
Design and Behavior of TSS/ 8: a PDP-8
Based Time-sharing System

_U) V h v DE GOOR, STUDENT m m ~ ~ , IEEE, C. GORDON BELL, ~EJIBER, IEEE, rn
DONALD A. WITCIWFT

dbstra::-TSS/8 is an existence proof for a small-scale tin.;-
syxem. Design, development, and performance analysis

&re occurred in quasiparallel. Performance analysis includes two
=c.Cels an2 rxo levels of simulation (using SIMULA). The final simu-
k fon , an ticurate model of the real operating system, predicts the
cbsened beharior.

Index Tzrnts--Disk, PDP-8 computer, performance analysis, -. .- -dub, s;k-ixion, text editing, time-sharing.

I S >I.\\-, 1967 Carnegie-JIellon University began
the design of a small-scale time-sharing system.
The prixlcipal design goal was a general purpose

\laccx<?: received June 9, 1969; revised July 7, 1969. This - -.:-e: .- w.15 :rexc.nted a t the 1969 IEEE Computer Croup Conference, . .

1
!. l:znc.~y.:~. \linn., June 17-19, 1969. This work was supported by - - i-e .-\.dv.\r.=:.d Fesearch Projects ;\gency of the Otlice of the Secretary
:i - - Ocier.;i. ,.F 44620-67-COOS) and is monitored by the Air Force
-JT.S= ~i %ie::itic Research.

.\. \-3.z t t e Goor and C. C. Bell are with the Department of
- .-q. .-..- ,Z S::cnce, C;~r~~rgie- . \ I~l lon University, Pittsburgh, ['a.

:\ \? .::idt was with the DiKital Eqilipllw~~ t Curp., hlayl~;ird,
:.!sw. He 1s naw with Loyi-Call Systems, Inc., Palo !\lto, Calif.

time-sharing system, bu t with an order of magnitude
decrease in the per console cost.

T h e design was predicated on giving a user a very
short response to a typelvriter or teletype input; bu t
the user would have little arithmetic computing capa-
bility. Thus, through specialization the systern would
be used as follows.

1) A preprocessor to larger, rnore general purpose
systems. I n this mode all trivial tasks (syntax
checking, editing, etc.) would be handled by
TSS/8, in effect, a t the lowcst (cheapest) organi-
zational level. Sinlplc computational tasks (e.g.,
short BASIC programs) \voultl also be run a t the
periphery.

2) Stand alone general purpose systern. Users not
requiring significant arithmetic capability and
large primary nlenlory w o ~ ~ l d usc the system "as
is" (e.g., secondary schools and novice program-
~ w r s) .

3) The Insis for dcvcloping spcci;~lizcd systerns.

VAN DE GO011 p t 111.: DESIGN ASD IlEIIAVJOR OF TSS/8

Specialized time sharing systems use the basic
framework for terminal and file nlanagement (e.g.,
text editing, hotel reservations, etc.).

The main coristrai~lt of the system is based on the
PDP-8. The I'DP-8 was selected because of the follow-

Though very fast, it represents about the smallest
existing computer; any work done using it is easily
extendable to larger systems.
The small primary memory of 4096 words (a
memory field) has historically restricted the pro-
gram size; therefore conlplete program swapping
rates between primary and secondary memories
are quite high.
PDP-S computers have existed for a long time.
The hardware as well as most of the software is
well debugged.
A slightly larger computer tends to perform
marginally better for compute-bound1 jobs. (All
systems without hardware floating point arith-
metic appear to have this problem.) For non-com-
pute-bound jobs a slightly larger computer tends
to be more swap-bound2 because:

a) more bits have to be transferred because of the
bigger words,

b) software for these machines tends to be bigger
(typically SI< words) for about the same func-
tion.

I
5) A PDP-8 computer was available.

The constraints on the design of TSS/8 were the folloiv-
ing.

1)

2)

3)

4)

5)

6)

7)

Achieve an order of magnitude improvement in
the cost/performance ratio over completely gen-
eral purpose time-sharing systems (e.g., 360/67,
PDP-10.)
The system should be able to support about 20 on
line users.
Response time for jobs with low computational
requirements (like editing) should be good.
The systenl should be open-ended, i.e., addition
of future software should be easy.
Existing user programs and system software (like
the EDITOR, FORTRAS COMPILER, etc.) should be
able to run on TSS/8 with no or only minor
changes. This would prevent the necessity of re-
progran~ming the PDP-8 software.
PDP-S hard\vare changes should be kept low such
that it \vould be relatively easy to change existing
PDP-8 processors.
The s ~ ~ s t e n l should be general purpose by provid-
ing protection among the users on a device, core
n~emory, and file basis.

