These are REVISONS of the notes I gatherer in preparation for my tutorial on Parallel Database Systems at VLDB 94, Santiago, Chile. The notes formed the background for the 174-slide PowerPoint presentation given there. and subsequent presentations given at SIGMOD 95 and VLDB 95.

The changes from the original notes of September 94 are:

	added RedBrick

	added DB2 Parallel Edition (for SP2).

	Fixed some bugs.

	Updated Teradata, Tandem and Informix information. Could not get new Oracle data.

I contact the designers and implementers of the various parallel SQL systems I know of. The ground rules were that the product be shipping to customers. The world does not need another survey of academic PDB projects. I requested that I be given only public information. Sometimes I was given documents that were not for redistribution. Generally I got only public or soon-to-be-public information.

Each group is very proud of what they have done. They were very open with me about their strengths and weaknesses. The were generous in giving me manuals. I have cited all the literature I was given. I learned a lot and they sometimes learned a little.

All this information is public.

Certainly there are errors in it.

I apologize for that.

Please tell me about them.

If you want a current version of this document, one that fixes errors I know of, send a request to Gray @ Microsoft.com.

This is a public service, so I will sending you a UUENCODED MS Word file readable on a Intel or Apple PC. I can also send you the PowerPoint slides.

Thanks to all the folks who helped me put this together

Jim Gray

July 1995

��Informix:

	Visit June 2, 1994, revise May 11 1995

 	Hosts:	Gary Kelley

		Hannes Spintzik

	 	Frank Symonds

		Dave Clay

		Kathryn Gruenefeldt (Data replication)

Manuals:

 INFORMIX-OnLine Dynamic Server Enhancement:

	Guide to Version 7.0 Functionality, Part 000-7409, Feb 1994

 < A VERY!! well written manual full of concepts and guidance.

 Well worth reading >

 INFORMIX-OnLine Database Server, Administrators Guide, V. 6.0

			Part 000-7265, June 1993

 INFORMIX-ESQL, Embedded SQL for C, ProgrammerÕs Manual, V. 6.0

			Part 000-7268, June 1993

 The INFORMIX GUIDE TO SQL: Syntax , V. 6.0

			Part 000-7597, March 1994

 INFORMIX-OnLine Database Server, Administrators Guide, V. 6.0

			Part 000-7265, June 1993

Terminology:

DSA (Dynamic Scaleable Architecture) is the term used to describe the redesign of Informix to a thread-based, server-based system.

	V6 - 1993 - : DSA -- rearchitecture (threads, OLTP focus)

	V7 - 1994 - : PDQ -- Parallel Data Query (SMP parallelism)

	V8 - 1995 - : XMP -- Cluster parallelism (shared disk and shared nothing).

Parallelism is a MAJOR focus of Informix now that they have SQL92 under control

Other major focus is tools (ODBC, DRDA, NewEra 4GL).

Informix is a UNIX SQL system:

	AIX (IBM)

	HP/UX (HP)

	OSF/1 (DEC, HP)

	Ultrix (DEC)

	SCO/UNIX

	Sequent/DYNIX,

	SUN (SunOS, Solaris)

Today parallelism on Sequent, AT&T, DEC, DG, HP, IBM, SUN Unix

Also ship on NT

XMP is in Beta Test on SP2.

�DATA LAYOUT:

UNIX raw disks or files are base.

DSA builds an extent-based file system atop raw disks or files.

Each storage fragment is a DBSPACE -- a DBSPACE can grow extents (ÒchunksÓ)

Each table or index maps to an extent-based ÒfileÓ partitioned across DB spaces

DBSPACES are homogeneous (one table or index)

Table/Index partitioning criteria are:

	round-robin, range (expression), hash

ALTER TABLE to refragment

 (gets table lock, reads & copies only data that needs to move)

Operations optionally skip unavailable fragments

Hash and B-tree access methods (?B+ or B* trees?).

ADMINISTRATION TOOLS

Memory Grant Manager (component does load control)

	* Parallel system regulates number of simultaneous queries

	* % of memory pool for decision support

	* % of bus bandwidth for decision support (scarce resource on Sequent)

		translates to IOs/second for decision support.

Each query/process has a priority and a % parallelism as well.

exec sql set PDQPRIORITY 0.0 ...1.0

Zero means no parallelism

The percentage controls the fraction of the global resources for DSS work.

 (within limits set by database administrator)

SMP gives auto rebalance of cpu, memory

No explorer or automatic rebalance of data

PROCESS STRUCTURE (PDQ)

Clients have own process

Informix processes are called VP (virtual processors) and are multi-threaded

 (using a combination of user threads and kernel threads).

 (use kernel threads for VPs and AIO if done right (interrupt, not thread based))

There are classes of VPs, each with its own scheduler queues.

Classes can grow and shrink dynamically.

CPU class is the user work, and is typically configured to match the number

 of processors dedicated to DB work (never more than the real cpu count).

Other classes do blocking chores like IO, network polling, yellow pages,. admin,.log,..

 If native UNIX supports asynch (kernel mode) calls, then it is used.

Many Òservice threadsÓ: page cleaners, garbage collectors, archive,

Interprocess communication via shared memory

Affinity:

	Processes have affinity to processors

	Threads have affinity to processes.

	Managed as a hierarchy of queues.

XMP: Process pool per node.

	Tables range, hash, or round robin partitioned among nodes.

	Secondary Indices are node-local, unique indices are global, a la teradata

	Local catalog per node for node autonomy

	multiple logs (per node)

	Global schema/catalog and global optimization.

	XMP: no triggers, foreign keys across nodes

�TRANSACTIONS

lock granularity: table, page, record

use variant of commit LSN to manage deletions

Dirty read, committed read, repeatable read, serializable

Provides SQL92 3 isolation levels (e.g., uncommitted read)

User visible and internal Transaction Savepoints for simple nested transactions

no checkpoint/restart yet for batch operations.

Separate logical and physical and REDO logs.

Multiple log file (multi-DBSPACE)

Parallel recovery: restart per Storage Area.

 physical recovery first, then logical

Recovery unit is a Storage Area.

If range partitioned and storage area out, queries can operate without it if they

 do not touch it.

If other partitioned, queries can ÒskipÓ missing partitions and updates that do not

 touch the partition can still work. (this improves availability)

DATA MANIPULATION

Itterators based on Goetz GraefeÕs Volcano work

	(Exchange and Interchange operator with added error handling)

	Exchange does record stream merges.

	Interchange is a kind of SMP replication (replicates itterator)

Parallel Operators:

	Scan/project

	Parallel sort

	Aggregate (hash/sort)

	Join: Hash, nested-loop, sort-merge

	HashJoin (used for natural and outer joins):

		sophisticated hash function

		Hybrid with Bucket tuning

		Bitmap filters

		role reversal (if one table is small).

	Since SMP get automatic ST/LT optimization (replicate small)

	Scans, sort, and join are parallel,

	Aggregates are pushed to parallel servers in MPP (not needed in SMP) .

	Optimizer makes plan that is as parallel as allowed by MGM.

UTILITIES

	Parallel Index build

	Parallel load/unload: Multi-disk to mult-tape a la Rdb, Oracle, Sybase

�FUTURES:

	Parallel unload: Multi-disk to mult-tape a la Rdb, Oracle, Sybase

	Parallel load: good user edition of dirty data.

		Spitfire mode: make disk page, no logging, check assertions

		Cadillac mode: check all constraints

	V8: Massive parallelism (clusters)

	 SNMP (via Tivoli Systems, DME)

Benchmark Report, Mary Meredith @ Sequent (Feb 1994 Beta Test software)

Documented in Sequent Tech Tip 6.1.109

Also in FTNews, April 1994, Informix V6 with PDQ benchmarked, pp 16-19.

	ITOM International, Los Altos, CA.

Sequent system:

	9 Pentium processors

	1 GB main memory

	Base tables on 16 disk (FWD SCSI)

	Indices on 10 discs

	Temp space on 10 disks

			Sequential			Parallel 	

			rec/s		MB/s		rec/s		MB/s		speedup

Load 300M Wisc 	 3kr/s		600Kb/s

Parallel Index load	48kr/s		 1MB/s

SCAN			17kr/s		3.5MB/s	147kr/s	30MB/s	8.3

Aggregate		11kr/s		2.3MB/s	113kr/s	23MB/s	10.1

2-Way hash Join	18kr/s		3.2MB/s	242kr/s	31MB/s	9.7

3-Way hash Join	25kr/s		3.5Mb/s	239kr/s	33MB/s	9.5

SP2 48 node benchmark on tpcd like DB and Queries (not audited)

load 	60GB -> .6 hr, 250 GB -> 2.4 hrs (load and index)

scan6 40GB -> 7 minutes 164 GB -> 25 minutes (scan line items)

Join 13 (39GBx10GB)-> 8 min (164GBx40GB) ->28 min

 (line sort(aggregate(line items JOIN orders)))

Join15 60GB-> 11 min		250 GB -> 50 minutes (aggregate of 6-way join)

				 (region x nation x customer x order x line item x supplier)

Power Test: 16 queries serial: 60GB: 5hrs, 250GB: 19 hrs:

4 users, 3 queries each = 12 queries at once vs 1 user running 12 queries serially

					10 hrs 10.25 hrs.

shows that workload manager works.	

