	13.86
	21270
	41935

	QSX12
	50.4
	166.65
	406379
	0

	QSX13
	49.7
	170.28
	406658
	59536

	QSX14
	1
	1
	1
	1

	QSX15
	10.8
	14.36
	21792
	337


	Query
	#
	Cpu time 
	Clock time
	rows
	comment

	Find all galaxies without saturated pixels within 1' of a given point.
	1
	.06
	.45
	19
	Spatial index lookup, then join with photoObj table.

	Find all galaxies with blue surface brightness between and 23 and 25 magnitude per square arcseconds, and -10<super galactic latitude (sgb) between (-10º. 10º), and declination less than zero.
	2
	14.44
	24.88
	191,062
	Sequential  parallel scan of an index (all of it) to find qualifying ra, dec, rho.  XYZ index has all these fields. Much of the time goes into inserting 191k records into the results table.  If one just counts the records it is 2 seconds less cpu time and 10 seconds less elapsed time.

	Find all galaxies brighter than magnitude 22, where the local extinction is >0.75.
	3
	47.4
	213
	488,183
	A parallel sequential scan of the base table, and then inserting the answers in a temporary table

	Find galaxies with an isophotal surface brightness (SB) larger than 24 in the red band, with an ellipticity>0.5, and with the major axis of the ellipse between 30” and 60”arc seconds (a large galaxy).
	4
	18 
	28 
	787
	Parallel scan of the NEO index (covers type, status, flags, isoA_r, q_r,  and u_r) then does a bookmark lookup on base table for rho. 

	Find all galaxies with a deVaucouleours profile (r¼ falloff of intensity on disk) and the photometric colors consistent with an elliptical galaxy.   
	5
	66
	201
	39,997
	

	Find galaxies that are blended with a star and output the deblended galaxy magnitudes.   
	6
	
	
	
	A has merge of the parent index on the photoObj table.

	Provide a list of star-like objects that are 1% rare
	7
	
	
	
	An interactive histogram of the color space (a group by).

	
	
	
	
	
	


-----------------------------------------------------------------------

--Query SX1: Cataclysmic variables 

Paula Szkody <szkody@alicar.astro.washington.edu>

Search for Cataclysmic Variables and pre-CVs with White Dwarfs and very late secondaries:

u-g < 0.4

g-r < 0.7

r-i > 0.4

i-z > 0.4

---------------------------------------------------------------------------

SELECT  run,               

camCol,

rerun,

field,

objID,

u,g,r,i,z,

ra,  dec

INTO ##results

FROM PrimaryObjects

WHERE 
u - g < 0.4 and

g - r < 0.7 and

r - i > 0.4 and

i - z > 0.4

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX2: Velocities and errors ============================

(Robert H. Lupton <rhl@astro.princeton.edu>)

---------------------------------------------------------------------------

SELECT  run,

camCol,

field,

objID,

rowC,colC,rowV,colV,rowVErr,colVErr,

flags,

psfMag_u,psfMag_g,psfMag_r,psfMag_i,psfMag_z,

psfMagErr_u,psfMagErr_g,psfMagErr_r,psfMagErr_i,psfMagErr_z

INTO ##results

FROM PrimaryObjects

WHERE  ((rowv * rowv) / (rowvErr * rowvErr) + 

(colv * colv) / (colvErr * colvErr) > 4)

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX3: Coordinate cut 

(Robert H. Lupton <rhl@astro.princeton.edu>)

coordinate cut --> cut in ra --> 40:100

---------------------------------------------------------------------------

SELECT colc_g, colc_r

INTO ##results

FROM  PhotoObj

WHERE (-0.642788 * cx + 0.766044 * cy>=0) AND 

(-0.984808 * cx - 0.173648 * cy <0) 

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX4: Searching objects and fields by ID 

(Robert H. Lupton <rhl@astro.princeton.edu>)

Searching for a particular object in a particular field.