1 A job is considered conlpute-bound when i t does not terminate
the allotted quanta of time running.

A system is considered to be swap-bound when the processor is
idle and waiting for jobs to be brought from secondary memory into
primary memory.

I U(primary; core memory; 4096 vords; 12 bita/vord; 1.5 i rs , 'wr l :

a P(arithmetic, central; laddress/instruction; 1 2 wrds!lrtrrzxtin)

H(secoodary; magnetic tape; - 3 X lo6 bits; 3 3 rs/wrd)

"(secondary; fixed head disk; -. S pl/v; taccess: 0 - 34 ms;

, 1.1 x lo6 vords)

Fig. 1. PDP-8 hardware configuration.

A block diagram of the hardware configuration is
given in Fig. 1. The PDP-8 is a small, general purpose
computer. In its standard configuration i t has a core
memory of 4096 (12-bit) words with a 1.5,~s c>-cle time.
The memory is expandable in increments of 4096 n-ords
(called fields) to a maximum size of eight fields.

The S(P-M), a processor-memory switch, allom-s the
processor or the DiVlOl switch to have access to the
primary memory fields. The S(DbIO1) s~\-ircI~ al!on-s
the high-speed secondary memory, two tape unk= arid
a disk, to access primary memory.

The low-speed devices are connected via the S(1,'O)
bus. Data transfers to and from these devices is on a
character-by-character basis under programmed con-
trol.

~ e c a u s k user programs written in machice language
are allowed, an effective memory protection schen:c had
to be implemented. The instruction set for the PDP-S
makes addressing inside a 4096-word memo? heId easy.
Crossing field boundaries either for data or instructions
is relatively difficult, however, because it has to be doile
by special change data and instruction field insmcrions
(CDF and ChF) which are in the input-output transfer
(IOT) class. A simple memory protection scheme is 05-
tained by only allowing a user to access data within a
single field. Any accesses outside the field cause a pio-
gram trap.

When running programs in a time-s!lared environ-
ment, not all instructions from a user program can be
executed directly. Some have to be analyzed by the
monitor for possible memory protection violation, de-
vice assignment, etc. Hardware was added to allow for
this, giving the processor two modes of operation.

1) MONITOR nzode: In this mode all instructions are
legal and will be executed by the hardware
directly.

1040 IEEE TRANSACTIONS ON COI\IPUTERS, NOVEMBER 1969

2) USER mode: User programs a re run in this mode.
Certain instructions and classes of instructions are
illegal here because of their interference with the

/' time-shared operation. T h e ilIega3 instructions are:

H L T halt
OSR inclusive OR switch register with AC
IOT all input-output transfer instructions.

\\'hen any of the illegal instructions occur, a flip-flop
is set which when the interrupt is enabled will cause a
trap. This n-ill automatically tranfer control to location
1 of memory field 0 and puts the system in monitor mode
(field 0 is the field where the monitor resides) thus trans-
ferring control from the user's program to the monitor.

Instructiocs were added and some were changed to
manipulate the mode and trap flip-flops 'and to save
or restore the mode of operation upon entering or exit-
ing an interrupt state.

Basicall). the memory is divided into two classes:

1) primary (core) memory (M,) for programs being
executed b y the processor;

2) secondary memory (M,) for programs which are
not currently active or tha t a re waiting to be
executed and data files.

Primary Jfemmy

T h e primary memory is a standard core-memory,
and holds the programs the central processor (P,) is
interpreting. In determining the amount of primary
memory, the tradeoff between memory size and system
performance has to be considered. Initially i t was as-
sumed that field 0 would be sufficient to contain all
of the resident part of the monitor. T h e lack of enough
buffer space for 1 / 0 for more users necessitated two
fields for the resident monitor. Because of the imposed
limitation on the size of a user program, one field is
needed to run either user programs or parts of the non-
resident monitor. In order to allow for simultaneous
swapping and processing, a t least one more field is re-
quired.= For these reasons the minimum system has
four fields of core memory of a maximum possible eight.