��

Table/index

load�rows�row size�table size�load time�Rate rec/sec�Rate (KB/s)�disks������M45�4.5E7�203�9.1E9�15150�2,970�603�9������M135�1.4E8�203�2.7E10�46260�2,918�592�16������M300�3.0E8�93�2.8E10�73680�4,072�379�16������M45 U1�4.5E7�16�8.0E8�1023�43,988�782�9������M135 U1�1.4E8�19�2.9E9�2825�47,788�1,027�16������M300 U1�3.0E8�19�6.2E9�5580�53,763�1,111�16������M45 1k�4.5E7�8�4.0E8�1060�42,453�377�9������M135 1k�1.4E8�11�1.7E9�3157�42,762�538�16������M300 1k�3.0E8�9�3.1E9�5820�51,546�533�16������M45 10k�4.5E7�8�4.0E8�1097�41,021�365�9������M135 10k�1.4E8�11�1.7E9�3174�42,533�536�16������M300 10k�3.0E8�9�3.1E9�5760�52,083�538�16������M45 100k�4.5E7�10�5.0E8�1163�38,693�430�9������M135 1OOk�1.4E8�11�1.7E9�3081�43,817�552�16� � ����M300 100k�3.0E8�9�3.1E9�5700�52,632�544�16������M45 1.1k�4.5E7�16�8.0E8�1201�37,469�666�9������M135 1.1k�1.4E8�12�1.8E9�3582�37,688�503�16������M300 1.1k�3.0E8�10�3.2E9�6900�43,478�464�16������SCANS��touch

recs�MB�returns�serial�9x parallel�speedup�serial

r/s�par

r/s�serial mb/s�p

mb/s��select 100K from M45�4.5E+7�4.5E7�9.1E9�100k�2,567�307�8.36�18k�146k�3.5�29.6��select 100K from M135�1.4E+8�1.4E8�2.7E10�100k�7,860�684�11.4�17k�197k�3.4�39.5��select 100K from M300�3.0E+8�3.0E8�6E10�100k�9,720�1,129�8.60�31k�265k�2.9�24.8��AGGREGATES�������������group by 20 M45�4.5E+7�4.5E7�9.1E9�20�4,020�397�10.1�11k�113k�2.3�22.9��group by 20 M135�1.4E+8�1.4E8�2.7E10�20�10,380�774�13.4�13k�174k�2.6�34.9��group by 20 M300�3.0E+8�3.0E8�2.8E10�20�10,440�1,262�8.27�29k�237k�2.7�22.2��HASH JOINS�������������select 100K M135 join to M300�4.4E+8�4E8�5.6E10�100k�17,700�1,819�9.73�25k�241k�3.2�30.8��index select 100k M300 join M135�1.3E+8�#####�2.9E10�100k�7,920�733�10.8�16k�177k�3.7�39.6��group(hash join)�4.4E+8�#####�5.6E10�100�21,540�2,566�8.39�20k�169k�2.6�21.8��3-way join�4.7E+8�#####�6.5E10�100k�18,600�1,963�9.47�25k�239k�3.5�33.1����Tandem:

	Visit August 4, 1994

 	Hosts:	Susanne Englert, Don Slutz, HansJorge Zeller, Mike Pong.

Manuals:

 Tandem ÒCD READ Version D20_01-1Ó (Feb 1994) (all manuals on CD ROM)

 Tandem Systems Review, V10, #3, July 1994

 	ÒAn overview of NonStop SQL MPÓ F. Ho, R. Jain, J. Troisi, pp 6-17

 General optimization strategy.

 ÒNonStop Availability and Database Configuration OptionsÓ, J. Troisi, pp 18-23

 		Online utilities to create index, reorg, repartition,...

	ÓA New Hash-Based Join Algorithm in NonStop SQL/MPÓ, H. Zeller, pp 24-39

 		The worldÕs fanciest hash joiner, uses memory right!

	ÒEnhancing Availability, Manageability, and Performance with NonStop TM/MPÓ

			M. Chandra, D. Eicher, pp 58-67

		How they parallelized the transaction manager (finally!)

	ÒRDF Enhancements for High Availability and PerformanceÓ M. Mosher, pp 68-79

		How they parallelize the database replicator.

Terminology:

Tandem is a classic shared-nothing system.

System is 1-16 processors (MIPS R4000 class)

	dual ported disk/com controllers,

	dual 30MB/s LAN (called Dynabus)

Processor then System is unit of failure.

14 Systems can be aggregated into a TorusNet

	via dual FOX rings (shallow comm protocol stack)

255 Systems can be aggregated into a WAN via Expand (TandemÕs SNA or DECnet)

Message-based OS (Guardian) gives location transparency and fault tolerance.

TMF (transaction management facility) gives distributed transactions.

Enscribe gives a VSAM-like transactional record management system

NonStop SQL gives a distribute & parallel SQL system

Remote Distributed Database Facility (RDF) gives data replication.

HISTORY

1974: Founded.

1975: First product (fault tolerant, modular growth, minicomputer prices)

1980: Encompass: Proprietary Relational system

	Enform/Enscribe/DDL: relational done right

	Transactions in the OS (TMF),

	TP monitor (Pathway)

	Expand (network together up to 255 nodes)

	MAIN FOCUS: Fault-tolerant Distributed OLTP

1986: NonStopSQL: First distributed and high-performance SQL (200 Debit/Credit tps)

1989: Parallel NonStopSQL: Parallel query optimizer

1994: Really parallel and online SQL (utilities, DDL, recovery,)

	Added focus: Massive Parallelism (i.e. 100x) for decision support

	Continue OLTP focus (21K TPC-C at OK prices).

	Beta now, D30 release of SQL/MPP in Oct.

�DATA LAYOUT:

Pure shared nothing architecture.

Tables partitioned across files in the WAN/LAN/System

Each table has a dedicated set of files, each partition is a single-disk file.

Partition by: key range, relative record number, or RBA (entry sequence files)

B+ tree primary index, B* tree secondary index

Index partition just like table.

Data is duplexed on disks, disk servers are process pairs.

Can replicate data at two or more sites with RDF (driven by log records)

Each database has a catalog -- can have many per system.

Catalog at a system describes ALL data (of that database) at that system (node autonomy)

If database spans multiple systems, catalog at each system has descriptors for all local

 data (part of node autonomy).

ADMINISTRATION TOOLS

Resource governor (classes of user) controls max rate and max total of a user.

Buffer pool manager (disk process) and virtual memory manager compete/cooperate

 for real memory.

Hash join and sort sense memory pressure and back off.

Process priorities propagate to server to solve priority inversion problem

 (server runs at client priority +1 unless under a semaphore).

Online-Everything (this is unique)

	Add a partition

	split/merge a partition

	move partition boundary

	Recluster a b-tree

	Add an index (neat: scan and fixup at end)

	backup, restore, ...

	Add/alter logs, tables,

For example, others can read/write during index build, b-tree reorg.

Less than one minute outage (X-lock) to fix up at end of operation

�PROCESS STRUCTURE

Clients have own process.

Each disk served by a pool of processes that share a RAM cache.

Disk servers do: records, b-trees, locking, logging, record integrity checks

	single-variable queries

	(project, select, clustered aggregates)

	unclustered aggregates some day.

	does SVQ select, update, delete,

	does single or block insert.

Servers return records or blocks of N records.

In simple case, SQL runs 70% in client process and

	30% in disk server process and Transaction Manger process.

Client: Sort, Join, union, correlate, index maintenance, foreign keys,...

IPC via OS message system which is fast compared to others.

 (3K ins per message pair plus 1 instruction per byte)

Some node-local communication via shared memory.

When parallel plan chosen, then scanner process per outer table partition.

Repartitioned data spread among all processes in the cluster.

 (used for hash and unclustered sort-merge join).

This is N + M + 16 processes (if 16 is the system size).

Not clear how repartiton works in >16 system.

Scratch files placed on local disks

Aggressive use of pipeline parallelism, pipeline as much as possible.

But if two subtrees can be done in parallel, then do one at a time.

TRANSACTIONS

lock granularity: table, record

Provides SQL92 3 isolation levels (e.g., uncommitted read)

No user visible transaction Savepoints

no checkpoint/restart yet for batch operations.

Physiological logging to one or more logs (each disk can go to a different log)

Backout (UNDO) is scanner per log, issuing asynch commands to disk servers

 (servers run buffered) so can undo as fast as do.

Parallel recovery: restart per file (partition).

Media recovery per disk or page.

Option to skip broken pages or partitions, queries can operate without it if they

 do not touch it.

If other partitioned, queries can ÒskipÓ missing partitions and updates that do not

 touch the partition can still work. (this improves availability)

�DATA MANIPULATION

For OLTP parallel index maintenance

Relational operators were itterators in original design

	Convert to parallel execution was ÒeasyÓ

	Hard part was parallel query plan.

Parallel Operators:

	Scan/project

	Parallel sort (user and process)

	Aggregate (hash/sort)

	Clustered aggregates pushed servers, but unclustered done by client

	Join: Hash, nested-loop, sort-merge,

	Hash join added in 1993 (prior to that, just partitioned {NLJ, SMJ})

	HashJoin (used for natural and outer joins and exclusion):

		sophisticated hash function

		Hybrid with Bucket tuning

		No bitmaps (because joins usually are matching equijoins)

		role reversal (if one table is small).

		replication of small to large partitions

	 	ST/LT optimization (replicate small)

Strategy: Use clustered joins when possible.

	Replicate small to large when possible

	Typically one joiner process per outer table partition.

When both big and both unclustered (rare case)

	Hash-repartiton (N+M scanners, 16 catchers) and then

		old strategy: sort-merge join

		new strategy: hybrid-hash join

	Pipeline as much as possible.

UTILITIES

	Parallel Load (M-N)

	Parallel Index build (M scanners N inserters)

	Parallel recovery

	Parallel backup (possible, not automatic)

FUTURES:

	More aggressive use of parallelism

 	Better optimization/plans.

No official DSS benchmark reports.

Unofficial results:

	1 - 16 R4400 class machines

	3 disks, 3 controllers/processor

	64MB/processor

			Sequential			16x Parallel 	

	rec/s	MB/s	rec/s	MB/s	speedup

Load Wisc 	1.6 kr/s	321 Kb/s	 28kr/s	5.4MB/s	16

Parallel Index build	1.5 kr/s	15 Kb/s	 24kr/s	240KB/s	16

SCAN	28 kr/s	5.8 MB/s	470 kr/s	94 MB/s	16

Aggregate (1 col)	25 kr/s	4.9 MB/s	294 kr/s	58 MB/s	16

Aggregate (6 col)	18 kr/s	3.6 MB/s	300 kr/s	60 MB/s	16

2-Way hash Join	13 kr/s	2.6 MB/s	214 kr/s	42 MB/s	16

3-Way hash Join	? kr/s	? Mb/s	? kr/s	? MB/s	?

�TERADATA

Sources:

 Todd Walter and Carrie Ballinger of ATT GIS (Global Information Solutions)

 were VERY generous with their time, ideas and constructive criticism.

 This is my understanding of Teradata's backend DB machine based on

 a day with Todd

 an hour with Carrie

 a few days with the following manuals.