---------------------------------------------------------------------------

SELECT  *

INTO ##results

FROM PhotoObj

WHERE  obj  = 14 AND  field = 270

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX5: Galaxies with bluer centers 

Michael Strauss <strauss@astro.princeton.edu>

For all galaxies with r_Petro < 18, not saturated, not bright, not edge, 
give me those whose centers are appreciably bluer than their outer parts. 
That is, define the center color as: u_psf - g_psf 
And define the outer color as: u_model - g_model 
Give me all objects that have (u_model - g_model) - (u_psf - g_psf) < -0.4

---------------------------------------------------------------------------

DECLARE @flags  BIGINT;

SET @flags = 
dbo.fPhotoFlags('SATURATED') +

dbo.fPhotoFlags('BRIGHT')    +

dbo.fPhotoFlags('EDGE')   

SELECT colc_u, colc_g,  objID       --or whatever you want from each object

INTO ##results

FROM  Galaxies

WHERE (Flags &  @flags )= 0  

and petroRad_r < 18

and ((colc_u - colc_g) - (psfMag_u - psfMag_g)) < -0.4 

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX6:  PSF colors of stars 

Michael Strauss <strauss@astro.princeton.edu>

Give me the PSF colors of all stars brighter than 20th (rejecting on various flags) 
that have PSP_STATUS = 2

---------------------------------------------------------------------------

SELECT  s.psfMag_g,         -- or whatever you want from each object

s.run,

s.camCol,

s.rerun,

s.field

INTO ##results

FROM Stars s, Field f

WHERE  s.fieldID = f.fieldID

AND  s.psfMag_g < 20 

AND  f.pspStatus = 2  

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX7:  Cluster finding 

(James Annis <annis@fnal.gov>)

if {AR_DFLAG_BINNED1 || AR_DFLAG_BINNED2 || AR_DFLAG_BINNED4} {

 if {! ( AR_DFLAG_BLENDED AND !( AR_DFLAG_NODEBLEND || AR_DFLAG_CHILD))} {

  if { galaxy } { ;# not star, asteroid, or bright

   if { primary_object} {

    if {petroMag{i} < 23 } { accept }

    }}}}

---------------------------------------------------------------------------

DECLARE @binned BIGINT

SET @binned = 
dbo.fPhotoFlags('BINNED1') +

dbo.fPhotoFlags('BINNED2') +

dbo.fPhotoFlags('BINNED4') 

DECLARE @deblendedChild BIGINT

SET @deblendedChild =
dbo.fPhotoFlags('BLENDED')   +

dbo.fPhotoFlags('NODEBLEND') +

dbo.fPhotoFlags('CHILD')

DECLARE @blended BIGINT

SET @blended = dbo.fPhotoFlags('BLENDED')

SELECT  camCol,

run,

rerun,

field,

objID, ra, dec

INTO ##results

FROM galaxies                             -- select galaxy and primary only

WHERE (flags &  @binned )> 0  

AND (flags &  @deblendedChild ) !=  @blended 

AND petroMag_i < 23 

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX8: Diameter-limited sample of galaxies 

(James Annis <annis@fnal.gov>)

if {AR_DFLAG_BINNED1 || AR_DFLAG_BINNED2 || AR_DFLAG_BINNED4} {

 if {! ( AR_DFLAG_BLENDED AND !( AR_DFLAG_NODEBLEND || AR_DFLAG_CHILD)} {

  if { galaxy } { ;# not star, asteroid, or bright

   if (!AR_DFLAG_NOPETRO) {

    if { petrorad > 15 } { accept }

      } else {

      if { petror50 > 7.5 } { accept }

      }

    if (AR_DFLAG_TOO_LARGE AND petrorad > 2.5 ) { accept }

    if ( AR_DFLAG_SATUR AND petrorad < 17.5) { don't accept }

 }}}

---------------------------------------------------------------------------

DECLARE @binned BIGINT

SET @binned = 
dbo.fPhotoFlags('BINNED1') +

dbo.fPhotoFlags('BINNED2') +

dbo.fPhotoFlags('BINNED4') 

DECLARE @deblendedChild BIGINT

SET @deblendedChild =
dbo.fPhotoFlags('BLENDED')   +

dbo.fPhotoFlags('NODEBLEND') +

dbo.fPhotoFlags('CHILD')