Secondary Xemory

The Secondary Disk Alenrory: T h e secondary disk
memow serves the following functions: swapping device,
file storage device for system programs (nonresident
monitor, etc.), and temporary storage for user programs.
Because of its use as a swapping device, i t was very
important to have a low access time (i.e., high number
of revolutions and fised heads) and a high transfer rate.
For this reason and for its low cost per bit, the Bur-
-oughs model 9370-2 disk was selected. I t s characteris-
.ics, hon-eve:, were such that it necessitated a rather
elaborate interface. This interface maps the semi-

It nas esprct~uf that the improvement in response time by add-
i r . ~ one rie!d \vwld be rn~ich more than from any field added there-
afrer. Simuhtinn results later on show this.

continuous address space of the computer into a seg-
mented BCD-addressed address space of the disk; has
a buffering system which can be generalized to arbitrary
long waiting delays; and has hardware to detect out of
range disk address requests and to detect and prevent
the execution of erroneous commands. The average
access time is 17.3 ms, the transfer rate is 1 word per
5.0 ps, and the capacity is 1.1 X lo6 words.

Magnetic Tape Memory: A t least two magnetic tape
units are connected to the system. \Vhen TSS/8 is used
as a "stand alone" time-sharing system, they are used a s
"backup" for the disk and as the "mass storagen device
for users to enter their files onto the disk.

USER MACHINE

Looking at Fig. 2, several levels of machines can be
identified. T h e absolute machine is the collection of the
TSS/8 hardware components. By adding the monitor
to the system, the virtual machine is obtained, which
allows time-sharing and adds a set of powerful software-
interpreted instructions. Adding the library programs
(e.g., the EDITOR, the FORTRAN COMPILER, BASIC) Creates
the user machine. This is the machine the user sees from
his console. The user in turn, by writing programs, can
create new machines.

Instructions to the virtual rnachine allow a user's
program to transfer files. I n this way a user can have
programs of almost arbitrary size which he can cdhtrol
as a paging environment. Some of the TSS/8 software,
like BASIC, uses the paging feature.

The monitor consits of the following two parts.

1) T h e resident monitor is a collection of routines
which have a high frequency of use or are directly
necessary to keep the system running (e.g., disk
service, teletype service, scheduling, buffers). I t
occupies two fields.

2) The nonresident monitor is divided into two parts:
the file handler which controls the hierarchial file
system, and the system interpreter which inter-
prets user's commands. Each part is about one
field in size.

Fig. 3 shows the cooperation of the various programs
and parts of the system. On top are the different jobs
(only one is shown) and the different hardware devices
(only one is shown). All commu~iications of jobs with
devices, and vice versa, is done through traps and inter-
rupts. The monitor never looks for work to do. Work is
signified by some outside event (e.g., time up, a char-
acter input).

Job-device conlmunication is through the common
pool of buffers w!lich are dynamically linked together.
The buffers are individually eight words long, each
capable of storing ten characters. T o illustrate how data
commlinication is handled, I C L us look at n job rcquest-
irlg teletype illput. The running job first gives a special

VAR DE COOR pt ul.: DESIGN AND UEIIAVIOIt 01: TSS/II

(l!nrdr:.lrc Ccipcnrnts)

(1.e. '
\

processor +
Abaolute tlachine +

teletypes + resident monit Virtual Machine + --
entr ies t o (for users) User Hachines +
ocher systems) non rcsident.monitor

(e.g. , f i l i n g) l ibrarv proarams I I user proaram(s)
,

Fig. 2. Levels of machines from the hardware to user defined machines.

I InterNDt Identifier 1

Fig. 3. Cooperation of tasks.

instruction (from the IOT class) which is trapped to the
monitor. The interrupt identifier (11) then activates the

'correct trap service routine. This routine checks for
characters in the input buffer (associated with the job)

(and takes a character from the buffer and transfers it to
the appropriate place in the user's program. In this
way IOT instructions are simulated.

Teletype device input is handled as follows: When a
character is entered from a keyboard, an interrupt
occurs. The interrupt identifier activates the appro-
priate device service routine which takes the incoming
character from the keyboard and stores it in a one word
internal buffer associated with the device. Every 90
ms (timed by the clock interrupt) all internal buffers are
scanned and if a character is found, it is transferred t o a
buffer associated with the device. Teletype output is
handled similarly but in reverse order.