 Teradata DBS Concepts and Facilities for the NCR System 3600, D1-4420-A

 March 1994

 Teradata DBS Administration Manual, D1-4424-A, March 1994

 (a must read)

 Teradata DBS Reference Manual, D1-3094-C, Jan 1994

 Teradata DBS Call-Level Interface, D1-4001-C, Jan 1994

 Teradata DBS Performance Monitor, D1-4216-B, Jan 1994

 Teradata DBS Archive/Recovery D1-3009-C Jan 1994

 Teradata DBS Fast Export D1 4281-B, Jan 1994

 NCR 3600 AMP Based Utilities, D1 2656-B, Jan 1994

History

¥ Founded 1979

¥ Beta 1982

¥ Ship 1984-- DBC 1012

¥ NCR agreement 1990

¥ ATT acquisition 1993

¥ Now part of ATT Global Information Systems, Teradata is a brand name

¥ Revenue about 500M$/year

¥ Teradata has 80% of the data warhousing/ data mining business.

ATT Global Information Systems (GIS) Product Naming

 3100 palmtops and portables

 3200 desktops

 3300 workstations (UNIX starts here)

 3400 departmental servers (mostly)

 3500 high-end servers (hot boxes)

 3600 rebuilt Teradata DBC 1024 (uniprocessors, TOS, 66Mhz Intel 486, Ynet

 IFP became AP-PE, shipping today, FWD SCSI, 5+1 disk array are options)

 3700 next generation product of Teradata-NCR:

 Pentium, SCSI, 5+1 Disk arrays, with

 Teradata and merchant DBs.

 A parallel engine.

Product Concept

¥ Backend database machine for decision support: SQL in, data out

¥ Speedup and scaleup through shared-nothing massive parallelism

¥Ê Avoid any bottleneck (single optimizer, executor, port,...) parallel everything

¥ Offload mainframes (DB2) using commodity processors (Intel), memory, disk

¥ Hash data to buckets, assign buckets to nodes.

¥ Map buckets to primary and fallback nodes for fault tolerance

¥ Ynet interconnect (broadcast, merge, flow control, synchronization/commit)

¥ Special purpose OS and database software.

¥ Market is decision support: grow from small (8 nodes) to large (hundreds)

¥ Typical customer

 ¥ IBM front end for data capture (i.e. extracts from OLTP systems) and utilities

 ¥ LAN connected (, Windows, Mac) clients doing data analysis via GUI tools

¥ Some data warehouse applications

¥ Best-in-class heterogeneous data support: server makes it right.

Three hardware components (original design)

 ¥ IFP (Interface Processor (IBM)) or COP (communications processor)

 ¥ Attach to IBM Channel (IFP 80%) or LAN (COP)

 ¥ Accept and "plan" and "manage" queries

 ¥ Drive AMPs via Ynet

 ¥ IFP has become PE (parsing engine) and AP (application processor) in 3600

 ¥ AMP (Access Module Processor)

 ¥ A shared nothing SQL DB machine (own data, log, locks, executor)

 ¥ Executes relational operations

 ¥ Communicates directly with "peer" database systems (other AMPs)

 (not a federation like Navigator, SP2: each node knows about others)

 ¥ÊCOP, IFP, AMP "similar" hardware cards

 (66MHz 486 with 16MB RAM 2 MB NonVolatile) but

 AMP has disk interface

 IFP has IBM channel interface

 COP has LAN interface (Ethernet)

 ¥ Ynet (10MB/s, duplexed for Fault tolerance

 ¥ Sorts/merges messages by conditioned key (message > 32KB, key >512B).

 ¥ Connects nodes

 ¥ Message sent to all (Ynet knows bucket routing, groups, channels)

 ¥ Reliable broadcast (multicast) to a group (class of nodes (e.g. AMPs) or a "job")

 ¥ Hash bucket routing.

 ¥ Synchronize (e.g. commit, quit, semaphores,... ...)

 ¥ Flow control (AMP pushback is flow control)

�

 Slice costs about 50K$ ((66MHz 486 with 8MB RAM 4x2GB disks)

 Small system is 8-way, biggest system is 365 AMPs with 3x2.2GB disks

 100 IFPs, with 64 channel interfaces

 11 COPS (lan interfaces)

 476 nodes total , 2.4 TB of disk total

 Each client sees data in client-native format

		(AMP makes it right on the way to final spool file)

 Includes float (IEEE, IBM/370, VAX, AS400,...) and chars (ASCII/EBCDIC)

 Handles national chars and sort order (see it in EBCDIC order).

 this formatting is expensive and so is parallelized in AMP (first/last query step)

Software

 ¥ Client issues calls via Teradata stub library in host.

 ¥ Support much of SQL, moving to SQL89 (SQL-2 entry level) plus extensions

 ¥ DB2-like (compatible) preprocessor for IBM.

 ¥ Each client sees data in client-native format (AMP make it right)

 Includes float (IEEE, IBM/370, VAX, AS400,...) and chars (ASCII/EBCDIC)

 Handles national chars and sort order (see it in EBCDIC order, or Kanji order).

 ¥ SQL parsed and scheduled by front end.

 ¥ Mix many queries at once (use it to overlap CPU and IO in AMPs)

 ¥ AMPs push back if overloaded, in this sense they "pull" work in

 ¥ Only flow control reusable resources (CPU, memory, bandwidth),

 not disk space, locks, ...

 ¥Ê Requests have priorities (and users/applications have priorities in their profiles)

 new request, more work, internal (e.g. index update), ..., up to URGENT

 ¥ Push back on low priority requests -- design is adaptive and they are proud of it;

 "it really works" says Todd.

 ¥ Many meters few knobs, debugger is simple and for gurus

 (breakpoints, display data or execute procedure on break, message trace)

 (examine any node/device, any job, extensible by developers)

 ¥ Performance statistics kept in database and can be queried

 ¥ Instrumentation

 ¥Êrecords of each sessions (track messages, CPU, memory, locks, IO, records)

 ¥Êcounters on AMPs, devices, locks

 ¥Êread one or all of a class,

 ¥ application can ask to watch a processor or session or aggregates of all

 ¥ one knob: abort a session

 ¥ Lock Allows uncommitted read for decision support.

 granularity: row hash, table, database,

 instant deadlock detection within an AMP

 periodic (4 min default) global detection: in DSS MUST detect deadlock

 one AMP pools for wait for graphs, finds cycles,

 picks victims, tells IFPs to abort session/transaction

 ¥ Conventional logging (WAL) but uses of 4MB NV RAM for lazy writes

�Data Layout:

 ¥ All tables hash to 4000 buckets (64K in new version).

 ¥ bucket map that distributes it over AMPS

 ¥Ê AMPS manage local disks (one logical disk)

 ¥ data partitioned by primary index (may not be unique)

 ¥ Secondary indices

 ¥Êpartitioned by hash of primary key if secondary not unique

 ¥ unique secondary index partitioned by hash of secondary key

 ¥ Data layout is novel:

 Disk has system area.

 Rest is managed a cylinders

 Each cylinder has a directory of "shadows"

 Segments within the cylinder are variable length.

 Never update in place, write segment, then ping-pong write cylinder map

 4MB non volatile RAM is standard: so lazy log, map and data writes

 ¥ So hash -> AMP -> cylinder -> segment -> record

 random update is 2 reads, 2 writes, plus logging.

 ¥ Key thing is that need for reorg is RARE (system is self organizing)

 ¥ Occasionally run disk compaction (which is purely local)

 ¥ Very easy to design and manage.

Availability vs Reliability:

 ¥Ê UNDO/REDO log, 2 phase commit (inside or with IMS/CICS)

 ¥ Archive possible but mostly use duplexing of buckets

 ¥ Bucket may have a fallback bucket which replicates it on another disk and node.

 ¥Ê Bucket maps break system into clusters of 4 to 6 nodes.

 fallbacks do not cross cluster boundaries.

 Fault containment: if two disks or nodes fail in a cluster, only that cluster fails.

 Many nodes/disks can fail, but all clusters still up, or most clusters still up

 Traditional mirroring: cluster size=two

 Small cluster: good fault containment, Big cluster: good load rebalance at failure

 Nodes send "logical" update to fallback node (logical updates).

 ¥Ê Bucket mapping is automatic (system picks good layout)

 ¥ Promise 99% availability during ((7*24)-4) hrs per week

 ¥ Node or disk failure causes system restart (all restarts are system wide)

 ¥ 30 second warm restart, 6 minute cool restart

 ¥Ê High availability and high reliability, but not NonStop

 ¥ Primary spools updates for fallback bucket.

 ¥ Add disk, just AMPs disk space

 ¥ Add AMP/cluster remap some primary and fallback buckets to it.

 ¥ MANY good techniques to remap buckets in a fault-tolerant way (reconfiguration)

�Query Execution:

 ¥ Cost based optimizer

 ¥Ê Query plan templates cached for 4 hrs (cache or plastic)

 ¥ All ops done locally

 ¥ Complex queries executed "operator at a time",

 no pipelining between AMPs, some inside AMPS (e.g. scan-sort)

 does do independent execution

 ¥Ê Intermediate and final results sent to spool file (one per AMP).

 ¥ÊProtocol: (1) IFP-COP requests work,

 (2) AMPs ALL respond that they are starting (if not then backoff)

 (3) get completion from all AMPs

 (4) request answer or next operator (answers merged by Ynet)

 (5) if it is a transaction, Ynet is used for 2-phase commit.

 ¥ Unique secondary index lookup is: key->secondaryAMP->PrimaryAMP->ans

 ¥ Non-Unique lookup is broadcast to all AMPs and then merge returns.

 ¥Ê MultiStatement operations can proceed in parallel (up to 10x parallel)

 Batch of inserts or selects or even TPC-A

 ¥ÊSome intra-statement operators done in parallel:

 e.g. redistribute A, redistribute B for a A join B.

 General rule: independent steps can be done in parallel

 of join opt presentation where 4 steps in parallel).

 ¥ Most operations (select, sort,.join,..) done locally on partition.

 for example (select * from x where ... order by ...)

 is three phases: scan->sort->spool->merge-> application.

 AMP sets up a scanner, "catcher", and sorter

 scanner reads records and throws qualifying records to Ynet (with hash sort key)

 catcher gets records from Ynet and drives sorter

 sorter generates locally sorted spool files.

 when done, IFP and Ynet do merge.