DECLARE @blended BIGINT

SET @blended = dbo.fPhotoFlags('BLENDED')

DECLARE @noPetro BIGINT

SET @noPetro = dbo.fPhotoFlags('NOPETRO')

DECLARE @tooLarge BIGINT

SET @tooLarge = dbo.fPhotoFlags('TOO_LARGE')

DECLARE @saturated BIGINT

SET @saturated = dbo.fPhotoFlags('SATURATED')

SELECT run,

camCol,

rerun,

field,

objID, 

ra, 

dec

INTO ##results

FROM galaxies

WHERE (flags &  @binned )> 0  

AND (flags &  @deblendedChild ) !=  @blended

AND (  (( flags & @noPetro = 0) 

AND petroRad_i > 15)

OR ((flags & @noPetro > 0) 

AND petroRad_i > 7.5)

OR ((flags & @tooLarge > 0) 

AND petroRad_i > 2.5)

OR --note, Gray changed this and to an or, becuase it did not make sense as an and.

((flags & @saturated  = 0 )

AND petroRad_i > 17.5)

) 

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX9: Extremely red galaxies: 

(James Annis <annis@fnal.gov>)

if {AR_DFLAG_BINNED1 || AR_DFLAG_BINNED2 || AR_DFLAG_BINNED4} {

 if {! ( AR_DFLAG_BLENDED AND !( AR_DFLAG_NODEBLEND || AR_DFLAG_CHILD)} {

  if { galaxy } { ;# not star, asteroid, or bright

   if { primary_object} {

    if {!AR_DFLAG_CR AND !R_DFLAG_INTERP}

     if { frame_seeing < 1.5" } {

      if { Mag_model<i>-Mag_model<z> - 

        (reddening<i> - reddening<z>) > 1.0 } 
          { accept }

   }}}}}}
---------------------------------------------------------------------------

DECLARE @binned BIGINT

SET @binned = 
dbo.fPhotoFlags('BINNED1') +

dbo.fPhotoFlags('BINNED2') +

dbo.fPhotoFlags('BINNED4') 

DECLARE @deblendedChild BIGINT

SET @deblendedChild =
dbo.fPhotoFlags('BLENDED')   +

dbo.fPhotoFlags('NODEBLEND') +

dbo.fPhotoFlags('CHILD')

DECLARE @blended BIGINT

SET @blended = dbo.fPhotoFlags('BLENDED')

DECLARE @crIntrp BIGINT

SET @crIntrp = 
dbo.fPhotoFlags('CR')  +

dbo.fPhotoFlags('INTRP')

SELECT g.run,

g.camCol,

g.rerun,

g.field,

g.objID, g.ra, g.dec

INTO ##results

FROM galaxies g, Field f

WHERE g.fieldID = f.fieldID

AND (flags &  @binned )> 0  

AND (flags &  @deblendedChild ) !=  @blended

AND (flags &  @crIntrp ) = 0

AND f.psfWidth_r < 1.5 

AND (i - z - (reddening_i - reddening_z) > 1.0 )

--------------------------------------------------------------------------
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-----------------------------------------------------------------------

--Query SX10: The BRG sample 

(James Annis <annis@fnal.gov>)

if {AR_DFLAG_BINNED1 || AR_DFLAG_BINNED2 || AR_DFLAG_BINNED4} {

if {! ( AR_DFLAG_BLENDED AND !( AR_DFLAG_NODEBLEND || AR_DFLAG_CHILD)} {

if {!AR_DFLAG_EDGE & !AR_DFLAG_SATUR} {

if { galaxy} { ;# not star, asteroid, or bright

if { primary_object} {

if {! (petroMag<2> < 15.5 AND petror50<2> < 2) } {

if {petroMag<r> > 0 AND Mag_model<g> > 0 AND

Mag_model<r> > 0 AND Mag_model<i> > 0 } {

petSB = deRed_r + 2.5*log10(2*3.1415*petror50<r>^2)

deRed_g = petroMag<g> - reddening<g>

deRed_r = petroMag<r> - reddening<r>

deRed_i = petroMag<i> - reddening<i>

deRed_gr = deRed_g - deRed_r

deRed_ri = deRed_r - deRed_i

cperp = deRed_ri - deRed_gr/4.0 - 0.18

cpar = 0.7*deRed_gr + 1.2*(deRed_ri -0.18)

if {(deRed_r < 19.2 AND deRed_r < 13.1 + cpar/0.3 AND

abs(cperp) < 0.2 AND petSB < 24.2 ) ||

(deRed_r < 19.5 AND cperp > 0.45 - deRed_gr/0.25 AND

deRed_gr > 1.35 + deRed_ri*0.25 AND petSB < 23.3) {

accept ;# whew!!!