Interrupt Handling

Fig. 4 shows how interrupts are handled in TSS/8.'
An interrupt causes the current process to be inter-
rupted (IP blocked). The interrupt identifier (11) estab-
lishes the identity of the interrupt. When the process to
be activated (PA) is very short, it is executed immedi-
ately and interrupts are disabled. Depending on the
time the PA request requires, either the PA will be
awakened or the PA will be queued, to be awakened
after higher priority interrupts have been serviced. The
priority is mainly determined by the cl~aracteristics of
the process requiring service.

' Reentrant proxrams cannot easily be written. The subroutine
calling instruction J 31s places the return address in the subroutine.
Also, the PDP-8 does not have index registers, thus it is difficult to
ace= different data areas associated with a common process.

Fig. 4. Interrupt handling.

Scheduling

The present scheduling algorithm is essentially round
robin. Each user is served in a fixed order, independent
of the time his request is received. A user reqhiring
service is run for a fixed quantum of time, 100 ms, and
the next user requiring service is run. If a user requires
input-output,.lris time is terminated. The order in which
the users are examined is fixed. Users with file-transfer
requests are served first. A user is swapped out only
when he is done running and another user has to be
swapped in or when another user with a higher position
in the round robin scheduler wants to be swapped in.

FERFOR~~ANCE ANALYSIS
The following section will analyze the system for the

case of all users doing text editing. The edit times for
different commands and line lengths of a standard PDP-
8 editor were measured. I t was found that all commands
took about thk same time (typically 2.0 ms). The time
to input or output lines was found to be linear with the
number of characters and was about 2/7 rns per char-
acter.

A feasibility calculation was made before the system
was built. If we assume continuous program swapping
between core and disk, the following times are available
per user.

Average swap time 71 .O ms
Swap overhead 44 >(0.3 = 13.2 ms
(due to cycle stealing)
Average edit time per user 12.0 -
Total 2 5 . 2 ms

-
Left for system overhead 45.8 nls

1042 I IXE TILiXSACTIOrYS ON COMI'UTERS, NOVEMBER 1969

The example sho\vs that under the assunlptions made,
64.3 percent overhead is allowable.

.A simulation was made (in ALGOL) and the effects of
queuing due to swap and process wait were studied.
The results of this simulation corresponded with what
was expected and showed under simplified assumptions
that acceptable response times5 could be obtained.

Fig. 5 sho\vs a simplified model of the second simula-
tion program (written in SIJ~ULA). The "think time" is
the time between the completion of a service and request
for a new one. Think times for this were extracted from
JOSS statistics [I] and from Scherr [2]. These times
are taken from a negative exponential distribution with
an average of 25 seconds. The queuing delay is the time
spent waiting for core space and processor time. This
depends heavily on the number of fields 2nd the char-
acteristics of the disk and processor. The processing
delay is the time it takes to process the job. I t is initially
allowed to be 100 Ins, but i t may be shorter for interac-
tive jobs and longer for compute-bound jobs. The time
the processor can spend on processing user jobs is less
than the elapsed time because of overhead. This over-
head is the clock service overhead (7 percent), plus the
swap overhead (30 percent while swapping), and the
character handling overhead to and from the 1/0
devices, which varies with the number of users.

The requested processing time for a job is the time the
job would take on a standard PDP-8 gi;en a certain
command and line length (measured) plus the time

i .pent in the monitor due to servicing trap interrupts.
The system transfers data between the user and the
monitor on a character-by-character basis; a line-by-
line transfer basis would reduce the monitor overhead
for each new job.

Fig. 6 shows the simulated response times with two
user fields and the Burroughs disk. The 90 percent curve
indicates the elapsed time after which 90 percent of the
users are served. The increase in response time with
more users occurs because:

1) the overhead increases with thc number of users
(tllis increases the elapsed time of a running pro-
gram), and

2) there is an increase in probability that the user
requesting service has to wait in a queue.

Fig. 7 sl~o\vs the simulated response times of the sys-
ten1 as a function of the number of users and the number
of user fields. In the case of one user field (U = 1), the
response times are much worse than those for two or
more user fields. This is due mainly to the fact that
s a p p i n g and processing of user programs cannot be
overlapped. .After 16 users the effect of queuing for
swapping becomes visible. \\'ith tn.0 user fields, the pre-
formance is improved considerably. Adding more user

O ! 2 I 0 ,I4 28 A
NUMBER OF USERS

Fig. 6. User average and 90 percent response times of TSS/8.