 ¥ÊAggregates done locally, group answer hashed and sent to group bucket

 group owner AMP catches sub-aggregates from others and consolidates group

 Fully parallel design

 ¥ If join tables not equi-partitioned then rehash.

 ¥ Often replicate small outer table to many partitions (Ynet is good for this)

 ¥ÊJOIN and OUTER JOIN operators (after fragments are clustered to be co-located):

 ¥ Product (Cartesian product)

 ¥ÊNested (if inner is indexed or both pre sorted on key)

 ¥ Sort-merge

 ¥ Join Strategies:

 ¥Êif Small Table/Big Table: replicate small table at each partition

 ¥ÊCartesian 3 or more small tables and replicate to all parts of big table.

 (if cols of small table match index or sort order of large table)

 ¥Êbuild hash bitmaps using secondary indices, intersect them to do a RID join.

�Examples:

 Insert to a record generates

 insert to fallback bucket node.

 insert to right bucket of each index

 Select COUNT * sends count of each partition to a designated partition,

 it stores global count in spool file for later retrieval.

 Join is optimized step-at-a time: Cheapest triple and then cheapest in triple

The new design (1994) (3700 Series product described in VLDB93)

 ¥Ê IFP becomes AP (application processor) and PE (parsing engine)

 ¥ base on commodity hardware (Ynet now, Bynet in the future)

 ¥ base on "bullet proof" Operating system with TOS adapter layer (PDE)

 parallel database environment

 ¥ message system

 ¥ communication stack

 ¥ raw disk

 ¥ virtual processors

 ¥ virtual partitions (buckets go to virtual partitions)

 ¥ Port AMP code but now AMP is a virtual processor.

 ¥ Allow Applications to run inside the server

 ¥Ê gives soft processes,

 removes many TOS limits (e.g. 1MB address space)

 protection for applications running in Application Processor

 SMP scheduling, large address space,...

 Lots of communications protocol stacks� Gateway adapter to Ynet or Bynet.

 Parsing engine does old IFP/COP work

 ¥ Can run whole net on SMP with no Ynet (memory-to memory Ynet)

 �

Each node is potentially a APP, PEP, and AMP.

�

Also note: ATT GIS is a Global Support Service for Microsoft's NT.

Utilities (My hot button):

 IBM is fastest host for load/unload

 Utilities use N-streams on the host to execute in parallel since calls are blocking.

 (N is on the order of tens per channel)

 Uses a "special" batch (N-record) interface to AMPs

 Double buffers to each AMP to keep AMP busy

 All hashing done in AMPs -- utilities do not do clustering, just batching

 Can run many utilities at once, but each gets a table lock.

Bulk Data Load:

 Simple approach (almost no tricks)

 Open many sessions (thousands).

 Post many inserts (one per session)

Fast Data Load (FDL)

 Send 32KB blocks (containing integral number of records)

 Blocks bypass IFP (in the sense that IFP does not look inside)

 AMP unpacks each record, sends on Ynet to right AMP

 keeps block in transactional spool file so operation is idempotent

 (survives restarts)

 Each AMP also has a "catcher" to field these records and put in temp file.

 at end it sorts temp file, does bulk insert, sends out index updates

 and fallback updates.

 Done as a mini-batch so transactional (survives restart)

 Fast load is: insert only, empty table only, configuration must stay the same

 (no failed or new nodes)

MultiLoad

 Allows {Insert, update, delete, upsert (insert if record not there, else update)}

 Bulk delete (turns off logging, but adds a logical log record)

 Allows one "record" to generate multiple table inserts/updates

 purchase item -> store-sales insert, store-inventory update, product-activity insert

 Is restartable (can work on predicate)

 Is online (allows concurrent access)

 Sends 32KB to AMP

 Hash-catcher-sorter as before

 Uses checkpoint-restart plus transactions.

Fast Export:

 Similar to the fast load (32KB blocks travel)

 Select -> value-partitioned Spool -> round-robin merge

Backup:

 send disk blocks, several sessions per AMP

Restore:

 use fallback bucket unless software corruption.

 Else backup and restore a cluster

Reorganize:

 RARELY NEEDED (just local disk compression)

 Add disk is "invisible", just grows AMP logical disk

 Add node, cluster just remaps some buckets

 Again fully parallel, and fault-tolerant (two bucket maps in Y-net)

 e.g. grow cluster by 100% means that 50% of buckets move (in parallel)

 new node catches buckets from old nodes.

================================

From: "Ballinger, Carrie" <cab@elsegundoca.ncr.com>

To: Jim Gray <gray@crl.com>

Subject: Teradata Perf Nbrs

Date: Thu, 08 Sep 94 08:46:00 PDT

Hi Jim-- I put together a few things (with permission), so use this info however it makes sense to you. I would like a copy of your slides if I could, or at least the ones addressing Teradata:

Carrie Ballinger, AT&T, 100 North Sepulveda Blvd, El Segundo CA 90245

Thanks, and good luck! -- Carrie

Some generic samples of Teradata performance taken from customer benchmarks.

Some of the detail (such as row size) is intentionally absent to avoid uncontrolled comparisons or extrapolations. (sorry)

With the exception of the customer info at the end, this is all numbers based on the current 3600 running Teradata.

JOINS (data demographics not available)

1 million rows joined to 10 million rows, both tables hash redistributed (relocated to another node prior to the join-- worst case join).

24 AMPs, 24 min 38 seconds total query time.

48 AMPs, 12 min 41 seconds total query time.

Number of rows successfully joined, unknown.

Two 1 million row tables joined,

no hash redistribution (best case join).

24 AMPs, 44 seconds total query time.

TABLE SCANS (unknown number of rows returned)

8865 rows/AMP/second, for 10 million row scan

7167 rows/AMP/second for 200 million row scan

CREATE SECONDARY INDEX

Create Index on 20 million row table.

 32 AMPs, Total time 3 min 13 seconds.

Create Index on 5 million row table.

 32 AMPs, Total time 47 seconds.

INSERT/SELECT OPERATION

Insert/Select all rows from a 20 million row table.

390 rows/AMP/second.

CUSTOMER EXAMPLE

For a customer with over 300 AMPs on the older Model 4 system (the 3600 is just being loaded with data), the average query time involving their largest table of 3.8 billion rows is 25-30 minutes. These queries all include joins, aggregations and sorts of various

levels of intensity.

With the 3600 we expect 30% performance improvement, so this is likely to reduce response time by that factor, but no real numbers are available at this time.

Date: Fri, 19 May 95 11:37:38 PDT

From: Todd Walter <taw@elsegundoca.attgis.com>

To: gray@crl.com

Subject: New Teradata on UNIX results.

You may share any/all of the contents of this note. Thanx to Carrie and Anita Richards for pulling all of this together.

Quick Summary of Current Teradata Version 2 performance on an 8-way 3555 (90 Mhz P54C CPUs):

Scan 50 million rows, 162-bytes each, return 50 rows.�737seconds��Insert/Select a 5 million row table, all rows selected, 162-byte rows�1136 seconds��Aggregation into 100 groups, 50 million row table, 162-byte rows, no constraints�788 seconds��Same as above but 1000 groups in the aggregate, no constraints�844 seconds��Two-way in-place join, 50 million row table and 2 million row table, no constraints on either table�768 seconds��Two-way join, one 5 million row table in-place, one 5 million row table redistributed, no contraints on either table�236 seconds��Two-way join, two 5 million row tables redistributed, no constraints�312 seconds��Two-way join, 50 million row table and 100 row table, row size is 162 bytes�1916 seconds��Comparison of Teradata Version 2 performance as expressed in 3600 AMP Equivalents.

An AMP equivalent of 8 means that the 3555 Teradata Version 2 is performing this query in the same time as it would take 8 Teradata Version 1 AMPs (DX2, 66MHz) to do.

Work Type�Range�Typical ��Overall Decision Support Select Activity�6 - 190 AMP Equivs�It depends...��Create Secondary Index�7 - 9 AMP Equivs�8 AMP Equivs��Table Scans�6 -8 AMP Equivs�7 AMP Equivs��Aggregation�15 - 190 AMP Equivs�50 AMP Equivs��Calculation/Comparison-Intensive Selects�44 - 160 AMP Equivs�90 AMP Equivs��Joins�10-100 AMP Equivs�58 AMP Equivs��If hardware only is considered, then both CPU power and SMP Scale-up (with additional chips) means that the AMP Equivalent between Teradata Version 2 on 3555 compared to Version 1 on a 3600 should be 12 AMP Equivalents. The additional AMP Equivalants are due to performance improvements made to the Teradata software.

Some of the things we have done to the Teradata Database to make these numbers happen on V2:

- Compiled expression evaluation code. We compile the expression code to native machine instructions rather than running an interpreter against an expression language. The interpreter has been tightly wound for the parts that are not compiled.

- Aggregate cache size increase; allowed by Unix/PDE.

- Optimization of our hash-merge join execution engine.

- Optimized INSERT/SELECT path.

General observations:

- While our basic scans can still use some work, the more expressions in the query, the better we do.

- No one comes close to our ability to just run this kind of stuff. While the other Databases have lots of tuning knobs we donÕt provide, they count on these knobs being endlessly tweaked in order to get even decent performance in some cases (including runaway queries). To get best performance on other dbs, you really have to become a knob twister which is getting less and less practical in the ad-hoc query world.

��Oracle :

	Visit Aug. 29, 1994

 	Host:	Gary Hallmark, Bill Waddington

Manuals:

 Oracle 7 Server Documentation Addendum, R. 7.1 Part A12042-3, ? 1994

 Cryptic Chapter 6. 28 pages, but thatÕs it.

 Oracle 7 Server Concepts Manual, Part: 6693-70-1292, Dec. 1992

 Explains parallel server (threads and servers and dispatchers and...)

 Also explains data layout, query, transactions, administration ...

 Oracle 7 Server Application DeveloperÕs Guide, Part: 6695-70-0212, Dec. 1992

 Explains hints to optimizer (but not the new parallel hints yet)

Terminology:

Parallel Server (V7): 	Multiple threads in a server

			Multiple servers in a cluster

			Good for client/server & OLTP & clusters (TP lite)

Parallel Query (V7.1) Execute SELECT (and sub-selects) in parallel

Parallel Recovery: (V7.1) One log scanner, multiple redoers at restart.