}

}

}

}

}

}

}

}

--

declare @cpu int, @physical_io int, @clock datetime, @elapsed int;

exec dbo.InitTimeX  @clock OUTPUT, @cpu OUTPUT, @physical_io OUTPUT

---------------------------------------------------------------------------

DECLARE @binned BIGINT

SET @binned = 
dbo.fPhotoFlags('BINNED1') +

dbo.fPhotoFlags('BINNED2') +

dbo.fPhotoFlags('BINNED4') 

DECLARE @deblendedChild BIGINT

SET @deblendedChild =
dbo.fPhotoFlags('BLENDED')   +

dbo.fPhotoFlags('NODEBLEND') +

dbo.fPhotoFlags('CHILD')

DECLARE @blended BIGINT

SET @blended = dbo.fPhotoFlags('BLENDED')

DECLARE @edgedSaturated BIGINT

SET @edgedSaturated =
dbo.fPhotoFlags('EDGE') +

dbo.fPhotoFlags('SATURATED')

SELECT
run,

camCol,

rerun,

field,

objID,

ra,

dec

into ##results

FROM galaxies

WHERE (flags &  @binned)> 0  

AND (flags &  @deblendedChild) !=  @blended

AND (flags &  @edgedSaturated)  = 0  

AND petroMag_i > 17.5

AND (petroMag_r > 15.5 OR petroR50_r > 2)

AND (petroMag_r > 0 AND g>0 AND r>0 AND i>0)

AND ((petroMag_r-reddening_r) < 19.2

AND (petroMag_r - reddening_r < (13.1 +     -- deRed_r < 13.1 +

(7/3)*( g - reddening_g -   -- 0.7 / 0.3 * deRed_gr

r + reddening_r ) + 

4 *( r - reddening_r -    -- 1.2 / 0.3 * deRed_ri

i + reddening_i )

-4 * 0.18 )

)          

AND ( ( r - reddening_r - 

i + reddening_r -

(g - reddening_g - 

r + reddening_r

)/4 - 0.18

) < 0.2 ) 

AND ( ( r - reddening_r - 

i + reddening_i -

(g - reddening_g - 

r + reddening_r

)/4 - 0.18

) > -0.2 ) 

AND

petSB - deRed_r + 2.5 log10(2Pi*petroR50^2)

( (petroMag_r - reddening_r +         

2.5 * LOG( 2 * 3.1415 * petroR50_r * petroR50_r )) < 24.2 

)    ) 

OR (   

(petroMag_r - reddening_r < 19.5) 

AND( ( r - reddening_r -             -- cperp = deRed_ri

i + reddening_i -             -- - deRed_gr/4 - 0.18

(g - reddening_g - 

r + reddening_r)/4 - 

0.18 ) > 

(0.45 - 4*( g - reddening_g -   -- 0.45 - deRed_gr/0.25

r + reddening_r ) 

)         )

AND ( (g - reddening_g - 

r + reddening_r ) >  

( 1.35 + 0.25 *( r - reddening_r - 

i + reddening_i ) ) 

)

AND  -- petSB - deRed_r + 2.5 log10(2Pi*petroR50^2)

( (petroMag_r - reddening_r  +          

2.5 * LOG( 2 * 3.1415 * petroR50_r * petroR50_r )) < 23.3 ) 

)  

--------------------------------------------------------------------------

exec dbo.EndTimeX @clock, @elapsed OUTPUT, @cpu OUTPUT, @physical_io OUTPUT,

'QSX10', 1, 1, @@RowCount 

drop table ##results

--=====================================================================

GO

-----------------------------------------------------------------------

--Query SX11:  Low-z QSO candidates 

Gordon Richards <richards@oddjob.uchicago.edu>

Low-z QSO candidates using the following cuts:

--

-0.27 <= u-g < 0.71

-0.24 <= g-r < 0.35

-0.27 <= r-i < 0.57

-0.35 <= i-z < 0.70

g <= 22

objc_type == 3

declare @cpu int, @physical_io int, @clock datetime, @elapsed int;

exec dbo.InitTimeX  @clock OUTPUT, @cpu OUTPUT, @physical_io OUTPUT

---------------------------------------------------------------------------

SELECT g, objID    -- or whatever you want returned

into ##results

FROM Galaxies         -- takes care of objc_type == 3

WHERE (

(g <= 22) AND

(u-g >= -0.27) AND (u-g < 0.71) AND

(g-r >= -0.24) AND (g-r < 0.35) AND

(r-i >= -0.27) AND (r-i < 0.57) AND

(i-z >= -0.35) AND (i-z < 0.70)

) 

--------------------------------------------------------------------------

exec dbo.EndTimeX @clock, @elapsed OUTPUT, @cpu OUTPUT, @physical_io OUTPUT,

'QSX11', 1, 1, @@RowCount 

drop table ##results

--=====================================================================

GO

-----------------------------------------------------------------------

--Query SX12: Errors on moving objects 

Gordon Richards <richards@oddjob.uchicago.edu>

Another useful query is to see if the errors on moving (or apparently

moving objects) are correct. For example it used to be that some

known QSOs were being flagged as moving objects. One way to look for

such objects is to compare the velocity to the error in velocity and

see if the "OBJECT1_MOVED" or "OBJECT2_BAD_MOVING_FIT" is set. So

return objects with

--

objc_type == 3

sqrt(rowv*rowv + colv*colv) >= sqrt(rowvErr*rowvErr + colvErr*colvErr)

--

then output, the velocity, velocity errors, i' magnitude, and the

relevant "MOVING" object flags.

declare @cpu int, @physical_io int, @clock datetime, @elapsed int;

exec dbo.InitTimeX  @clock OUTPUT, @cpu OUTPUT, @physical_io OUTPUT

---------------------------------------------------------------------------

DECLARE @moved BIGINT

SET @moved =
dbo.fPhotoFlags('OBJECT_MOVED') 

DECLARE @badMove BIGINT

SET @badMove =
dbo.fPhotoFlags('BAD_MOVING_FIT') 

SELECT rowv,

colv,

rowvErr,

colvErr,

i,

(flags & @moved) as MOVED,

(flags & @badMove) as BAD_MOVING_FIT

INTO ##results

FROM Galaxies

WHERE  (flags & (@moved + @badMove)) > 0 

AND (rowv * rowv + colv * colv) >= 

(rowvErr * rowvErr + colvErr * colvErr) 

--------------------------------------------------------------------------

exec dbo.EndTimeX @clock, @elapsed OUTPUT, @cpu OUTPUT, @physical_io OUTPUT,

'QSX12', 1, 1, @@RowCount 

drop table ##results

--=====================================================================

GO

-----------------------------------------------------------------------

--Query SX13: A random sample of the data 

Karl Glazebrook <kgb@pha.jhu.edu>

So as a newcomer I might want to do something like 'give me the colours

of 100,000 random objects from all fields which are survey quality' so

then I could plot up colour-colour diagrams and play around with

more sophisticated cuts. How would I do that?

declare @cpu int, @physical_io int, @clock datetime, @elapsed int;

exec dbo.InitTimeX  @clock OUTPUT, @cpu OUTPUT, @physical_io OUTPUT

---------------------------------------------------------------------------

SELECT u,g,r,i,z

INTO ##results

FROM Galaxies 

WHERE  (obj  % 100 )= 1

--------------------------------------------------------------------------

exec dbo.EndTimeX @clock, @elapsed OUTPUT, @cpu OUTPUT, @physical_io OUTPUT,

'QSX13', 1, 1, @@RowCount 

drop table ##results

--=====================================================================

GO

-----------------------------------------------------------------------

--Query SX14:--  (Dan VandenBerk <danvb@fnal.gov>)