6 A A 3:
NUMBER OF USERS

Fig. 7. User average response times as a function of the number of
user fields.

fields only helps for a small number of users because the
probability of not having to swap (because the user is
already in core) increases. With six user fields and four
users, no swaps are necessary. Fig. 7 shows that the
performance increase by adding the second user field is
greatest; more user fields contril~ute only marginally
to the perforn~ance increase.

Fig. S shows the response times of the system with
one, t\vo, and six user fields and the DEC DFOS disk
compared \\-it11 tlle C l I U systeln (two user fields and
the Burroughs disk). The DFOS disk has an average
access time of 16.6 111s (Burroughs disk is 17.3 ms) and a
transfer rate of one word per 16.6 ps (Burroughs disk
is one word per 5.0 ps). Fig. S sho\vs that with one user
field the system becomes swap-bound very rapidly.
With t~vo user fields the system's response time is much
worse than the C I I I J system (I~roken line). ' The re5pon.e time is defined as the el'lpsed time between a ser-

vice r e q w ~ r 2nd thc reqlrczt coniplction. Fig. 9 sllo~vs the perfor~nance of I'DP-S based,

1 I I I 1 I I 1
O 4 8 12 16 20 24 28 32

NUMBER OF USERS

Fig. 8. User average response times with DEC DF08 disk as a
function of the number of user fields.

I,,,,,,,
' 4 8 12 16 20 24 28 32

NUMBER OF USERS

Fig. 9. User average response times as a function of processing
power of 16-bit processors with iour thousand word programs.

0 l I I I I I I L
4 8 12 16 20 24 28 32

NUMBER OF USERS

Fig. 10. User average response times as a function of processing
power of 16-bit processor with eight thousand words programs.

NUMBER OF USERS

X -Y means: X = number of uscr fields to be emptied; Y = n u n
ber of user fields.

Fig. 11. Average response times with scheduler modifications.

Burroughs disk syste~li coinpared with systerxs of differ-
en t processor power (P). The plot assumes a 16-Li:
computer with instruction set improvements cw-
responding to 1, 1.3, and 3.0 times a PDP-S. \Ye also
assume the same disk. T h e swap time will increase by a
factor of 33 percent because more bits have to be t r a m
ferred. T h e assumption was made tha t the 16-bii
machine has software written to operate in 3 4K words
environment. Fig. 9 shoivs that when P = 1 the systern
performs worse because of the increased swap time (z
could be expected). T h e crossover point lies somewhere
between P = 1 and P = 1.3. \\'it11 P = 2 the system per-
forms consistently better than the CAIU sysrem.

Fig. 10 is similar to Fig. 9, except for the n s u n ~ p t i o n
tha t the system has software written to operate in an
81< words environment (as is very often the case \\-it3
larger machines). Because of the large increase in SK6p
time, the system only performs better when P = 2 and
there are a smaller number of users. \\;'irh a large
number of users the pon-er P = 2 is always ofiset by the
increased swapping time.

Fig. 11 shows the effect of' a small change in the
scheduler. T h e new scheduler will try to keep one user
field free, i.e., when a user is served and the number oi
free fields is 0, a user will be swapped out. I n this way a
user requesting service can be immediately swapped iz
directly. With a small number of users, ho\vever, this
might be offset by a decrease in the prob.~bility of a

4 user being in core.

T h e basic 'system design objectives were realized. The
simulations indicate t ha t the hardware structure of the
system, for doing text editing, is near optimal, although
certain minor modifications can still increase the per-
formance. As a direct consequence of the simulations.
some improvements have been made. Also, possible im-
provements in the operating system can be studied.

Although the simulation results have not been com-
pared precisely with empirical results, an eight user
system has been checked and roughly agrees. Subse-
quent work will make such a comparison and also
account for d'iscrepancies.

Although the system was initially conceived and
designed a t CMU, the final design and impleinentation
was done a t Digital Equipment Corporation. IYithour a
real system to show feasibility, simulation would have
been an exercise of questionable value. ClIL- appreciates
the loan of a PDP-8 for both a user and a performance
measurement system.

[I] G. E. Bryan, "JOSS: 20,000 hours at the con sol^=\ statistical
summary," the RAND Corporation, August 1967.

[2] A. L. Scherr, A n Analysis of Time-shared Compdcr Syslcrr~.
Cambridge, Mass.: hl.1.T. Press, 1967.