Product Beta in late 1993, General availability June 1994.

All are shared disk implementations.

Oracle is a UNIX SQL system mostly (but also VMS, NetWare, perhaps NT):

	Sys V (AT&T,..)

	AIX (IBM)

	HP/UX (HP)

	OSF/1 (DEC, HP)

	Ultrix/OSF/ (DEC)

	SCO/UNIX

	Sequent/DYNIX,

	SUN (SunOS, Solaris)

	50 Platforms

DATA LAYOUT:

UNIX raw disks or files are base.

Table or index maps to SEGMENT;

	SEGMENT maps to EXTENT (section of a ÒfileÓ)

		EXTENT is a collection of BLOCKS (unit of disk transfer).

TABLESPACE is a set of OS files.

DB is a collection of TABLESPACEs

Shared disk system: Multiple servers in a cluster

	servers have threads.

	All threads can access the whole database.

Automatic partitioning of tables in TABLESPACE among disks/files

	So no range/hash/round-robin partitioning.

B-Tree is basic access method.

Guiding principle:

 ÒIf its not organized, it cant get disorganized and doesnÕt need to be reorganizedÓ

�ADMINISTRATION TOOLS

Set degree of parallelism associated with full-table scans.

	(Parallelism only used if one such table is fully scanned).

Default is no parallelism (parallelism is explicitly or implicitly turned on)

Can limit the DEGREE of parallelism at each server.

Can limit the INSTANCES (count of servers used for parallelism).

Limit is system-wide, Table, and query can lower limits.

PROCESS STRUCTURE

Clients have own process

Send request to dedicated Query Coordinator (one per client).

Coordinator sees if plan has a full-table scan on a ÒparallelÓ table.

If so, coordinator picks parallel plan.

Launches DEGREE executors in INSTANCES Parallel Servers .

If it is a deep query (has some blocking operators or >2 deep pipeline)

		launches 2*DEGREE executors

Performs 2-process-deep at a time (process can do multiple relational ops inside)

 (e.g. ((scanA + scanB) -> (merge-join -> sort) BLOCKING

		((merge + scanC)->merge-join -> coordinator))

InterProcess communication via shared memory in SMP

In cluster, communication is via OS transport or

 if OS vendor is brain dead, TCP/IP .

Oracle has many Òservice threadsÓ: log writers, page cleaners, archive,

TRANSACTIONS

lock granularity: table, record

Stale (but committed) read, repeatable read, serializable

User visible and internal Transaction Savepoints for simple nested transactions

no batch checkpoint/restart yet batch operations.

Database has one or more undo logs (rollback segments)

Database has one redo log (parallel update bottleneck)

Recovery unit is file

Online fuzzy dump of files and restore by data file.

Parallel recovery: single log scanner feed many redo processes.

	DEGREE: typically this many per disk

	INSTANCE: Typically two redos per disk.

�DATA MANIPULATION

Parallel SELECT,

	no parallel INSERT/UPDATE/DELETE or DDL

	(except parallel CREATE INDEX).

	sub-select inside an INSERT/UPDATE/DELETE can be parallel.

Sequential plan passed to query coordinator.

Query coordinator turns plan into a parallel plan:

 Degree of parallelism is inherited from table (an explicitly set table attribute).

	Query degree is max of all participating tables.

	Query can explicitly override this default.

 User can provide parallel hints, join order and join type and index hints.

 Parallelizes almost all aspects of select (including correlated subqueries).

 Builds parallel query subtrees and sends them to executors.

 Shared disk and table-space design makes scratch file allocation easy.

 Only range partition on base data

 Intermediate data is hash partitioned unless ordered,

	Ordered temps are range partitioned.

 If need range partition for scan or sort, then sample and pick ranges base on sample.

	(the DeWitt trick extended to include output splits (NEAT IDEA!)).

 For base tables can use ROWID as partitioning (e.g. rowid BETWEEN :N AND :M)

 Proud of their OR optimizations.

 Forks 2 N processes (producer/consumer pairs)

Oracle 5 went to an itterator design and they use them

Parallel Operators:

	Scan/project

	Parallel sort

	Aggregate

	Join: nested-loop, sort-merge

	Since shared disk get automatic ST/LT optimization (replicate small)

	Scans, sort, and join are parallel,

	Aggregates pushed to parallel servers

	Stored procedures can be invoked in parallel (by each record).

		SELECT SUM (F(id)) FROM emp:

		if executed with DEGREE*INSTANCE =100 will invoke F 100x parallel

	I think this is potentially a HUGE win.

UTILITIES

	Parallel Index build (parallel scan sequential insert).

	Loader is single thread but with (PARALLEL=TRUE, DIRECT=TRUE,

		SOURCE=<tape>, FILE=<destination tablespace>

		user can write parallel load (utility can be restricted to lock a recid range)

			User program forks many processes (sessions)

		In this case, constraint checking is separate (sequential) step.

		Index builds are separate parallel steps (each index is).

	update statistics (analyze) not parallel but has sampling as an option

	User could write parallel unload.

�FUTURES:

	Parallel CREATE TABLE AS SELECT (I am told this is in V7.2)

		(eliminates Query Coordinator and Application Bottleneck)

	Partitioned data model (maybe).

	Maybe hash join.

Benchmark Report, Gary Hallmark @ Oracle (May 1994)

Also in FTNews, June 1994, Oracle Unveils Parallel Everything 7.1, pp 1-4.

	ITOM International, Los Altos, CA.

Sequent System:

	20 x 50MHz 486 processors .5 GB main memory disk

			Sequential			20x Parallel 	

			rec/s	 MB/s	rec/s		MB/s		speedup

Load 5M Wisc 	 .5kr/s	113Kb/s	 8.8kr/s 	1.8MB/s	16

Parallel Index load	2.2kr/s	 18Kb/s	 29kr/s		235KB/s	13

SCAN			1.7kr/s	364KB/s	26kr/s		5.3MB/s	15

Agg MJ		3.3kr/s	660KB/s	45kr/s		9.3MB/s	14

Agg NJ		1.4kr/s	290KB/s	26kr/s		5.4MB/s	19

Same benchmark (scaleup done on a 512-node N-cube (16MB/node), 4 lock nodes, 64 disk nodes.

Ncube shows speedup, but 168 node Ncube is slower than slow (50Mhz 486) Sequent.

 Not a contender. (numbers in italics are derived, not measured)

Oracle 7.1 PQ Sequent 20x486 50MHz, 30 disks, .5GB�������������OP�rows�row size�table size�time�Rec/

sec�KB/s�disks�par time�par kr/s�par KB/s�speedup��Wisc load 5M�5.0E+06�204�1.0E+9�9000�556�113�20�564�8.9�1,809�16.0��build index�5.0E+06�8�4.0E+7�2200�2,273�18�20�170�29.4�235�12.9��scan�5.0E+06�204�1.0E+9�2800�1,786�364�20�190�26.3�5,368�14.7�� Group(SortMerge Join)�1.0E+07�204�2.0E+9�3060�3,268�667�20�220�45.5�9,273�13.9��group(Nested Loop Join)�5.0E+06�204�1.0E+9�3530�1,419�290�20�190�26.4�5,379�18.6��Oracle 7.1 PQ 512x NCUBE Mod 2 (16MB/cpu) (100 QP node, 64 IO nodes, 4 lock nodes)�������������5 x parallel�rows�row size�table size�5x time� Rec

/sec)�Rate (KB/s)�disks�par time�par kr/s�rate: KB/s�speedup��Wisc load 5x�2.5E+05�204�5.1E+7�3150�79�16�?�630�0.4�81�5.0��build index�2.5E+05�8�2.0E+6�1150�217�2�?�230�1.1�9�5.0��scan�2.5E+05�204�5.1E+7�950�263�54�?�190�1.3�268�5.0�� Group(SortMerge Join)�5.0E+05�204�1.0E+8�1050�476�97�?�210�2.4�486�5.0��group(Nested Loop Join)�2.5E+05�204�5.1E+7�900�278�57�?�180�1.4�283�5.0��down�rows�row size�table size�100x time�Rec/

sec)�(KB/s)�disks�par time�par rate r/s�par KB/s�speedup��Wisc load 5x�3.7E+06�204�7.5E+8�63000�59�12�64�630�5.9�1,198�100.0��build index�2.5E+06�8�2.0E+7�23000�109�1�64�230�10,.9�87�100.0��scan�4.6E+06�204�9.4E+8�19000�242�49�64�190�24.2�4,939�100.0�� Group(SortMerge Join)�5.5E+06�204�1.1E+9�21000�262�53�64�210�26.2�5,343�100.0��group(Nested Loop Join)�4.4E+06�204�9.0E+8�18000�244�50�64�180�24.4�4,987�100.0���IBM SP1

	16 x 62MHx RS/6000 procssor

	256MB of ram (=4GB total!)

	16 disks

	Data evenly distributed (wisconsin DB)

	AIX,

	

Benchmark report ÒOracle 7 Release 7.1 on IBM SP1.

	Oracle Performance Report

	June 1994, Part 18752

Oracle V 71. on SP1�������������records�rec size�DB size�serial time�s r/s�s KB/s�16x p time�p kr/s�p MB/s�speedup��Laod �4.8E+6�204�9.8E+8�8,274�580�118�543�9�1.8�15.2��Index�4.8E+6�10�4.8E+7�3,527�1,361�278�300�16�3.3�11.8��Scan�4.8E+6�204�9.8E+8�1410�3,404�34�120�40�8.2�11.8��SM Join�5.6E+6�204�1.1E+9�2651�2,112�369�205�27�5.6�12.9��NL Join�5.6E+6�204�1.1E+9�2263�2,475�505�182�31�6.3�12.4��

Late news: 9/7/94

select count(*) from tpcd.order an 20 pentium sequent with 40 disks

 20 scan processes, measure 44MB/s @ 55% cpu

 Aggregate goes to 20MB/s with 100% cpu

 �

�Navigator:

	Visit 	Aug 26, 1994, Sybase, Emeryville, Sept 2 San Diego

 	Hosts:	Ron Chung Hu (architect)

		Stuart Thompto (marketing)

	Visit 	Sept 2, 1994, ATT GIS @ El Segundo (aka: NCR)

 	Hosts:	Rick Stellwagen 	(team leand)

 		Brian Hart		(Optimizer)

 		Ilya Listvinsky	(Executor)

		Bill Huffman 		(Configurator)

		Bob McDonald 	(Admin & Tools)

		Jan Graveson		(Performance)

Manuals:

 Navigation Server Reference, DocID: 35172-01-1000, Sybase, July 1994

 Navigation Server Installation, DocID: 34491-01-1000, Sybase, July 1994

 Navigation Server Performance Report, ATT & Sybase

 Navigation Server: Explain Users Guide, Louis Berger, ATT report, March 1994

 Navigation Server: Overriding the Query Optimizer, Louis Berger, ATT report, May 1994

 Navigation Server Run-Time System Architecture, I.G. Listvinsky, B.E Hart, R.G. Stellwangen

		NCR-LCPD report.