We have a list of objects -- RA and DEC -- for which we would like

matches and all of the Obj data. Can I send you the list?

declare @cpu int, @physical_io int, @clock datetime, @elapsed int;

exec dbo.InitTimeX  @clock OUTPUT, @cpu OUTPUT, @physical_io OUTPUT

---------------------------------------------------------------------------

--------------------------------------------------------------------------

exec dbo.EndTimeX @clock, @elapsed OUTPUT, @cpu OUTPUT, @physical_io OUTPUT,

'QSX14***  Match a list from another survey', 1, 1, @@RowCount 

--drop table ##results

--=====================================================================

GO

-----------------------------------------------------------------------

--Query SX15:  Find quasars 

(Xiaohui Fan et.al. <fan@astro.princeton.edu>) 

declare @cpu int, @physical_io int, @clock datetime, @elapsed int;

exec dbo.InitTimeX  @clock OUTPUT, @cpu OUTPUT, @physical_io OUTPUT

---------------------------------------------------------------------------

SELECT  run,

camCol,

rerun,

field,

objID,

u,g,r,i,z,

ra,

dec

into ##results

FROM Stars       -- or sxGalaxy 

WHERE ( u - g > 2.0 OR u > 22.3 ) 

AND ( i < 19 ) 

AND ( i > 0 ) 

AND ( g - r > 1.0 ) 

AND ( r - i < (0.08 + 0.42 * (g - r - 0.96))

OR g - r > 2.26 ) 

AND  ( i - z < 0.25 ) 

�


Figure 3:  The photoObj table at left is the center of one star schema describing photographic objects.  The SpecObj table at right is the center of a star schema describing spectrograms and the extracted spectral lines.  The photoObj and specObj tables are joined by objectId.    Not shown is the dataConstants table that names the photoObj flags. And the many tables that support web access and data loading.
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Figure 4. Count of records and bytes in major tables. Indices approximately double the space.�
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��
Figure 2: The survey merges two nights  of observations into a stripe.  The stripe is processed by the pipeline to produce the photo objects.�
�






� Figure 5: A Hierarchical Triangular Mesh (HTM) recursively assigns a number to each point on the sphere. Most spatial queries use the HTM index to limit searches to a small set of triangles.
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Figure 9:  A measurement of the relative IO and cpu density of each query.   This load generates 1,000 IOs per cpu second and generates 15O MB of IO per cpu second.  Using SQLserver a cpu can consume about five million records per second if the data is in main memory.








Table 1:  SDSS data sizes (in 2006) in terabytes.  About 7 TB online and 10 TB in archive (for reprocessing if needed).�
�
Product�
Raw�
Compressed�
�
Pipeline input�
25 TB�
10 TB�
�
Pipeline output �(reduced images)�
10 TB�
  4 TB�
�
Catalogs�
1 TB�
1 TB�
�
Binned sky and masks�
½ TB�
  ½ TB�
�
Atlas images�
1TB�
1TB�
�






�Figure 10:  Summary of the query execution times (on a dual processor system). The system is disk limited where the cpu time is less than 2x the elapsed time (e.g., in all cases).  So 2x more disks would cut the time nearly in half.
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�  The full syntax for areas is:� 		CIRCLE		J2000 	 depth  ra  dec	radius_arc_minutes		


 		CIRCLE		CARTESIAN  depth  x  y  z  	radius_arc_minutes


 		CONVEX 		J2000	 depth n  ra1 dec1 ra2 dec2 ….. ran decn      		// a polygon


CONVEX 		CARTESIAN	 x1 y1 z1 x2 y2 z2….. xn yn zn 		// a  polygon


 		DOMAIN		depth    k	 n1 x1 y1 z1 d1 x2 y2 z2 d2… xn1 yn1 zn1 dn1


 			 		 n2 x1 y1 z1 d1 x2 y2 z2 d2… xn2 yn2 zn2 dn2


			 		 ..


			 		 nk  x1 y1 z1 d1 x2 y2 z2 d2… xnk ynk znk dnk
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