 Plus Sybase System 4.9 & System 10 manuals.

History:

	Prototype at MCC 1989

		Goal: Build Parallel DBs from COTS software and hardware

		learned Sybase was only DB that worked

			(TDS, stored procedures are key)

		Needed a few enhancements to Sybase

			Multi-threaded open server

			Non-blocking dblib calls plus callback (event queue) on completion

			Bulk insert optimization (again, non-blocking insert)

			Stored procedures:

				DDL in procedures

				remote procedures

				Temp tables as params

				create and load temp tables outlasting procedures scope.

			optimized 2PC

			Global deadlock detection hook (display locks)

			Parsed SQL in dblib calls

	Joint development between Sybase and NCR started in 1991

	90% design & implementation done by NCR

	Based on Sybase 4.9

	Sales, marketing and support from Sybase

	Based on ATT 3600 (Sys V.4, Ynet, ...)

	Sybase has full control of development & support & marketing as of May 1995

�Sybase/Navigator is a UNIX SQL system:

	Based on Server 4.9 Client 10.0 (i.e., server not part of System 10)

	First Beta Install Aug, 1993 on ATT 3600

	Beta 1994 on ATT 3600

	Controlled release Oct 1994 on ATT 3600 and 3500

	General Availability Jan 95 on ATT 3600 and 3500

	Port to IBM-SP2, SUN, HP, clusters underway, Available 3Q95

	NT plans not clear

Product concept:

	Build Parallel DBs from COTS software and hardware.

		Two layer software architecture:

		Navigator drives an array of shared-nothing SQL engines.

			each engine is unaware of the others.

			similar to Tandem disk processes

		SQL engine is COTS.

	Goal is linear scaleup and speedup, plus good OLTP support

	Emphasize WHOLE LIFECYCLE

		Configurator: tools to design a parallel system

		Administrator: tools to manage a parallel system

			(install/upgrade, start/stop, backup/restore, monitor/tune)

		ÒOptimizerÓ: execute requests in parallel.

DATA LAYOUT:

Pure shared nothing

Based on Sybase SQL Server (4.6).

Background (what is Sybase SQL Server?):

	SQL89 support.

	Internationalized

	SQL server is multithreaded (SMP support, was a problem in the past)

	Stored procedures

	B*-tree centric

	Recently became SQL89 compliant (cursors, nulls, etc)

	UNIX raw disks or files are base (also on OS/2).

	Page locking, 2K disk IO, ... other little-endian design decisions.

	Has respectable TPC-C results now (using AIX RS/6000).

	Disk duplexing comes from OS or RAID hardware.

	table->disk mapping

		CREATE DATABASE name ON {device...} LOG ON {device...}

		SP_ADDSEGMENT segment, device

		CREATE TABLE name(cols) [ON segment]

	Full syntax:

		SP PLACE TABLE MODE {HASH | RANGE | SCHEMA}

				 HOME n= <number of servers>, s1, s2,....sn,

				 [COLUMNS m=<number of partition cols>,c1,c2,...,cm]

				 [INTERVALS <c1-s1-interval>, ..., <c1-sn-interval>,...]

				 [FUNCTION <hash function number>]

		CREATE TABLE ... <ordinary stuff>

	Use nested loops, sort-merge join (sort is index build).

	Hash aggregates

	Foreign key must match partitions (canÕt cross servers).

	Microsoft has a copy of the code, deep ported to NT.

Navigator partitions data among SQL servers

	¥Êmap to a subset of the servers

	¥ range partition or hash partition.

Secondary indices are partitioned same way as base table (they are all local)

No Unique secondary indices (and no cross-server constraints of any kind)

Only shorthand views, no protection views because views done in control/split servers

Navigator may launch fallback server at separate node if one node fails.

Schema server stores global data definition for all nodes.

Each partition server has

	schema for its partition

	data for its partition.

	log for its partition

ADMINISTRATION TOOLS

Made HUGE investments in this area.

Truly industry leading -- graphical tools make configuration ÒdoableÓ.

GUI Navigator Server has graphical interface to manage:

	startup/shutdown

	backup/restore/manage logs

	configure (install, add nodes, configure and tune servers)

	Manage/consolidate system event logs

	System stored procedures (global operations)

Update Statistics aggregates from servers into global schema

Control servers monitor each other, failover creates peer local server (process migration)

Navigator Server Manger

	Backup/Restore

	Configuration management (install, add nodes, ...)

	System trace info

Configurator:

	Given 	ER model and dataflow model of the application

			workload characteristics

			resource requirements,

			hardware components

			(heavy into circles and arrows)

	Recommends 	hardware requirements / configuration/

				Table definitions (SQL)

				table partitioning

				table indices.

	Estimates performance

	Uses the real optimizer (Schkolnick,Tiberio and Finkelstein finally on sale)

	Moving from ER to SQL.

�PROCESS STRUCTURE

Clients have own process

Talk to a control server (typically one per SMP)

Client-server communication to Navigator is via TDS

	(with a few extensions for DDL and a few restrictions)

Control talks to DBA server to service request

	(unless it is a stored procedure)

DBA compiles request, and sends stored procs to

 	control server and to all relevant SQL-Servers

Then Control issues requests (invokes stored procs) at SQL servers.

Control server executes stored procedures as SIMD

 (each participating SQL server does one step at a time)

Split servers used to repartition and do intermediate aggregates.

Split servers have no persistent storage

OLTP and simple queries (no redistribution) bypass split server.

Unit of parallelism is a SQL server (so one per disk for fast scans).

All requests to SQL server must pass through Control server

	(so can manage multi-server consistency)

Redistribution goes through split servers (that is their only role)

Control and split server based on Sybase OpenServer design (Sybase threads)

DBA server has fallback to take over it fails.

Fallback DBA does periodic deadlock detection.

�

Control does top-level mergers and super-aggregates and..

DBA server could be a bottleneck, but it can be cloned if desired.

TRANSACTIONS

lock granularity: table(=SQL server partition), page

Provides SQL92 four isolation levels

User visible and internal Transaction Savepoints for simple nested transactions

no checkpoint/restart yet for batch operations.

OLTP is passed through to single server (i.e. good performance)

One log per SQL Server.

2PC managed by control server if multiple SQL-Servers involved.

�DATA MANIPULATION

No special parallelism verbs, you get the right thing automatically

Data server is unit of parallelism

Cache stored procedure.

"Parallelized EVERYTHING in the T-SQL language"

	Includes SIMD execution of T-SQL procedures, plus N-M data move operations.

Two-level optimization: 	DBA Server has optimizer

					(BIG investment, all new code,

					NOT the infamous Sybase optimizer)

				Each SQL server has optimizer (from Sybase)

				If extreme skew, different servers may have different plans

	DBA optimizer shares code with SQL server

			(so they do not play chess with one another).

	Very proud of their optimizer.

	Optimizer hints:

		SP_PRAGMA OPT_OVERIDE

			SELECT SERVERS n, s1, s2,...sn,

			NAV JOIN ORDER {ON | OFF} /* off means use order in FROM clause

			STRATEGY n, s1, s2,...sn (s in {inplace, red1_inner, red1_outer, red2,

						 rep_inner, rep_outer, redn_inner, redn_outer}

			JOIN SERVERS n, s1, s2,...,sn /* join executors.

			REPORT STRATEGY strategy /*aggregates: inplace, redecluster

			REPORT SERVERS n, s1, s2,...,sn /* servers for aggregate processing.

		Plus, Sybase lets user pick Òuseful indicesÓ by flowing table name with index#

 in parens in FROM list. select * from emp (1) where empid>10;

Nice EXPLAIN utility to show plans.

Parallel Operators:

	SELECT, UPDATE, DELETE N-to-M parallel

	Insert has special utility to do in parallel.

	Scan/project

	Parallel sort

	Aggregate (hash/sort)

	select and join can do index-only access if data is there.

	eliminate correlated subqueries (convert to join).

				(Gansky&Wong. SIGMOD87 extended)

	Join: nested-loop, sort-merge, index only

		Often dynamic build index to support nested loop.

	Classic Sellinger cost-based optimizer.

	Typically left-deep sequence of binary joins.

	Partition strategies

		If already partitioned on join, then no splitting

		Else	Move subset of T1 to T2 partitions.

		or	Replicate T1 to all T2 partitions

		or	repartiton both T1 and T2 to width of home nodes or target.

	No hash join, but

		all partitioning is range or hash based.

		all repartitioning is clustering based or hash based.

	strategy:	cluster, 	recluster 1, recluster 2, replicate,

 correctness	correct for equijoin, 				always correct

	tradeoff: 	good performance	 ----->		not so good

	Not aggressive about parallelism/pipelining: one op at a time.

	Do pipeline to disk via split server (not local to disk and then split).

Split servers fake subtables for SQL engines and do global aggregates.

Top level aggregates merged by control, others done by split.

No referential integrity can cross partitions today

No triggers (at all) today.

UTILITIES

Bulk data load using multiple clients, multiple servers, async calls.

Backup each SQL server (individually) so get parallelism (GUI manages this.)

Reorg via CREATE TABLE <new> , SELECT <old> INTO <new>

Utilities are offline

FUTURES:

	Hash join within the split servers

	Shared memory optimizations

	Full support for unique secondary indices

	Full trigger support (cross-server triggers)

	Full security and view support.

Benchmark Report, (ATT & Sybase, preliminary report)

Done on eight-way 3600, nodes connected via Ynet. each node is:

	eight 50MHz 486 each with 256k local cache

	512MB main memory,

	two 10 disk arrays, each disk is 2GB and has 3-5MB/s transfer rate.

	Six Sybase servers per node to get parallel disk accesses

	Due to hardware/software bottlenecks, IO per node is limited to 1MB/s

	These problems are being fixed.

	Did scaleup and speedup tests of 1, 4, and 8 nodes.

	All numbers (except loading) are reported as ratios (of elapsed times)

	The speedup and scaleup tests show a >7x speedup of 8 way over 1-way servers.

	They also show within >90% of linear scaleup on 8x larger jobs on 8-way systems.

	These tests cover insert, select, update, delete, join, aggregate,...

		So, linearity is great.

			Sequential			Parallel 	

			rec/s		MB/s		rec/s		MB/s		speedup

Load Wisc 		?r/s		?Kb/s		?kr/s		?Kb/s		8 (95%)

Index Build		?kr/s	 	?MB/s		?kr/s		?MB/s		?

SCAN			?kr/s		?MB/s		?kr/s		?MB/s		?

Aggregate		?kr/s		?MB/s		?kr/s		?MB/s		?

2-Way hash Join	?kr/s		?MB/s		?kr/s		?MB/s		?

3-Way hash Join	?kr/s		?Mb/s		?kr/s		?MB/s		?

Reference account:

	Chase Manhattan Bank: 14 nodes (8 way Pentium 3600s), so 112 processor array

 		560 GB of data: 56 SQLservers, each with 10GB of data.

	Queries run much faster than on DB2/MVS (minutes vs days).

�Red Brick Systems

	485 Alberto Way

	Los Gatos, CA. 95032, 408 399 3200

	Visit 	6 Jan 1995, Los Gatos, CA

 	Hosts:	Ram Shrinivassen - marketing

		Dave Kennedy -

		Bill Wagstaff

		Bill Robertson

		Rick Cole - optimizer

		Donovan Schnider - Execution

		Joe Ferenandez - Engineering Manager

		Jeff Baird - engine

Manuals:

 	Red Brick Warehouse VPT. Version 3, Nov 1994

		Warehouse Administrators Guide #403030 *** read this first***

		RISQL Self Study Guide, #401030 *** read this second***

		RISQL Reference Guide #401530

		RISQL Entry Tool and RISQL Reporter Users Guide, # 402030

		Messages and Codes Reference Guide, #402530

		Installation and Configuration Guide for IBM RISC System 6000, #403530

		

History:

	??? When started?

	???Dates for V1, V2 ship.

	Focused on decision support

	Load from data source and then analyze.

	Based on STARjoin (TM) data structure (join index).

	5x to 100x faster than traditional DBMS

		because better algorithms and data structures.

	Runs on IBM (RS/6000 and SP2), HP, Sequent (UNIX)

	Designed for multi-threaded SMP (mapping to SP2 is unclear to me????)

Market

	Customers: About 100 licenses in 1994.

		Retail: In store analysis, inventory management, DB2 replacement

		Manufacturing: inventory, marketing.

		Healthcare: claim & risk analysis

		Telecom: market & rate analysis based on calling patterns

		Transportation: inventory tracking, rail car management

		Travel: frequent stayer programs

		Food: marketing.

		Customers: Longs, Kroger, HGB, Hughes, HP, 3M, Argus, SP, Holliday Inn,

			General Mills, General Foods

�Product concept:

	DSS data typically has 1 BIG table and many little tables.

		small tables are called DIMENSION tables or MINOR tables

		big tables are called FACT tables or MAJOR tables.

	Typical query joins many minor tables to MAJOR and restricts on minor tables.

	Retail is classic example (1 big many small):

		minor: products, stores, departments, days, employees,.... (> 10 m rows)

		major: transactions (sales). (10 billion rows)

	Data model is relational (sql)

	Tables connected by foreign keys

	STARjoin precomputes join candidates.

	Rich set of aggregate functions:

	have moved to 2-big table: telephone: customers-calls

			3 big table: hotel: customers-stays-billings

			N big table: insurance: customers, episodes, billings, tests,....

�

Useage:	1/3 GUI: wide joins

		1/3 Prepackaged queries: correlation and aggregation

		1/3 Production apps: periodic reports

GUI tools

	 ODBC

	Sybase open client (PC DBlib or Netlib)

	RISQL entry or report tool

	process-per-terminal design

	one demon process does startup, load control, ...

�RedBrick is an SQL SELECT system

	Full DDL (types, referential integrity,..., add, drop, rename columns, no triggers).

	SQL security (grant-revoke model)

	Declare major and minor tables.

	Index mechanism based on STAR index.

	SELECT but no INSERT, DELETE, UPDATE, no cursors or dynamic sql

	JOINS are restricted:

		all tables must have primary key

		foreign keys can only point to minor tables.

		no cyclic joins

		only foreign key joins (cannot join except along foreign keys)

		all joins "directed" from minor to major tables.

			(foreign keys give IMPLICIT join paths in SELECT statement).

		Synonym table names used to get multiple foreign keys.

	Aggregate functions:

		Standard plus {running-moving} {total, average, max, sum},

 		rank, n-tile, ratio to total,

	clauses to maintain drill-down-cume columns, (with break, and reset clauses)

	TABLE/SEGMENT granularity locking.

	Optimizer very focused on efficient join evaluation.

	Parallelism based on scanner per segment.

Indices:

	Tree Index: value based B-tree index on each primary key (for uniqueness)

			(unless star index exists).

	STARindex(TM): fast multi-attribute access.

	PATTERN index: To accelerate string search (LIKE predicates) used on minor tables

	Minor tables have Tree index

	Major table has tree index if primary key is not union of foreign keys. (else has star index)

	Joins only based on STARindex and other indices.

	Primary key index is conventional B-tree

	Star index is b-tree on major table (entry is < {keys} : 6-byte rec id>)

		union of foreign keys

		each foreign key field has value range.

		 	store log-n bits to represent that range.

			Makes very compact index

		Index then has 6-byte pointer to FACT-TABLE record.

		Example: product code (1M), date (3000), store (1000),

					20+12+10 bits=42 bits =6 bytes.

					(other systems would use 12 bytes or more).

	PATTERN index seems to be a b-tree storing all string prefixes.

�Data Layout

	System is organized into SEGMENTS (UNIX files or raw disks (PSUs))

	Everything done in 8KB pages.

	Segment is homogeneous: one table or one index

	Minor table/index cannot span segments, but major table/star index can

	Segment can contain multiple raw disks.

	Smallest locking & recovery granule

	Unit of parallelism (disk access)

	Value-based partitioning allows easy add/drop of new/old data (major or star).

	major can partition by hash or range.

	index partition by range.

	Star index can be partitioned on key (DMID=recid) or round robin.

	Can add/drop/load/clear segments.

	Segments can be online/off-line

		(loading to off-line segment lets others access online parts of table).

	Optionally prevent/warn use of data that is partially available

		(if unavailable data could change answer then give warning)

		SET PARTIAL AVAILABILITY {precheck | info | warn | error}

		similar mechanism for indices

�

LOAD:

	Very sophisticated:

	from disk or tape, ASCII or EBCDIC, many record formats.

	control record start/stop (for restart of failed load)

	control exception records (exceptions sent to discard file).

	Ordered (sorted) or not. (ordering is not a big help)

	TYPES:	

		APPEND: add to existing table

		INSERT: make brand new table

		REPLACE: duplicate records replace old ones

		MODIFY [AGGREGATE]: duplicate records update old ones

				insert row if it is new (Teradata UPSERT)

		UPDATE [AGGREGATE]:duplicate records update old ones

				discard row if it is new

			(add, subtract, min, and max are aggregate functions)

	Optionally creates foreign keys if needed

	Has ability to compute fields based on input data and fields in record

 		min, max, add, subtract, sequence (counter), concat, trim

		

	Optionally defers index build to end (faster)

	Optionally loads into off-line segment and then SYNCHRONIZES with

		online indices and catalog.

BACKUP

	locks out updates (loads)

	full or incremental (blocks changed since last backup).

RESTORE

	segment or table (includes indices)

	if fail during load must RESTORE FORCE and then REORG to rebuild indices.

REORG

	Checks referential integrity

	Rebuilds indices.

	Structural changes (meta data changes) may require index rebuild

		(eg change max rows in a minor table).

Parallelism:

	Uses threads

	Can create indices in parallel (different indices)

	can offline load in parallel	

	can search in parallel

Parallel STARjoin:

	Join by partition

	Scan and join each partition

	Gets linear speedup on join (60k rec/sec on 8 processor Sequent)

Performance:

	Load: 12GB/hr on Sequent with 2 Indices, 400 B/record

 		= 30 M rec/hr = 8 k rec/sec

	Parallel Star Join (on sequent)

		8 cpu x 8 controller x 8 disk: 60 B rows:

		60 k rec/sec.

�IBM DB2/6000 Parallel Edition

Telephone and Email conversations with

	Chaitan Baru, IBM Toronto Labs, baru@vnet.ibm.com

	Gilles Fecteau, IBM Toronto Labs, gfecteau@vnet.ibm.com

 	James Hamilton, IBM Toronto Labs, jrh@vnet.ibm.com

References.

 	Database 2 AIX/6000 Parallel Technology, IBM Toronto Database Technology

 Group, 3/94

	DB2 Parallel Edition, Customer Benchmark Results, Jim August, 9/94

	DB2 Parallel Edition on SP2, Haider Rizvi, IBM Research, 12/94

	IBM POWERparallel System -SP2 Performance Measurements, James Kuzela,

 (jimk@vnet.ibm.com) 1/95 *** very detailed study

 	DB2 Parallel Edition, C. Baru, G. Fecteau, A. Goyal, H. Hsaio, A. Jhingran, S.

 Padmanabhan, W. G. Wilson, G Copeland, IBM Systems Journal, V34 #2,

 1995 *** very informative

	DB2 Parallel Edition for AIX/6000 Administration Guide and Reference,

	 Scott Bailey, IBM Toronto, IBM form # SC09-1982-0 4/95

History

 	IBM has

		DB2/MVS (the classic big-iron product)

		DB2/VM (was SQL/DS grew from System R code base)

		DB2/400 (a layer on the AS/400 file system)

		DB2/2 (grew from OS/2 DM,

			now ported to AIX, Solaris, HPUX, NT promised)

 		 IBMisms: DB2/2 really means DB2 for OS2.

			 	ÒDB2 Client Server Òis the generic name for this code base

				I ÒshouldÓ use DB2/c/s as the generic name.

				the official name is then:

				DB2 Client Server Parallel Edition for AIX, Version 1.

				(they must be kidding, but they are not).

		DB2/2 has two code steams:

			DB2/2 V2: oo, stored procedure, referential integrity, trigger					new optimizer DB2, great TPC-C numbers,

			DB2/2 PE: parallel on AIX/SP2, ported to Sun, HP, ...

			Plan to unify these two in the future (DB2/2 V3)

	1990 DB2/PE research prototype on OS/2 cluster at 1990 COMDEX.

	1993: DB2/2 on SP1 team formed at IBM Toronto (with help from IBM research)

	1994: Beta test of product on SP2.

	1995: General Availability 4Q94

Product concept:

	SP2 is a shared nothing array

	512 node arrays exist, DB2/PE has been demoed to 128 nodes.

	Each node is about 100 SPECint, typically 100MB DRAM, 24 GB disk,

			(split a 60GB raid (=48GB useful) between two nodes).

			150k$/slice fully chromed with software.

			(1200$/specint, 100$/MB DRAM, 3$/MB disk, 35k$ for software.)

	Scaleable interconnect (bisection bandwidth scales as fat tree) with

		hardware: 40MB/s and .5us latency

		low level pipes: 20MB/s 300us latency

		IP software: 18 MB/s async 10MB/s sync

		TCP/IP software: 11 MB/s async, 6 MB/s sync

	Also runs on FDDI, Ethernet.

	Hash data among nodes of array. Then manage hash partitions as local data.

		Use global schema, global optimization, 2PC, and AIX cluster-software

			to give transparency and manage failures and deadlock.

		TCP/IP dial tone is node-fail detection mechanism.

		Similar to the Teradata design (each SP2 node is an AMP),

		All nodes can also be PEPs (parsing engines) and application processors

	Also runs on SMP (logical node concept

	Has high availability (failover) via AIX HACMP (node failover).

Data Layout

	Cluster has single system image

		program can ask about node & partition of a record

	DATABASE INSTANCE: a collection of nodes

	NODE GROUP -- a collection of logical nodes

	LOGICAL NODE -- a DB2 (serial) instance, a collection of storage SEGMENTS

	PHYSICAL NODE -- a real partition of the hardware.

	two default node groups: IBMDEFAULTGROUP = all,

 IBMCATGROUP = node db created from.

	Fault tolerance: HACMP allows failover to spare logical/physical nodes.

			depends on shared disk (take ownership).

			Less automatic/granular than Teradata or Tandem.

	Each logical node has:

 		everything denominated in 4K pages

		n-segs SEGMENTS (files or raw-disk (in next release))

		segpages: number of	4K pages in a stripe.

			data is striped in segpages units across all n-segs.

		hard to change n-segs or seg-pages (unload/reload or backup/restore).

		SEGMENTS circumvent around 2GB OS file size limit.	

		allow multi-disk databases.

	Concept similar to Navigator Schema Partitioning but cleaner conceptually.

	Global DB has one global schema and catalog.

	Each partition has local schema, logs,

		(surprise, no local catalog. Not like Teradata/Tandem/Sybase

 node autonomy)

	Installation commands configure global catalogs

	Instantiates local catalogs.

	Again: this is like Teradata.

	TABLE is created

		NODEGROUP group-name

		PARTITION KEY(field-list) USING HASHING

	Partitioning key should be prefix of most common join fields

		(typically the primary key) This makes clustered joins more likely

	Partition key need not be part of any key (term is miss-named).

	If omitted, partitioning key is first non-long field in record.

	Cannot update partitioning key of record (do delete + insert)

	

	Nodegroup hashing maps to 4K buckets.

 	Buckets map to nodes round-robin by default but users can change

 		map to deal with skew (can used ANALYZE utility to look

 at a trace and pick a mapping to avoid skew).

	Users can add/drop nodes in group. Causes map to change and

		system to remap all buckets that move.

	Utility (redistribution) will change map (table lock and restartable).

		(ANALYZE activity or distribution, then remap).

	Each node logs changes to local log.

	Each node indexes all local data.

	Secondary indices just index local data.

	Secondary index lookup is probe to ALL nodes.

	No unique secondary indices (not like Teradata & Informix & Tandem

	 design where unique secondary index is partitioned by secondary key).

	No foreign keys, triggers or stored procedures.

Utilities

	Four ways to load:

		IMPORT (from export) is fresh table load, relatively slow (it seems)

		LOAD: ÒfastÓ (2GB/hr/node = 100M rec/hr = 28 k rec/s = 3MB/s)

			data must be pre-partitioned pre-formatted in raw file

			new or append load

			writes raw disk blocks

			no recovery/logging, just manual and painful restart.

			no index maintenance (rebuild all indices)

			ÒrealÓ 48 node 100 GB load took 12 hrs

					 (data was presplit & preformatted)

				==> 100 GB / 540 node hrs => .2GB/hr

			split utility runs on MVS or other node to split and format

			data so that load can run in parallel.

		INSERT VALUES : standard SQL insert

		BUFFERED INSERT: one process with 4kb buffer to each partition.

			check duplicates at commit.

	SPLIT (takes file and splits it so LOAD can eat it (split runs on MVS or AIX).

	REDISTRIBUTE: change hash partition mapping (table X lock)

	REORGANIZE: recluster and repack segments at a node (table X lock).

	BACKUP & RESTORE & RECOVER.

	These operations take table or database offline.

		exceptions: online BACKUP

				archives log of changes, allows recovery to point in time

				can backup subset of nodes

			 incremental & online INSERT {values | buffered }

	EXPLAIN

	Performance monitor

	Event trace.

OPTIMIZER:

	Global then local cost-based optimizer

	Claim that MUST do parallel optimization:

		observe HongÕs two-phase optimizer: serial then parallelize scheme

 is more complex and suboptimal.

	DB2 PE optimizer is one-step gestalt (holistic) optimizer.

		(sounds amazing -- guess they broke the complexity barrier).

To quote Gilles Fecteau,: ÒWai Hong's thesis may be valid on share disk, but when considering joins between tables on different nodegroups (where a table may be over 20 nodes and the other over 5), I don't see how you can select the correct plan without considering the different processing power of each for each tables and the network cost. Our optimizer takes into consideration the number of nodes (in the first release it assume uniform distribution for cost calculation purpose) a table reside on when calculating the query cost. Let me stop here as this could be an entire paper. We started with a two step optimizer (serial and post optimization) and found that even more complex.

	Parallel scan, parallel sort, join, aggregates,....

	Global optimizer sends plans to local nodes

	Some late binding based on:

		values of host variables in query

		availability of nodes.

	No hints (GREAT!!!),

	optimizer does OK on TPC-D

	no outer joins (in the next release)

 	correlated subqueries are blocking????

�EXECUTOR

	Application has a coordinator agent that does main SQL statement (like Teradata PEP)

	Pool of preallocted processes (agents) at each node.

	Agents dynamically bind to a application process.

	Agents are one per sub-plan (no parallelism within agent)

	Have proprietary consensus protocol (who is up) based on TCP/IP

		(this is not an SP2/AIX service).

	Much like query decomposition in parallel query planning (R*).

	Use data rivers (called table queues, Gamma split-merge, Graefe exchange)

		special case on-node communication: memory-to-memory

		3 hop protocol for off node (cuts down polynomial explosion as in

 			PVM, SFSC loader protoypes).

	buffered fetch (fat cursors, portals) and buffered insert for data rivers.

	Three-hop dispatch cross nodes (like SFSC data loader or PVM)

		4KB buffers, push (async) or pull (syc) buffering option.

	Join strategies:	nested loop,

				sort merge,

				semi-join (index-only join, no base-table access)

				no hash join

	Parallel joins:

		clustered (co-located if join on hash attribute)

		redistribute both

		redistribute one to match other

		broadcast one to all partitions of other

	Relaxed isolation levels (as in SQL 2)

	Periodic local and global deadlock detection.

	Two phase commit to synchronize updates.

	

Performance:

	Linear and super linear scaling to 48 nodes shown in reports for:

		load, index create, scan, insert, update, join (clustered & broadcast)

Wisconsin big = 4.8 M rec = 1 GB small = 1.2 M rec = 256MB

Nodes Load Scan Agg SMJ NLJ SMJ2 Index1 Index2 MJ

 1 2047 388 1571 1099 2469 - 2487 453 757

 2 837 191 723 521 1172 711 1050 201 377

 4 413 95 357 265 577 244 499 94 188

 8 211 50 127 123 292 120 218 50 96

16 105 25 64 62 149 60 117 29 35

MB/s/node rates

Nodes Load Scan Agg SMJ NLJ SMJ2 Index1 Index2 MJ

 1, .49, 2.58, .64, 1.14, 0.51, - , 0.40, 0.55, 0.17

 2, .60, 2.62, .69, 1.20, 0.53, 0.88, 0.48, 0.62, 0.17

 4, .61, 2.63, .70, 1.18, 0.54, 1.28, 0.50, 0.66, 0.17

 8, .59, 2.50, .98, 1.27, 0.54, 1.30, 0.57, 0.63, 0.16

 16, .60, 2.50, .98, 1.26, 0.52, 1.30, 0.53, 0.54, 0.22

These are super-linear scaleups. Scan rates are good.

Index build times are not so good.

Merge join is based on index scan should be faster.

Other tests on TPC-D like databases with complex queries show

	good query optimizer

	good scalup (often superlinear) on complex queries

	good scalup on multi-user

Only problem cited by authors:

	applications bottleneck since no parallelism above SQL interface (AmdahlÕs law).

	This is true of all these systems.

	solution: parallel applications or parallel OO function invocation.

GrayÕs Notes on Parallel Database Systems: V4, July 1995		�

GrayÕs Notes on Informix PDQ	8 Sept 1994	�

GrayÕs Notes on Tandem NonStop SQL/MP	�

GrayÕs Notes on Teradata 	10 Sept 1994	�

GrayÕs Notes on Oracle Parallel Query		�

GrayÕs Notes on Navigator		�

GrayÕs Notes on RedBrick		�

GrayÕs Notes on DB2/2 Parallel Edition		�

