Very Raye
-

o CQ F 3 ’
C«o’qi‘m,. o Dm::\;u., CocC. <L EOTD
?)k\Q\L\ /;7>x, e D 3C Md/'Y\V‘f/Q
3 Newoeds St ae
P

o » ; - :
MW wRAwasee (A Uit -2yl

VA

(Muv
" ‘ltw LW;HL |
Spee &\f le | :~e£>
Ve Vphoon SATES Th
N

WL e \

~ —\
o W \Lv’

Job Code Sheet Title S Y D A c

Sheet Ref.
A4

A YN fod

© SYDAC Pty Ltd.

N R .. /.. /.. JAlrights to the material contained in this

document are reserved. No part of it may

N o /.. be reproduced or transmitted in any form, or
et et - Y by any means, without the written permission

liceia | Chanmae Cincra | act lecita Onmnamr Datd Checked Anoroved Hof SYDAC Ptv Ltd.

CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL OATA CORPORATION *
ONTROL DATA CORPORATION * CHIPPEWA LA30RRATORY ¥ CONTRIL DATA CORPORATION *
NTROL DATA CORPORATION ¥ CHIPPEWA LABORATORY * CONTROL OATA CORPORATION * C
TROL OJATA CORPORATION * CHIPPEWA LA30RATORY * CONTROL DATA CORPORATION * CH
ROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHI
OL DATA CORPORATION ¥ CHIPPEWA LABCORATORY * CONTROL ODATA CORPORATION * (CHIP
L DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPP
ODATA CORPORATION ¥ CHIPPEWA LABORATORY * CONTROL OATA CORPORATION * CHIPPE
DATA CORPORATION * CHIPPEWA LABORATORY ¥ CONTROL DATA CORPORATION * CHIPPEW
ATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA
TA CORPORATION * CHIPPEWA LA3ORATORY * CONTROL DATA CORPORATION * CHIPPEWA
A CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA L
CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA LA

TORPORATION ¥ C * CHIPPEWA LAB
ORPORATION * CH CHIPPEWA LABO
RPORATION * CHI CHIPPEWA LABOR
PORATION * CHIP HIPPEWA LABORA
ORATION * CHIPP PRELIMINARY IPPEWA LABORAT
RATION ¥ CHIPPE PPEWA LABORATO
ATION * CHIPPEW 8500 PEWA LABORATOR
TIOGN * CHIPPEWA EWA LABGRATORY
ION * CHIPPEWA REFERENCE MANUAL WA LABORATORY
ON * CHIPPEWA L A LABORATORY *
N ¥ CHIPPEWA LA LABORATORY ¥
* CHIPPEWA LASB LABORATORY * C
¥ CHIPPEWA LABD ABORATORY * CO

CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CON
CHIPPEWA LABORATORY * CONTROL DATA CORPORATION ¥ CHIPPEWA LABORATORY * CONT
HIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTR
IPPEWA LABGORATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTRO
PPEWA LABORATORY * CONTROL DATA CORPORATION ¥ CHIPPEWA LABORATORY * CONTROL
PEWA LABCRATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL
EWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL D
WA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * TONTROL DA
A LABORATORY * CONTROL DOATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DAT

LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA LA30RATORY * CONTROL DATA
LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA
ABORATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA C
B0RATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CO
ORATORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA COR
RATORY * CONTROL DATA CORPORATION * CAIPPEWA LABORATORY * CONTROL DATA CORP
ATORY * CONTROL DATA CORPORATION ¥ CHIPPEWA LABORATORY ¥ CONTROL DATA CORPO
TORY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPOR
ORY * CONTROL OATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORA
RY * CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORAT
Y ¥ CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATI

¥ CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATIO
* CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION

CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION
CONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION ¥
ONTROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION *
NTROL ODATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * C
TROL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL OATA CORPORATION * CH
ROL DATA CORPORATION ¥ CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHI
OL DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL OJATA CORPORATION * CHIP
L DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPP

DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPE
DATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEW
ATA CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA
TA CORPORATION * CHIPPEWA LABORATORY * SONTROL DATA CORPORATIQON * CHIPPEWA
A CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATION * CHIPPEWA L

CORPORATION * CHIPPEWA LABORATORY * CONTROL DATA CORPORATINN * CHIPPEWA LA

Distribution:

Le
Ra
T.
D.
D.
M.
P *
G
R
De
We
R
Je
We
G L]

w.
Ce
A,
We
Al
Ce
G.
Mc
We
G
Ls
A.
Ba
Ca
A.

Gallup
Moor e

SPECIAL COPY FOR CANADIAN DIV.
Il I I N R R Y

PRELIMINARY
8500

REFERENCzZ MANUJUAL

This is an incomplete working draft
and will be enlarged, corrected and
revised periodicalty. Distribution
is restricted to those listed below.

Ammerman
Swedberg L o

Canland
Witlis
Juet ten
Crossen
Sauls
Grina
Bhend
Hor ton
Pearson
Katz
Simpson

er

Table of Jontents

Part 1 8000 Instruction Formats and Codes
Part 2 System Descriotion

Introduction
8000 Processor
Instruction word stack &
instruction address stack modules
Register modules
Floating add modules
Filoating muitioly modules
Memory
170 Section
Exchange packages
I/0 channel request
Floating point arithmetic
Binary arithmetic

Part 3 Instruction Descriptions
Appendix
A Index

B Di-bit/octal/decimal/hexadecimal table

iii

pPart 1

8000 INSTRUCTION FORMATS & CODES

INSTRUCTION FORMATS

4-bit instruction codes (1 or 2 narcels)

_________________ F
{ | l !]
[& | 4% 1 & 1 &] i
[|] |])
_________________ K
F i] K K
{ { l H]
L &4 1 4 1 & | 20]
{ | ! |
b-bit instruction codes (1 parcel)
F n n F
{ 1t |] n
{ 6 12 4 + 4 1
[I |])
8-bit instruction codes {1 or 2 parcels)
F | K
{ | l]
[8 I &% 1 &)
{ I |]
_________________ F
F | K ek
{ i !]
(8 & | 20]

Instruction code
X reglster designators
for operand source
and destination

20 bit constant

Instruction code
6-bit constant

X register designator
for operand source

Instruction code

X register designators
for operand source
and destination

20-bit orogram constant

dibits/hex.,

0000

0001

ggoe

0003

00190

0011

6012

0013

0020

5021

0ae2

0023

0030

0031

0032

D033

gao

01

02

03

04

05

06

a7

08

09

0A

08

0c

00

0E

0F

8000 INSTRUCTION CODES

Program error exit

Logical product of (X}) and (Xk) to Xj

Logical sum of (X]) plus (Xk) to X}

Logical difference of (X]) minus (Xk) to X]

Copy (Xk) to X]

Copy complement of (Xk) to X}

Shift (X]) left by (Xk) or right if (Xk) is negative

Shift (X)) right by (Xk) or teft if {(Xk) is negative

Floating DP sum of (XJ]) olus (Xk) to X])

Floating ODP difference of (X}) minus (Xk) to X]|

Floating divide of (X]) by (Xk) to XJ

Population count of (Xk) to X}

Fioating OP product of (X)) times (Xk) to X|

Integer product of (X]) times (Xk)} to X]

Program error exit

Pass

clock
periods

32

8/3

873

dibits/hex.

0100

0101

010

6103

0110

d111

6112

0113

0120

121

0122

0123

0130

0131

0132

0133

10

11

12

13

14

15

16

17

18

19

14

18

1C

10

1F

Transmit kK to X}

Transmit complement k to X]j

Integer sum of (X]) plus k to X}

Integer difference of (X]) minus K to X]J

Unpack coefficient of (X]) to Xk

Unpack exponent of (X)) to Xk

Pack coefficient Xk and exoonent X] fto Xk

Integer difference 0 - (Xk) to X}

Begin system call [MTF]

End system cali [MTF1

Bltock read input channel (X]) to address {(xk)

Block write ouftput channet (X}) from addr. (Xk)

Read channel request to X] [MTF]

Enter XA from Xk [MTF)

Program error exit

Program error axit

clock
periods

2

dibits/hexe

0200

0201

0202

0203

0211

0211

0212

0213

0220

0221

0222

0223

0230

dz231

0232

0233

20

21

22

23

2h

25

26

27

28

29

2A

2B

2C

20

2k

2F

Store (X)) data into memory at address K

Store (X}} data into memory at address (Xk)

Read/storet! data at addr. K to X} / (X}]) to adir. K

Read/storet! data at addr.{Xk) to X) / (X}) to addr.(Xk)

Read data at address K to X}

Read data at address (Xk) to X)

Read program at absolute address K to X]J

Read program at absolute address (Xk} to X}

Read program at absolute address P + K to X]

Transmjt P + K to Xj

Transmit K to X])

Transmit XA to X]

Set iInterlock fitags from Xk (IPF)

Clear interlock flags from Xk (IPF)

Read interlock register to X}

Read internal clock to X]

clock
periods

1

15+

15+

15+

15+

15+

15+

15+

diblits/hex.

(@]

D360

0301

6302

0303

0310

0311

0312

0313

0320

0321

0322

0323

0330

0331

0332

0333

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3k

3F

Jump to P + K

5et (X)) =

Jump to P

Jump to P

Jump to P

Jump to P

Jump to P

Jump to P

Set (X)) =

Set (X)) =

Set (X)) =

Set (x]) =

Subroutine

=

K

ex

and call

it (X))

it Xy

it (x))

if (x))

e (X))

if (X))

and call

and call

subroutine at P + X

in range

not in range

is equal to zero

is not equal to zero

is oositive

is negative

subroutine at K

subroutine at (Xk)

& calt tioc. routine at addr., K [clear PRF]

§ call lib. rout. at addr.{Xk) {clear PRF)]

it to (X)) + K

Library exit to (X})

Jump to K

£xchange exit

K {set/clear PRF]

clock

periods

7-18+

7-18+

3-7-18+

3-7-18+

3-7-18+

3-7-18+

3-7-18+

3-7-18+

7~-18+

7-18+

18+

18+

7-18+

18+

7-18+

dibits/hex.

o8]

103X

101X

102X

103X

11XX

12XX

1 3XX

20XX

21XX

22XX

2 3XX

30XX

31xX

32XX

3 3XX

40

bl

438

4C

5x

6 X

7 X

8 x

9x

Ax

Bx

Cx

Dx

Fx

clock

periods
Save lower (X]) for n Dits 2
3lank lower (X}) for n bits 2
Left shift (X}) by n bits 3
Right snift (X}) by n bits 3
Integer sum of (X}]) plus K to Xi 3
Integer sum of (X}) plus (Xk) to Xi 3
Integer difference of (X)) minus (Xk) to Xi| 3
Ftoating sum of (X]) plus (Xk) to Xi 8
Floating difference of (X)]) minus (Xk) to Xi A 8
Floating product of (X)) times (Xk) to Xi 8/3
Branch backward 1 words [f (X]) < (XKk) 3-7-18+
Read data at address (X)) + K to Xi 15+
Read data at address (X)) + Xk to Xi 15+
Store data at address (X)) + X from Xi 1
Store data at address (X)) + (Xk) from Xi 1

Part 2

SYSTEM DESCRIPTION

1%
<= =>{]
{]
PERIPHERAL <- =->I I/0]
{]
CQUIPMENT <= - [STATION]
]
]

-—— - v - - —— - -

Fige

2-1

¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ F ¥ ¥ ¥ ¥ ¥ X X ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ X ¥ ¥ ¥ ¥
x *
B e e e mem————————— ¥
% [) e ekl il ol s *
¥ (PRJICESSOR 1 {] ¥
¥ {] <= = = B ->[] *
* (PO] {] ¥
x { I\ () M
L L e T Tt \ {] *
¥ \ { MEMORY] ¥
¥ \ [) *
¥ cmmereccerraoa \ [] ¥
¥ { 1 \ { (64 Bits)] ¥
* [PROCESSOR J<= = =\= = = = = = = = = ->(] ¥
o N ! 1
* { P11 1\ \ [] *
* {] \ \ (] *
I L \m-mmmmmmm []k
* { Interlock] [) *
¥ [register] {] *
¥ ememrememmmmme - e i (256K words] ¥
»)/ / (P
¥ [PROCESSOR 1 / / {) ¥
¥ (1/ {) ¥
¥ { P2 J€e = =/= = = = = = - - - ->1 1 *
* {] / (] ¥
A R TP / () x
* / [bl] *
¥ / (] ¥
L it e / [Banks] x
o 1/ L 1
¥ [PROCESSOR 1 {] ¥
* [J<- - - B Y | 1 *
L P3] [7)) *
¥ [] *
¥ ecmem e e————— A *
* i S
¥ v %
B e m e v - " o o - - n o o - — — n > WS 4 - L G R MR A E e = e R e . - »*
¥* [] E
* { 170] ¥
¥ [] *
* 8600 me—mmmeemmeeeemmer e mm e e e e e ———m—mm——moeo *
¥ COMPUTER A A A A *
® I 1 I i *
¥ X X ¥ ¥ X X ¥ ¥ X|¥ X X X ¥ ¥ X X|X ¥ X X X X X|¥ ¥ ¥ X ¥ ¥ ¥|¥ X ¥

{]
[MAINT.]
[CONTROL 1
[UNIT]
[]

8500 SYSTEM

2-0

v v
(] [1
{ BULK 1 [DISK 1]
l] £]
{ MEMORY] [FILES 1
{) {]

- . - - - - .-

INTRODUCT ION

The 83000 system is a multi-processor system with four 8000 orocessors
sharing a common 256K 64-bit word memory (figure 2-1). The processors
communicate with an I/0 station, maintenance control unit (MCU), bulk
memory, and disk files through the common memory via sixteen independent
I70 channels, The I/0 station (typicatly a 5000 station confjiguration
or a 7000 Is70 station) handies all I/0 operations.

£Each of the four 8000 processors is an independent computation unit
including arithmetic units, sixteen 54-bit operating registers, and

a ftwelve word instruction stack (figure 2-2)., Part 1 of this manual
lists the instruction repertoire for the 8000 processors, and Part 3
provides descriptive information for each instruction. Each processor
executes programs or program segments stored in the common memory upon
command or assignment by the operating system software or programs
operating under the controf of the operating system. The 8600 operating
systemn software will be described in a separate manual.

8600 System Parameters

8000 Processor Unit (13 modules)
- bbk=-bit internal word
- binary computation in fixed point and floating point format
- twelve word instruction stack
- synchronous infternal logic with 8 nanosecond ciock period
{clock frequency variable in 57 increments by MCU program)

Memory (566 modules)
- 256K words of llnear select memory (b4-bit words)
- b4 independent banks
- 4096 words per bank
- 2507 nanosecond read/write cycle time
- 8 nanosecond per word maximum transfer rate

I/0 Section (8 modules)
- 16 channels
- each channel full duplex
- 40?7 nanosecond per 64-bit word maximum transfer rate

The 8600 system is the result of 3 development program to provide computing
capacity substantjially beyond that of the 7600 systems. By using the
multi-processing capabilities of the 8500, computation in the 86080 is
expected to average ten times as fast as correspondinyg computation in the
7600 system,. The 8600 is not machine code compatiple with 7500 systems.

The Bb00 is ohysically packaged in 125 pluggable modules (5™ x B"™ x 2.5").,
There are 13 modules In each of the four 8000 processors, 66 modules in the
memory,y and 38 I/0 modulese. In the manual sections which followy, the system
ovperation will be described In terms of module functions when practicable,

* Floating divide
¥ pPopulation count

¥ Normallize
* Initial shift

--------------- (]
{] ---0 FLOATING]
---[FLOATING) { { ADD]
{ (DIVIDE] t MODJLES]
{ { MOOULES 1 [{ FA]
{ [DA] [—=remremmmmm——-
[——emmmmmemem - { FB]
(08 } memecescmecm—a -
............... A
A !
I i
- - e e = e wm m e e = e I - -
| 1 !
| | |
] b b
4 4 4
| i i
|] !
Y v v
[] ¥
-=-[REGISTER 1 ¥
[I MODUULES] ¢
-=~[I bits 1 *
[[[RA 0-15 1 *
..[[............... x*
f [[RB 16-31 1 ¥
[[~==mmmemmememm
MEMORY<~ - = = B4 - - =>[[RC 32-47 1
[==eeeeeemeeene——- see
[RD 48-63 1 Fige
------------------ 2-5
[INSTR.]
{ WORD] see
MEMORY - -64- =->[STACK 1 Figs. MEMORY<~- 20
[MODULE 1 2-4,5 SA
[IW]

¥ 12 word IWS

¥ RA adder
* P register

Flg'

2-2 8000 PROCESSOR

2=2

---[FLOATING

]
]
{ MULTIPLY]
[MOpULES]

]

- s ws ms me om o e - - -
- s o - an an - -

- - e o s -

16 X registers

Shift

Boolean

Mask

Pack/Unpack
Long add
XPW register

INSTR.]
ADDRESS]
STACK]
MODULE]

]

- - - - - -

Instr.addr.stack
P register

CIW register

IPT register

8000 PROCESSOR

Instruction Word Stack & Instruction Address Stack Modules (figs.2-3,y 2-4)

The instruction word stack (IWS) contains twelve bik~bit registers which hold
program instruction words for execution. The instruction stack information
is essentiatty a moving window in fthe orogram code. Each new word entered
in the IWS is entered from memory two words ahead of the program instruction
word currentiy being executed, and at the same time the oldest previously
executed instruction word in the stack is discarded. The IWS allows the
program to branch back to previously executed instructions still in the IWS
wilthout referencing memory.

It may be necessary in program code to occasionally complete a bL-bit in-
struction word with one parcel pass (0033) instructions, This must be done
to avoid starting a two parcel instruction in the fourth parcel of an in-
struction word. One parcel pass instruyctions are also used to pad out an
instruction word so that the next instruction will be the first parcel of
an instruction word (this is necessary for branch entry points because a
branch instruction destination address must begin with a new word).

Program instruction words in memory and the IWS are divided into four 16-
bit fields called parcels. An 8030 instruction may occupy either 1 or 2
parcelse 1-parcel instructions consist of a 4, 64 or 8 bit instruction
codes and two or more designators (is Jy K)o In 2-parcel instructions,
the k designator is expanded intfo a 20-bit operand K (see page 1-0 for
information on Instruction word formats).

{ 16 ! 16 | 16 | 16]
¢ 20 2
C P 2 1 1 1
¢ s 16 s T

e . - e m o Wm YR S e R S e e S o e o S M o e G R e e e A em e e e YD WD AR MR WD R W R W W e em

Instruction Combinations in Memory and IKWS

o4=-Dit Instruction words are read up one at a time from the instruction word
stack IWS into a Bu=-bit current instruction word register CIW. From the CIW
each instruction word [s gated on=2 parcel at a time to the 16-bit instruc-
tion parcel transliator IPT where each oarcel is interpreted for execution,
Tne IPT controls all of the data ftransmission paths between the sixteen oper-
ating registers and the arithmetic units contained in the four register
Todules and seven functional unit nodules (figure 2-2).

NSA
from
INW
module

8ranch
address
from

mA & RB
modules

—
H

.,
«
"

_-)[

[I1AS]
[Shift Control

|
|
v |
----- shift stack ~==-=--> l
------------------------------------- d |
{ | IAS |] i |
(i instruction address stack |] S |
| 12 ranks of 20-bits | 1-> ¢ |
(! } | l] a |
{11110109 08 07 06 05 04 03 021011001 r]
------------------------------------- d l
f | | | | | | | | | | | v
V] v} Vv v Vv Vv v Vv Vv v v v L SE N O 3F O S SE R R R R R
..................................... * INS *

¥ Snjift Control *
S S Y
{] |
..................................... i
Y]

shift stack=-->

i |
[|
{ | | |
———— | |
1 v 1 | b4-bit
er 1 | ! | word
1 i | i from
--=-- I | SM
|] I module
{ | i
| |]
v | v
I | ===esm=a--
[| [Select 1}
| 1 [IWS 1-
\ / | [Rank 1
\ / | e
Incre- |
ment P |
|
!
v
(CINW]
{ Parcel } - - - -
{ Select]
IA module
IW module
Fige 2-3 IA and

Iy I I T R RS R RS TEY R

¥ { 1 | } | I ¥ d
¥ | IWS | ¥ i
¥ | instruction wWord stack { * S
——->% | 12 words i ¥-> ¢
¥ f | bt-bit words [| * a
¥ f ! 1 l i | ¥ r
¥*11110109108 07 06 05 04 03102101100%* d
IR R R Y P R Y Y SR S R RSN R
| i I | i 1 | | | b |
6 0 0O 0 0O O 0O O 0 o0 o0 o0
A E YA VA A YA S SRS S E
=> = J- A= |- 1= 4= 1= I= 1= 1= 1= 1-]
vV V. V. V. vV VvV vV VvV Vv Vv VvV v
{ CIW 1
16 bits > 16 bits > 16 bits > 16 bits 1
l |
| |
0 0
/| /'t
e e R T I R A |
v v
(] { IPT]
[K l<-4-{instr.parcel]l
(] [transiator]
{ 20 bits] { 16 bits]
IW MODJULES = IWS and CIW Control

2-4

------ Cmmmmmccemeemmmemmeeceo-o¢o===-== XA bits 05-12

i eeeemmm——— e from RC module
IAS | \ IFA + 1 /
n] ---bits---<-=-\ Adder /<=--==--
I - | | 60-13 e ==m=--- |
{ ! | ! [|
------------ ! vV v v e ikttt
{ l] | —=mm————— (IFA)
{ NS A 1 I [select 1-=->I[Register]
{ | = { 20 bits]
............ ‘ - R o Em Er mm e A e A S e W A - e A mm e me m A e an -
A | | |
| | bits bits
--------------- 00-19 05-19
[P registers Jeeceeccacnmeneccanaaa- ! Y,
[in]~ | I mm———-
[IA & IW mod.]- | { | [§ J<-==-- XA counter
--------------- | I | | -————— bits 00-0«
A | t { { { IA module
| v v v v v
[seltect] \ P+1 / \ P-i / { select]
A AA | { i
| ! | 1 ! !
! | emmem-me—- ! |
I i b D i
| !
3ranch address 1
from ==c-c-ccemcercrcncnee-- [
RA & RSB ! !
modules v v
-------- [seject]
/ | eeeececccccccec e c e m e —rm e =
/ | I |
/ | bits bits
/ v 08-19 00-07
/. memmeme=- | |
RA -=-> &] i |
bits 08-19G]l - | |
from | | | |
RC & RD | v v 1
modules I e i |
[\ RA / !
| \ Adder / |
data @ @ eem=-- \ bits 08-19 7/ |
storage--=->f{ 1] =-c-m-mmmmceer----- |
reference ===-- | |
qroup A v v
| ---
PRF { 20-obit]
{ Storage Address Register
[19 08 + 07 00 1
}
v

to SA module

Fige 2-4 IW MODULE - Sto~age Address Components
2-5
[}

Register Modules (figure 2-5)
X registers

15 X registers are the operating registe~s for each 8000 processor. They
are individually designated in this manual by di-bit sympols X00 thru X33.
These registers are each b4 bits in length and serve as operand source and
destinatjion registers, operand address registers, and indexing registers.,
Fach register is a clear/enter type register with gated clock pulse cont-
role Data will remain in an X register until a3 control condition generated
in the X register access control unit specifically gates a clock pulse fto
clear the data and enter new data. At most one X register can be cleared
and entered with new data at the end of any given clock period.

Communication between the X registers and the arithmetic networks involves
a substantial merging of 64-bit data paths and distribution of b64-bit data
paths. Almost every arithmetic network has at least one data path to the X
registers and one data path from the X registers. The floating point mod-
Jdles have multiplie d4-bit paths. The merging and distribution functijons

are performed in 64-bit static networxs oreceeding and folloWwing the X reg-
isters.,

€ e e e — —

~—

S et e

[XPW reg
[mode cond.

ister
RA XA FL

{ b4=-bit

-e s - . - - - - -

bu-bit]

-—— - -

{integer]

[adder

RTC IPF K XA
I | | !
v v v v

(20-bit]

[parameter reg.]l

-t - . .- - e -

[shift]l | [pack/]l}
1 {] | [unpack]
--------- ' - - o - -
| | t
{ ! I
v v v

& i o o e e cmn o o o - — o — — —

- floating add

- fi.

fi.

- wm A o e A - i e - S - e e R WE R R W WE WP Th YR M GE kD Gk W P B e W W W e Gw e e M ae

X register]

access
control 1}

J= = = = = - =

] <=

]

(1 I

15
registers

b4 bits

iy)y kK

]

o e - - ——— = = e = e, W S R e R A R W WD R W e e e s w W N -

XseX]yXk 1] {

selectionl]l=-=-->[

control 1 {
|
Xs
|
v

Fig- 2=5

REGISTE

X) X K

! I

Vv Vv
R MODULES RA, RB,

[aS]
i
~

RCy

RD

- e W e e - S e e v R e T R e M e - L = WS WD b Y e Wm wm e e e an = W -

modd le

multiply
module

divide
module

memory
modules

RA module
bits 00-165

RB module
bits 16-31

RC module
bits 32-47

RD module
bits 48-63

X RESERVATION FLAGS

There is a resarvation flag for each of the sixteen X registers in an 8000
processonr, Ahen set, the flags remain set until specifically cleared.

Set and clear conditions can never both exist in the same clock period.
all X reservation flags are forced clear on dead start.,

When the instruction parcel translator

(IPT) issues an instruction parcel

which designates an X register as the destination register, the reservation

flag for that register s set.,

This flag prevents subseqguen?t instructions

trom reading the contents of the X register until new data has been trans-
mitted to the register. The contents of an X register s always read one
clock period after iInstruction issuey

cleared 1 clock period before new data

therefore the reservation flag is
is transmitted to the register to

al low subsequent instructions to read the new data as soon 3s it is

available.

Examples?

] <=- CcPa -=>|<=-- crPt

==>]<=-- cpe -=>|<-- crP3 ==>

- L R e ™ e M TR W TR MR G R S = m . - D W R D W R e e e e S D e e wn wn em W Gm R mm e b o wm e e e A e

[Instr iIssuey etce.! Read X30,
[Set X30 flag I Clear X30

etc.
flag

Instruction A

- - D R s s N En W e D em e - - - A W W we % e e W

[Instr issue, etc.l Read X30, etce.
[Set X12 flag | Clear X12 flag

- - ——— - P e - A TR e e e - b e e e R WD WD em n E e

Instruction 3

RAYRByRC 42D modules

RA,RB4yRCyRJ modules

X} register Xk register
| |
v v
{ ba~-bit] [64-bit)
[Xy input 1] complement ->[Xk inout]
{ register 1 { registar 1
| !
I |
v v

B e e e

Pre-add Shift Network
two 9b-bit operand registers

- o e o - s G e e A G e M AP e e e W n b G e e

97-bit Add
operation

e - - - -y . W D L WS M R WD B e b e s we e En e e e W

- s m o w wm o et ey D A AR D WD T WD Er A v e b W e

Signjificant Bit Position

[Determination]
f
|
v
[96-bit]
{ Normalize Shift]
| l
| |
v v
{ Single] { Qoubte]

Precision Resulit 1}

I e e e e

[Precislion Result

Xi register
RA,RB,RC, RD modules

X} register
RA,RB4,RC,RD modules

Fige 2-6 FLOATING ADD MODULES FA, FB

2-9

X} register Xk register
v v
v v v v v v Vv v
bit bit oits bits 0=-47 bit bit Dits bits 0-47
63 62 43-61 coefficient 63 b2 48-561 coefficient
sign range exponent { sign range exoponent]
! | { v
| | { | ememee e e eece—cccsc—sm—~—
t \ v Y v Y;
| N\ = meeeecscccsmsmrse mmemememmeemee m-mm-Ssesss ma---ese-o=-
j XK \ X K [X] bits 0-=47] [Xk 32-471 [Xk 16-31)1 [Xk 0-15 1
t sign | range [complement] (comple J [comote 1 I comple. }
| | } | { if neg.] [if negs J U if nege 1 [if nege 1
v oV v V mmeeememmeccsmse s emmmmmmm-s S-sSSSecess ssmsesoso—-
------------------ { | | |
[form] [form J<--overfl. | 3rd pass 2nd 2ass ist pass
[resutt] [result] v % v v
[siagn] [range] = =eecececccc e e e et —— e c et e s~
------------------ / /
| / / form 16 X 438 /
| / / logical products /
! / / of matrix Jjunctions /
! / / /
| /0 e e mecmcmc et eccce et cm e m et essesecesse e ———-
! /]
| / v
| / X1 Xk meemccececcccccc-—aa
] I exponent exponent [ist jevel add J<=~
| | | | [of bit products 1 |
! | v v | eeeeesccc e 2nd & 3rd
| | mmmmmmem e e | | I pass
I [inhibit |f 1 v @ mem==--
| I T integer multiply 3 =cececcecmccceccneo—-
I | mmm—mmremrrm e e ce e [2nd level add]
|] ! | [of bit products]
! | v v emmecescc e e e
i e it |
! It X}] [Xk 1 v
| 1 [48-52 1} [48-52 1 = =emrcscceecema————a
| I [compla.] { compla.l { 3rd levet add 1}
] I [if neg.l [if neg.] [of bit products 1
| | mmmmeeeees mmmemmeae e mem e m e m
I i | | |
| | v Y v
! R bt meeme eeeccecccescemscamcemeEm e m e m - —————————
| I T XJ] expet XKk exp. 1 { 96 bit coefficient result register]
| I + 48 if DP] [(left shift 1 for FP normalize)]
| [b e i R
[| (| | |
sign range exponent bits 48~935 bits 0-47 bits 0-63
pit bit bits 48-61 single prec. double prec. integer muit.
53 62 i | 1 |
i | ! | i |
X d Xd Xd Xi X) X
Y Vv v v v v
------------------------ RAyRByRCyRD mModuUlEeS==wmmrmm e r e e m e e e
Fig. 2-7 FLOATING MULTIPLY MODULES MA, MB, MC

RAyR3yRCyRO modules

RA

yRByRCyRD modules

8600 MEMORY

The overall organization of the 8600 memory is shown in figure 2-10 on
the following paye. 5torage addresses arrjve at the storage address
stack (SAS) from the IW moduie. The storage access control (SAC) unit
determines the oriority of storage access requests when two reguests
occur simultftaneousliy. SAC also controls the entry of addresses into
the storage address stack (SAS). When tne SAS data backs Jp because of
memory conflicts, the SAC stops instruction issue until the conflicts
have been resolved.

The storage word stack (SWS) is a buffer area for 64-bit data words
which are to be written into memory.

The b4 memory bank modules provide a tinear selection type core memory
with a total capacity of 256K words of b4-bit length (K = 1024) . Each
bh~-0it word is addressed separately. The memory is arranged in 64 banks
(one bank per memory bank module) of 4K words each. Each bank is
independent of the other 63 banksSe.

The maximum data transfer rate between memory as a unit (6% banks) and
other parts of the system is one word each clock period.,. Each memory
bank has a nine?? clock period access time from arrival of the storage
address to readout of the 64-~Dit word. The total read/write cycle time
for a memory bank is 3277 clock periods. In random addressing of
memory by all four processors for program data, instructions, and input/
output channel data, an average rate of 10 to 15777 memory Dbanks in
operation at one time is anticipated.

oa)

PO

P1

pe

P3

PO

P1

Pe

P3

IW --=-20=-->

IH ==--20-->

IW -=--20-->

IW ---20-->

reg

reg

reg

reg

PO <---Hl-===- [

RAJRByRWCHyRD Pl <~==pl-===- | /0
modules P2 <==-Ql4-===- i A
P3 <-=-bHl===-= [!
[{
Pl €===fhlmm=w= i 68
IW Pl <===ph=-==== ! |
modules P2 C==-plmm=== | !
P3 <==-=plh=m==- i |
A A
I/0 I read I
IQ module | data |
l
! [64]
24a -[MEMORY]
| [BANK]
v -{t MODULES 1
--------------- (et MM0000]
[STORAGE] [e e
[ACCESS] address [t MM0001]
{ CONTROL J==-=---—-- 12 -=-=---=- > “[[~=mmvmmrmme e
[STORAGE 1 (I MM00O01 1
[SA ADDRESS]] ~[[=vmmmm e = -
--------------- ([MMDOD3]
[R
{ [t MM0010]
i e
go write [MMOO11]
| T T
v (({ MMOD12 b
............... [——————
[STORAGE] [0l eeene]
[WORD STACK 1 write data “[[==mmmmmm e
I & PARITY Je=e- 58 ~===- > [0 MM0321]
{ GENERATE 1 [
{ SW MOBULE] [l MMD322]
............... S (Y (S .
A {0 MMD323]
I B T
bk {r MMD330]
! [[=mmmmmmmmmmmm e
| (00 MMD331L]
[[[=-=--mo=mmmmmm-
I/0 [t MM0332]
IQ module [--mmmmme e
{ MM0333]
Fige 2-10 8500 MEMORY

SW module SA module SA module

via MM module go write via MM module
| | |
68 I 12
| | |
v v v
[68-bit | 4 1 [go] { 12-bit 1
{ write register | spares 1 {writel { address register 1
----------------------------- [FF] R il Dt
o emeeeee [
| I
72 |
| v
| __________________________
v { 16 x 256]
————— [read/write drive ckt.]
go =-=->[& 1 [combinations]
write -==«- " emecceeccseceeccce—cac—~aa==
[|
i !
| |
| Y
t. | e e ememccca e cr e e r e mr e e r m—a - ——-- -
v et D ahiadad []
----- [72] [module stack]
{1 1-72->0[augment]=>==0-<=>[1
----- [generators 1 | { sixteen 72 x 256 planes]
A mmmemeccme——-- v []
| | mmmrmremr e r e e r e
{ |
| - . e e e e = = - = =
! | .
! v
go ==->{ & 1} [72]
Wwrite =~—===-- { sense
inverted a (amplifiers]

|
{ 72-bit]
{ read register]
| | |
| | |
o) 58 bl
t | {
v v v
IW module 1/0 X rege.
parity modules
Fige 2-12 MEMORY BANK MODULE MM

2-13

ok-bit

SHS RANKS
B4 000 mmessmecoe | cmdda—caec-s | esmemcosse-
bits [l1--->[A Jemw=>]]
from ==--- >[select] =~=mmee--- [select 1
PO [rank 1=-=-=>I 8 J====> and)
{ PO I bt { merge I\
Go enter =->I[]-==>[C Jemme>] 1\
........................... |
A |
Go exit |
|
B4 0 m==me=e== —mecesccece | mememe—eee- I
bits { J-=-->1[A J====>] 1
from ----- >[select] = ~==me=-c-- { 1
P1 [rank 1=--->[B]J====>[select 1 |
[P1 1 emececee-- [and] 1
Go enter =>[l===>] G J===->[merge 1 |
----------------- {] 1
-=>1) | eeeeeee—-- to
[/ mmmmmme—e- I [Parity)--> MM
64 pits ----= seeee-e-- / A I i -->[4-bits] modules
from I/0 -=-->{]=-==>[I/0 1 Go exit v v [/ wmmmmeee--
[&1 ===ce-e=-- mem—ec~--- /
Go enter ==->[] [24=-bit 1/
..... { merge]
[registerl\
.......... \ - b o b -
A A \ [ba-bit] to
| | -=>[exit J--> MM
b 0 ememeess | sesmecso- | ssmesc-em-- | [register] modules
bits []===->I A Jo====>[) it
from ==---- >[select] =—==------ [select] ! .
p2 [rank 1--->I[B }J==~-->{ and 1 1
[P2 1 —=ceeee-- [wmerge 1 |
Go enter =->I[l=-==->[c J====>] 1
........................... {
A i
Go exit i
{
6h mememmmee=s mmeccemee eemmeeeea- I
bits (1-=-->[A]====> 1/
from -==~-- >[select] =-==e---- { select 1/
P3 [rank 1--=->[B]===->[and 1
[P33 1 meemee=-- [merge 1
Go enter ->I[J===>[C J====>]]
A
Go exlt
I/0 =meceee- >]
Pl ~=eem=—- > Go] to
Pl = > write J==--- > MM
P2 ~-mmem-- > [merqge] modules
P3 ~eem—==- > []

Fige 2-13 STORAGE WORD STACK MODULE SHW

(]

[DATA &]-- 54-0it -> SW

{ ADDORESS] write module
-=-=> FAN-IN]
/ (MODULE]J==- 20-Dit =-> SA
/ [IQ] address module

64 bits write data

§ 20 bits address

/
/
/
/ _______________
--------------- / [DATA FAN-QOUT]
{ 1/ [PARITY CHK J<=- b68-bit =-- MM
---[CHANNEL] 54 [RTC MODULE] read module
[{ MODULES J€==== Dbits =--=--{]
=== [] read data [IR }== 4x20 ==> IW
([[IP Ch 00-03 J¢=== = memcecccmee—e——=~-- modu tes
--= [mocemmccveen - \ P0-P3
{ { [IP Ch 10-13 1 \
[[mrmmcccrccc e a 20
([IP Ch 20=-23 1 bits
[e begine.
{IP Ch 30-33 1] address = semcmcccccccece--
--------------- \ [) Xk beginning
A | \ { I/70 CONTROL] address
{ | --- MODULE l1<=-=- 4x20 --- DB
| ! [] modu les
12 12 {IO] Po-P3
| e i e b
| v
External
I/0 DB modules
Station /
4x20
............... /
[PARLADD«REGsI<-~
[INTERLOCK REG]I
[MASTER CLOCK]<== 4x2(0 ==~ IW
(MODULE } modules
[IS]<==
_______________ \
kx20
\
memory addr.
SA modules
Fig. 2-14 8500 I/0 SECTION

2-15

EXCHANGE PACKAGES

An exchange package consists of sixteen bh-pit data words (XDW) and

one bh-bjit exchange parameter word XPW. The RA and FL fietds in the ex-
change parameter word specify storage increments of 255 word units. XA
svpecifies exchange package location wWwith the lowest order 5 bits removed.

mode condition RA XA FL p

- — . - — - - - P W W e wm e . = R S e R = e e e - M m e mA em Mm e W MR MR AR Ge W an G M LR R T e EE G Eh = em e e W e e - -

e . e - . m e Eh AR P R M Y R R MR e M W M P e R W o M G D B WS WS W Mm W b M e e D D WD G SR W m TS WA WR M WD M m e e s e e e e e

Exchange Parameter Word

The axchange package resides in low storage addresses at address multiples
of 32. The X register data words XDW appear first in memory followed

by the exchange parameter word XPHW. The 15 locations following an
exchange package can be used for system functions related to the exchange
pickage.

memory
0 I]

[]
(]
{]
[]
{]

32 [XDW]
{ (16 words)]
[= = = = = = = =« = - 1]
[XPHW (1 word)]
[]
(1

64 [XDW]
[(15 words)]
[= = = = = = = = = =]
[XPHW (1 word) 1
{]
(]

96 [XOW]
[(15 words) 1
[- e e am am e e e e -
[XPW

An exchange seguence moves the exchange parameter word first, followed by
the 00 register data and the other registers in order. The exchange
carameter word (XPW) for the arriving exchange package goes into the X0
~egister for one clock periody and later moves into a holding register

in the register modules (XPW register).

+17

+11

+12

+13

t14

+15

+16

bit

53

62

b1l

o0

o . - - - — =+ T o = n = b e e sm m M e G am M wm wm e Wh WA MR M wn e m AR e e G W W s e e e .

- mm ey tm e e m e o v e M e m = m A T A TR Mmoo e e R b M R EE M m W e v En . e MR e e e e = =

[X101]
(X02]
{ X03]
{ X190]
{ X1t]
{ X12]
[X13]
{ X210]
{ X21]
{ X22)
{ X23]
{ X30]
(X31]
{ X32]
[X33]
[mode | cond.l RA 1 XA] FL | P]
------- R il B R B el Bl R R e It Do B bl R
63 60 59 52 51 40 39 32 31 20 19 0
MODE FLAGS CONDITION FLAGS
bit
MTF - monitor flag 59 Object orogram call
altows I/0,
prevents interrupt 58 I/0 channel request
PRF - program reference filag 57 Time interval
adds RA to
program address 56 System call
IPF - interlock flag 55 Data fleld limift
allows access to
interlock register 54 Program field timit
OVF - FP interrupt 53 Program error exit
interrupts on FP
overflonw/indefinite 52 Overflow / indefinite

EXCHANGE PACKAGE

2-17

I70 CHANNEL REQUEST

A channel reguest mechanism is common to alt I/0 channels. This mechanism
is activated by an input RF. The channel number is encoded and presented
to all processors over a 4-bit channel reguest path.

The channel reguest mechanism scans the osrocessors for a processor wWwith no

monitor flag. When one is found, the channel request flag is set in fthe
processor XPW register.

This causes an exchange exit to a monitor program which can read the object
program parameter word and determine the cause of the exit. The monitor
orogram can then read the 4-bit channel number from the channel request

path., The reading process advances the channel request mechanism to the
next channel request, if any.

The monitor program uses the 4-bit channel number for a table |ookup to
determine the mode of the requesting channel. If the request can be sat-
isfied by the monjtor programy, the interrupted obJect program is resumed.
If a new program must be initiated, the monitor program updates the running
time for the terminated program and exchanges to a new XA.

2-138

FLOATING POINT ARITHMETIC

Ftoating point arithmetic calculations are peformed in the 8000 processors
using a packed 54=-bit format for number representation. This format rep-
resents a signed binary integer coefficient times two with 3 signed binary
integer exponent. The coefficient field contains 49 bits and the exponent
field 14 bits,. The remaining bit is used to indicate an out-of-range con-
ditione

out-of-range

flag integer
| exponent coefficient

]] |

v v v
coefficient I I I et T it R {
sign =-=-=->11111 14 | 48 [
== =mmmmm e e~ [el R it e !
63 62 b1 43 47 0o

Floating point format

The coefficient field in the floating point format is not contiguous. The
sign of the coefficlient occupies the highest order bit position in the b4~
bit worde The remainder of the coefficient resides in the lowest order 48
bit positions. If the exponent field and the error flag are repltaced with
copies of the sign bit (as in the unpack instruction 0110) the resulting
format is the normal integer representation,

The exponent field in the floating point format occunies the bit positions
2¥*48 through 2**61. This field represents exponent values ranging from
2¥%(=13) to 2**(+13). The bits in the exponent field in the packed floating
point format consist of the bits in the integer exponent (in ones complement
form) with the highest order bDit complemented. The complementing of the
highest order exponent bit results in a format which represents the floating
point numbers in such a way that their Increasing values are also
monotonically increasing when viewed as bu4~-bit integers. As 3 resuilt of

this property, comparison tests of two floating point quantities can be done
in the integer adder rather than in the slower floating point adder.
Floating point gquantities with negative coeffjicients are packed with the
exponent fleld complemented in order to preserve the above relationship for
negative numbers,

B3it position 2*¥*62 in the floating point format contains the out-of-range
flage This flag is set when the exponent in a floating point calculation
exceeds 2**(+13) or if the result is indefinite. This flag is considered
set when the vajues of the two highest order bits in the floating point
format disagree. Further floating point operations in which this flag
appears set in one of the operands results in avborting the normal sequence
and generating a result with the out-of~-range filag set.

Floating point calculations which underflow the exponent range are aborted
and the result replaced with a word of all zero bits.

n
t

19

BINARY ARITHMZTIC

BGinary arithmetic Iin the 8000 processors Is performed in a modified ones
complement additive mode. Tha sum of two binary numbers (n a normal ones
complement additive mode is defined by fthe recursive 3oolean expressions
DeloWe.

Let m = number of bit positions in adder
A{i) = addend bit i

B(i) = augend bit i
C(i) = carry into bit position i
S(i) = sum bit i

Where i = 0,1,2,3,%,...,m-1

Then C(i+1) = A(i)e.ande3(i).or.B8(i)eand.C(i)eor.C(i)esand.A(l)

c(a) c(m)

S{i) Al(i)eande.enoteB(i)eandesnot,C(i)a.or.
BlileandeenotsCli)sandsanotsA(i)eor,
Cli)eandsenot Al(i)eandsenot.B(i).or.
A(i)oanch(i).andoC(i)

(TR]

Tne modification to the above mode consists of repfacing a resuiting sum
of all one bits with a result of all zero bits. An 8000 processor adder
therefore has only one form of zero as a resulting sum.

Subtraction is performed by complementing the subtrahend and adding to the
minuend.

Part 3

INSTRUCTION DESCRIPTIONS

TX WodJdy (MX + [X) e4ep 8J04S
IX woudy (M + (x) ejep 8J404s
IX 04 (MXx + [X) eiep peay
ITX 0} (X + [x) ejep peay

Mx > {x 41 1 - g o4 dunfp

IX 04 XX & [x BuTjeofy

IX 0} MX - [x butjeoyd

IX 0} Mx + {x butjeo]

ITX 04 MX - [x Jabajul

ITX 01 ¥X + [x J8bajul

IX ©4 M + [X J8bojul

S4T10 U Ag X 45TUS 4UbBT¥
SITg U AgQ [X 44TUs 337
S41Q U Joj [x JoMO] Mue|g
S§T1Q U JOj [x JoMO| BAES

}Ix2 26ueyox3
M o} dunp

(Jdad 19/438S] ¥ + [Xx,04 $TX3 *q17
M+ [X 0} 4Tx8 aurTjinouagns

[4¥d 121 MX 4e dulynod *dJdqgly |}ED
(48d 121 o4 surTyinod *dql} (1eJ
MX 4€ aurtinoJdans || ej

S € aurTinodans }|ejd

antTjebau [x JT M + 4 04 aurr
@AT31S0d (X 41T M + 4 0} curr

CJdZ jouU (X 1T X + 4 ©0} ocwnp

oJdaz ST [(x T % + 4 ¢4 dunp

JOoJdudd X 4T M + 4 ©} qurer

abued UT X 3T M + 4 04 durr

M + d 48 duijnrodgns |jed

N + 4 0} durfl

[x 04 ¥420|D> jeudajul pesy

{x 0} sbel} dI peay

(4d1) Mx woJdy sbejy dI Jedll
(4dI) XX wody ste)y dI 48§
{x o4 yx d1uwsueyj

fx o4 X jTusued]

{x ¢4 M + d jTuwsuedj

[x 04 (X + d) wedboud peay

$3009

XXE¢g
XXcg
XX1¢€
XX0¢

XXge
XXeé
XXT<
XX0¢

XXET
XXet
XXT73

Xe£01
X201
X107
X007

£€e0
2EE0
1€€0
0geo

£2¢0
cctl
12¢0
02¢0

£1¢€0
cTf0
1180
07¢0

£0¢0
20¢0
10¢0
fogo

£¢<c0
AR
1£20
0¢et

gcch
22cl
Tccl
0cet

NOI {1 CNYLISNI

{x 0o} (MMx) wedudboud
[x o3 (M) weduboud
[x o4 (Mx) eyep
fx ©4 (M) ejep

peay
peay
pesy
peay

[x rue (4x)
{x pue (x)
(X wouy

[x wouy

ejep
ejep
(XX)

()

adcis/peay
DUCiS/peaY
ejep 94045
€lEL 94046

11%X8 Jodds
1IX8 JOodud

{d1W] X wody
[X o4 jsanbau

EmLmOLa
we J b o Jdd
vYX peon

[d1W] |suueyn

{31W] (MXx) wod} (X jouueyn
[41W] (MX) o} [x 18uueyn
(4IW] 11eD wa}sAs pu3
(4iW] 118D wWo}sSAS urbHag

(X 04 MY - 0 Jobojul

X 04 [X xax 2 % MX MDed

MX 0} [x. juduocxa Mdedup

MX ©0f X JUSTDT}}300 Mdedupn

{x o4 % - [x wsba)ul
fx o} ¥ + [x dJabajug
{x of M- jrTusuey]

(X 01 > jrusuedy

ssed

}JIX8 Joddue uwedbodd

(X 0} Mx =« [x J8bojul

[Xx 04 Mx » (X 40 bButjeo0}4

[X 0} XX uoTljejndog

(x of MXx s [x Butjeot 4

[x 04 Mx - [x 40 fuTieo|4
[x 04 Mx + {X d0 but}je0|4
MX AGQ J4yBT1a [X $4T4S

MX AQ p el [x 4374S

{Xx 04 MX jusBwa|cwon
[Xx 04 Mx Adop

[x 04 Mx - [x [ED1607
[x of Mx + [x 1ed21607
Ix ¢4 Mx » [x 1e21607
}I X8 Jdodde wedboud
000%

£1c0
2Tl
1120
01t

s o i

O HNN™
O o o
[AVENaN ENaVENAN]

()

££70
2218
1€10
ge1o

£210
2c¢ 10
1210
0210

cT1C
2110
TT1710
0770

£071C0
20710
T07T0
66710

£Fe0o
2e 0o
T¢00
0e6o

£200
22 id
1200
L2006

£T00
21060
17060
0708

£060
c008
1000
coes

NOTES

The following pages of instruction descriptions
are numbered with the instruction codes shown in
the box in the upper right corner of each page.
The instruction codes are shown in guaternary or
dibit notation and parenthetically Iin hexidecimal
noftation.

[0331 1 [103X 3} [23XX 1]

{] [] []

[(3D) 1} [(«C) 1 { (Bx) 1
8-bit b-bit k=-dDjt

Instruction Instruction Instruction
code code code

This section makes extensive use of abbreviations
and special terms which are listed in the index in
Appendix A together with a reference to the page
Wwhere each term is defined.

Parenthesis are used to indicate the contents of a
registery; e«gey (X)) indicates the contents of the
X register specified by the) designator.

I 0000xxxx | Program error exit t (00)

Tnis instruction format is treated as an error condition and, if executed,
will set the program error exit flag in the exchange parameter word (XPW).
Tnis condition flag will then cause an exchange Jump to address (XA). In
this case all instructions which have issued prior to this instruction
will be run to complietione Any instructions following this instruction in
the current instruction word wWwill not be executed. Wnhen all operands have
arrived 3t the operating registers as a resuit of the previously issued
instructions, an exchange jump will occur to the exchange package which
is designated by (XA).

The |} and Kk designators in this instruction are ignored. The program
address stored in the exchange pacxkage on the terminating exchange jump is
advanced one count from the address of the current instruction word. This
(s true no matter which parcel of the current instruction wWord contains
the program error exlt instruction.

This instruction format is not intended for use in normal program code.
The program error exit flag 1Is set in the exchange parameter word (XPHW)
to indicate that the program may be in range but is not executing valid
program code. This could occur when an incorrectiy coded program jumps
into an unused area of the memory fjield or into a data field.

e

I 0001}) kk | Logical oroduct of (X)) and (Xk) to X} {]

- - -

This instruction causes oparands ts be read from the X) and Xk registers,
forms a bit-nit logical product, and enters the result in the X) rejister.
Fach of the bits Iin (X}) is acted upon by the corresponding bit of (Xk) to
form a single bit in the result entered in the XJ register. A sample com-
putation iIs listed below in di-bit notation to illustrate the operation
performed and includes the four possible bit combinations that may occur,

Sample operands: (XJ) = 0101
(lower 4 bits) (Xk) = 1100
(binary) -———-
(X}) = 0100

This Iinstruction is inftended for extracting portions of a bh-bit word dur-
ing data processing as distinguished from numerical computation. Together
Wwith other bootean and shift instructions it may be used to manipulate
alphanumeric or other coded data not related to the b4-bit machine word
fength,

ISSUE CONDITIONS

X] register is free one clock perjod after instruction issues
Xk register is free one clock period after instruction issues
X register input path is free two clock periods after issue

EXECUTION TIMING

No execution delays possible after this instruction issues from IPT.

cPO Instruction issues from IPT
Transmit } and k designators to register modules
Set X} reservation flag

CP1 Read (X)) to operand register A
Read (Xk) to operand register 8
Clear XJ reservation flag

crP2 Transmit logical product of (A) and (B) to Xj

NOTES

1. If the f and k designators have the same value this instruction will
read a o4-bit word from the designated X register and then write the
same information back into that X register. The timing for this case
will ve the same as the timing for the general c3se, and no specijal
conflicts will occur.

I 0002))kk | Logical sum of (X]) olus (Xk) to X]J {]

Tnis instruction causes operands to be read from the XJ and Xk registers,
forms a2 bit-bit togical sum, and enters the result in the X] register.
Fach of the 64 bits in (X]) is acted Jupon by the corresponding bit of (Xk)
to form 3 single bit in the result entered in the X} register. A sample
computation is listed below in di-bit notation to illustrate the operation
performed and includes the four possinle bit combinations that may occur.

Sample operands? (X}) = 1010
{lower 4 bits) (Xk) = 1100
(binary) -

(X}) = 11180

This instruction is intended for mer3jing portions of a 64=bit word into

a composite word during data processing as distinguished from numerical
computation. Together with the other poolean and shift instructions |t
may be used to manipulate alphanumeric or other coded data not retated to
the d4-bit machine word lengtn.

[an

ISSUE CONDITIONS

X} register is free one clock period after instruction issues
Xk register (s free one clock perjod after Instruction issues
X register input is free two clock periods after issue

EXECUTION TIMING
No execution delays possible after this instruction issues from IPT.,

CPO Instruction issues from IPT
Transmit J and k desjgnators to register modules
Set X} reservation flag

CP1 Read (X]) to operand register A
Read (Xk) to operand register B
Clear X)) reservation flag

cr2 Transmit logical sum of (A) and (B) to X}

MOTES

1. If the) and k designators have the same value this instruction will
read a b4-bit word from the designated X register and then write the
same information back into that X register. The timing for this case
will be the same as the timing for the general case, and no special
conflicts wil!l occur.

I 0003)kk | Loglcal difference of (X}) minus (Xk) to X] {]

This instruction reads operands from the X} and Xk registers, forms the bit-
-by-bit logical difference of (X{) minus (Xk)sy and enters the resuiting 6L~
hit word in the X) register.

Sample operands? (X1) = 1010
(lower 4 bits) (Xk) = 1100
(binary) = mmes-ee—---

This instruction is intended for comparing bit patterns or for complementing
bit patterns during data processing as distinguished from numerical comput-
ation. Together with the other boolean and shift instructions it may be used
to manipulate alphanumeric or other coded data not refated to the bBu-bDit
machine word lengthe.

ISSUE CONDITIONS

X)] register is free one clock period after Instruction issues
Xk register [s free one clock period after Instruction issues
X register input path is free two clock periods after issue

EXECUTION TIMING
No execution delays possible after this instruction issues from IPT.

cPo Instruction issues from IPT
Transmit)} and k designators to register modules
Set X} reservation flag

CP1 Read (X)) to operand register A
Read (Xk) to operand register B8
Clear X)) reservation flag

gcpe Transmit logical difference of (A) and (B) to X}

1. If the } and k designators nhave the same value in this instruction,
a logical difference is formed petween two identical quantities.
The result wil! be a word of attl 0's written into register X|. The
timing for this case is the same 3as the timing for the general case.

b 0010)1kk | GCopy (Xx) to Xj (}

- e - .-

This instruction reads a o4~pit word from the Xk register and enters the
word in the X| register.

Tnis instruction is intended for moving data from one X register to another
X register as rapidly as possibile. No logical function is oerformed on the
data.

ISSUE CONDITIONS

X} regilster is free one clock oeriod after instruction issues
XK register is free one clock perjiod after instruction issues
X register input path is free two clock oeriods after issue

EXECUTION TIMING

No execution delays possible after this instruction issues from IPT.

CPO Instruction issues from IPT
Transmit } and k designators to register modules
Set X) reservation flag

CcPt Read {Xk) to operand register B
Clear X} reservation flag

cr2 Transmit (8) to X}

NOTES

1. If the)] and k designators have the same value this instruction will
read a b4-bit word from the designated X register and then write the
same information back into that X register. The timing for this case
wilt be the same as the timing for the general case, and no special
conflicts wiltl occur.

| 0011))kk | Copy complement of (Xk) to X]j (]
]

-—— - -

This instruction reads a bu-bit word from the Xk register, zcomplements the
the word, and enters the result in the X)] register.

This instruction is also useful in data processing for inverting an entire

t4-bit field. The] and k designators may frequently have the same value
because the result may often be returned to the same X reglister.

ISSUE CONDITIONS

X) register is free one clock period after instruction issues

Xk register is free one clock perjod after instruction issues

X register input path is free tao clock periods after issue
EXECUTION TIMING

No execution delays possible after this instruction i(ssues from IPT.

CPO Instruction issues from IPT

Transmit J and k designators to register modules

Set X] reservation flag

CP1 Read (Xk) complement to coperand reglster B
Clear X) reservation flag

cp2 Transmit (3) to X}

NOTES

1« The J and k designators may freguyently have the same value in this
instruction. In this casey, the quantity read from the designated X
register is complemented and retudrned to the same X register. The
“timing is the same as for the general case.

I 0012))kk | Shift (X}) left by (Xk) (1

- - ——

This instruction reads a H4-bit operand from the X] register, shifts the
operand left or right as specified by (Xk), and enters the resulting oper-
and back into the X} register. If (Xk) is positive, the data is shifted
left circularly the number of bit positions designated by (Xkx). If (Xk)
is negative the data [s shifted right (end off) with sign extension the
number of bit positions designated by the magnitude of {Xk). Samole shift
operations are |isted below in blnary notation.

Sample (64 bits) (X}) operand = 10110000..4...00000000
(Xk) = 0.,.0100 (X]) result = 00000000.+e¢4.00001011
Sample (64 bits): (X}) operand = 01100000e4+e..400001000
(Xk) = 1..1101 {(X}]) result = (000110004ees0.00000010
Sample (64 bits)! (X)) operand = 110000004+4.0.00100010
(XKk) = 1..1100 (X}) result = 11111000.40¢¢.00000100

This instruction is for use [n data processing where the shift count (Xk)
is derived by program computation. It is also used for generating a
truncated integer from the coefficient of a floating point number when
the exponent has been unpacked into an X reglster.

ISSUE CONDITIONS
X) register is free one clock period after instruction issues
Xk register is free one clock period after instruction issues.
X register input path (s free three clock periods after issue

EXECUTION TIMING
No execution delays possible after this instruction issues from IPT,

CPO Instruction issues from IPT
Set X} reservation flag

cpP1 Read (X]) to operand register A
Read (Xk) to operand register B

cP2 Begin operanc snift
Clear X} reservation flag

Cé3 Complete operand shift
Transmit result to X\

NOTES
1. The maximum shift count which may be specified by (Xkx) is 63 decimal.,
2e If (XK) 1s 0 (either all 1*s or all 0's binary) the instruction reads

the operand from register X} and returns it unaltered to register XJ.
The timing for this case is the same as for the general case.

- m am - - -

I 0013))kk | Shift (XJ) rigbht by (Xk) {]

- - - -

This Instruction reads a3 64-bit operand from the X} register, shifts the
operand right or left as specified by (XkK), and writes the resulting
operand back into the X} register. If {(Xk) is positive, the operand is
shifted right (end off) with sign extension the number of oit positions
designated by (Xk). If (Xk) is negative, the operand is shifted left
circulartly the number of bits designated by the magnitude of (Xk). Sample
shift operations are |isted below in binary notation.

Sample (64 bits): {X]) operand = 10110000......00000000
(Xk) = 0..0100 (X}]) result = 11111011..++..00000000
Sample (b4 pDits): (X}) operand = 01100000..+0+00001000
{(Xk) = 1,.,1101 {X}) result = 10000000seeees00100001

This instruction is for use in data processing where the shift count (Xk)
is derived by program computation.

ISSUE CONDITIONS
X)] register [s free one clock oeriod after instruction issues
XK reglster [s free one clock perjod after instruction issues
X register input path is free three clock periods after [ssue
EXECUTION TIMING

No execution delays possible after instruction issues from IPT.

CPO Instruction issues from IPT
Set X} reservation flag

cP1 Read (X)) to operand register A
Read (Xk) complement to operand register 3

ce2 Begin operand shift
Clear X} reservation flag

CP3 Complete operand shift
Transmit result to X]

NOTES

1. The maximum shift count which may be specified by (Xx) is 63 decimal.

| 0020} jkk | Fitoating double precision sum []
------------ of (X)) olus (Xx) to X] { (08) 1}

R e

This instruction forms the floating double precision sum of two floating
point operands raead from the X} and Xk registers, and enters the lower
hatf of the result in the X} register.

The two operands are not rounded in this operation and may or may not be
normalized. They are unpacked from floating point format and the exponents
compared. The coefficient with the smaller exponent (s shifted down by the
ai fference of the exponents so as to align bits of corresponding signif-
icance, and a 97-bit adoer forms a double precision 1°s complement sum.

The exponent of the 43-bit lower half coefficient entered in X|] is 48 dec-
imal tess than the exponent of the upper half coefficient.

The 97=-bit result is normalized following the add operation. The result
coefficient is displaced right one blt or left up to o4 bits and the result
exponent is incremented or decremented by the shift count.

Since the double precision sum is normalized, the upper half result is
normalizedy, but the lower half resuylt is not.

A zero result from this instruction iIs always a posSitive zero.
This instruction is intended for use in floating point calcutations involv-
ing double precision or multiple precisione. Used together with the single

precision FP sum instruction 20XX, this instruction forms a3 double pre-
cision sum in tWwo X registers with no loss of precision.

ISSUE CONJITIONS
X} register is free one clock period after instruction issue

Xk register is free one clock period after instruction issue
X register input path is free eight clock periods after issue

EXECUTION TIMING

No _execution delays possible after this instruction issues from [PT.

EXECUTION TIMING (continued)

CPO

CP1

CP5S

CPb

CP7

CP8

Instruction issues from IPT

Transmit) and k designators to register modules
Set X} reservation flag

Read (X)) to floating add module FA

Read (Xk) to floating add module FA

Compare exponents

Transmit coefficients to pre-add shift register
Seltect smaller exoonent

Shift coefficients for bit atignment
Transmit coefficients to 97-pit adder

Form double precision sum
Transmit OP sum to bit position network

Determine significant bit position
Transmit resutlt to shift network

Perform S96-bit normaitlize shift
Clear X] reservation flag

tnter lower half of result in X]

B

I 0021))kk | Floating double precision difference {
------------ of (X]) minus (Xk) to X} { (09) 1

This instruction forms the floating double precision difference of two
floating point operands read from the X} and Xk registers, and enters the
lower half of the (X]) minus (Xk) result in the X] register.

The two operands are not rounded in this operation ani1 may ar may not be
normalized, (X}) and complemented (Xk) are unpacked from floating point
format, the coefficient with the smaller exponent is shifted down by the
difference of the exponents, and a 97-bit adder forms a double precision
1*s complement sum. The exponent of the 48-pit lower half coefficient
entered in X] is 48 decimal less than the exponent of the upper half
coefficient.

The 97-bit result is normalized following the add operation. The result
coefficient is desplaced right one bit or Jleft up to »4 bits and the
result exponent is incremented or decremented by the shift count.

Since the double precision difference is normalized, the upper half result
is normalized, but the lower half result is not.

This instruction is intended for use In floating point calculations in-
volving double precision or multiple precision. Used together with the
single precision FP difference instruction 21XX, this instruction forms
a 9b6-bit dounle precision difference in two X registers with no loss of
precision.

CONDITIONS

m

ISSU
X} register is free one clock period after instruction issues

Xk register is free one clock period after instruction issues
X register input path is free eight clock periods after issue

EXECUTION TIMING

No execution delays possiblie after this instruction issues from IPT.

EXE

CUTION TIMING (continued)

CPO

cpP1

CPY

CP5

CPb

CP7

CP8

Instruction issues from IPT

Transmit | and k designators to register modules

Set X} reservation flag

Read

(X]) to floating add module FA
Read complement of (Xk) to floating add module FA

Compare exponents

Transmit coefficients to pre-add shift register

Seiect smaller exponent

Shift coefficients for bit alignment
Transmit coefficients to 97-pit adder

Form double precision sunm

Transmit DP sum to bit position network

Determine significant bit position
Transmit result to shift network

Perform 96-bit normalize shift

Clear

Enter

X) reservation flag

lower half of result

in X}

- - -

! 0022) kK | Floating divide of (X)) oy (Xxk) to x) {]

Tnis instruction reads operands from the X! and Xk registers, forms a
floating point quotient, and delivers this result to the X) register.
The dividend operand is (X]) and the dJivisor operand is (Xk). The
remainder from the division process is discarded.

The operands are assumed to be numbers in floating point format. If the
divisor operand is not normalized, the out-of-range flag Is set.

ISSUE CONDITIONS
X] register is free one clock period after instruction issues
Xk register is free one clock period after instruction issues

X register input path is free clock periods after issue

EXECUTION TIMING

!} 0023))kk | Population count of {Xx) to X] { 1

ITnis instruction reads an operand from the Xk register, counts the number
of 1 bits in the operand, and enters tne count in the X} register, The
word entered in X) is in positive integer format. If (xk) is all 1*'s, a
count of b4 decimal is entered in the Xj register. If (Xk) is all 0°'s,

a zero word is entered in the X} register,

This instruction is intended for use in data processing where a degree of
coincidence is desired.

ISSUE CONDITIONS
X] register is free one clock veriod after instruction issues

Xk register is free one clock period after instruction issues
X register input path is free five clock periods atter issue

EXECUTION TIMING
No execution delays possible after this instruction issues frqm IPT
CcPD Instruction issues from IPT

Transmit | and k designators to register modules
Set XJ] reservation flag

cP1L Read (XK) to input register in DA module
crP2 Form partial sums

cP3 Form partial sums

CP4 Form count result in 03 module

Clear X} reservation flag

CcPS Transmit result to X} in register moduies

NOTES

1. If the)] and k designators have the same value, the aperand IS read
from and the count stored back into the same X register.

I 0030))kk | Floating double precision product }
------------ of (X)) times (Xk) to X| { (0C) 1

This instruction reads two normalized floating point operands from the
X} and Xk registers, forms a floating noint double precision product, and
enters the iower half of the result in the X} register.

The two operands are unpacked from floating point format (the operands are
not rounded) . The exponents are added to determine the exponent for the
result. The result exponent is 48 decimal less than the exoonent of the
upper half coefficient (the upper half coefficient is extracted with the
13XX instruction).

The coefficients are multiplied as signed integers to form 3 96-bit doubile
precision integer product. The lower nalf of this product is then extract-
ed to form the 48-bit coefficient for the resulta If the double precision
product has only 95 significant bits, a 1-bit normalizing shift is perform-
ed before extracting the lower half, and the exoonent for the result is
Jdecremented by one count,

This instruction is intended for use in multiple precision floating point
calculationss Used together with the single precision FP multiply

instruction 22XX, this insfruction forms a 96-bit double precision product
in two X registers with no loss of precision.

ISSUE CONDITIONS
X] register s free one clock period atter instruction issues

Xk register is free one clock period after instruction issues
X register input path is free eight clock periods after issue

EXECUTION TIMING

No execution detays possible after this instruction issues from IPT.

{ (oCc)y 1
EXECUTION TIMING {continued)
CPO Instruction jissues from IPT
Transmit) and k designators to register modules
Set X} reservation filag
CP1 Transmit (X)) and (Xk) to finating multioly module MA
Separate exponents from coefficients
cp2 Perform sign corrections
Form first 16x48 product
CP3 Form second 15x48 product
CP& Form third 16x48 product
CP5 Merge the three 16x48 products into 96-bit result register
CP?7 Clear X) reservation flag
CcPs Enter lower 48 bits of 96 bit result and exponent result in X)

(entire 64~bit result complemented if negative)

| 0031)}kk | Integer product of (X}) times (Xk) to X}

This instruction reads two operands (limited to 48 bits plus sign and sign
extension) from the X}] and Xk registers, forms the product, and delivers
the result to the X] register.

The instruction is performed in the floating multiply unit (the exponent
arithmetjic portion is not used).

The operands are multiplied as signed integers to form a 96-bit product.

The lower b4 bits of this product are extracted and entered in the X)
register.

ISSUE CONDITIONS

X} register is free one clock period after instruction iIssues

Xk register (s free one clock period after instruction issues

X register input path is free eight clock periods after issue
EXECUTION TIMING

No executlon delays possible after this instruction issues from IPT.
cprPo Instruction issues from IPT
Transmit } and k designators to register modules

Set X} reservation flag

cP1 Transmit (X)) and (Xk) to floating multiply unit
Perform sign corrections

cP2 Form first 16x48 product

CP3 Form second 16x48 product

CP& Form third 16x48 product

CP5 Merge the three 16x48 products into 96-bit result register
CP7 Clear X]) reservation flag

cPs Enter lower 64 bits of 95-bit result in X] (complemented if neg.)

I 0032xxxx | Program error exit {]

This iInstruction format is treated as an error condition and, if executed,
will set the program error exit flag in the exchange parameter word. This
condition flag will then cause an exchange Jump to address (XA). In this
case all instructions which have issued prior to this instruction will bpe
run to completion. Any instructions foltowing this instruction in the
current instruction wora will not be executed. When all operands have
arrived a3t the operating registers as a result of previously issued

instructions, an exchange Jump will occur to the exchange package which
is designated by (XA).

The } and Kk designators in this instruction are ignored. The program
address stored in the exchange package on the terminating exchange Jump is
advanced one count from the address of the current instruction word. This
is true no matter which parcel of the current instruction word contains
the program error exit instruction.

This instruction format is not intended for Juse in normal program code.
The program error exit flag is set in the exchange parameter word {(XPHW)
to indicate that the program may be in range but is not executing valid
program code. This could occur ashen an incorrectly coded program jumps
into an unused area of the memory field or into a data field.

I 0033xxxx | Pass []

This instruction is a *do-nothing® instruction and is typically used to

fill program instruction words where necessary to matftch Jumo destinations
Wwith word boundaries. The } and k designators are not used and are norm-
ally zero, but non-zero values Will have no effect on the instruction.

ISSUE CONDITIONS

None

EXECUTION TIMING

CPO Instruction parcel in IPT
Instruction issues

CP1 Next instruction may issue

I 0100} kk | Transmit kK to X] { 0100 1

L R

This instruction forms a 64-bit word with the 4-bit integer specified by k
in the lower &4 bits of the word and 0's in the upper 50 bits. The result
is entered iIn the X] register.

ISSUE CONDITIONS
X} register is free one clock period after instruction issues
X register inout path is free two clock periods after issue
EXECUTION TIMING
No execution delays possible after this instruction issues from IPT
cPO Instruction issues from IPT
Transmit) and k designators to register modules

Set X| reservation flag

CP1 Enter k in lower &4 bits of operand register 3
Cltear X} reservation flag

cP2 Enter (8) in X)

NOTES

| 0101)) kk | Transamit

R e e

-k to X} [0101 1

This instruction forms a 54=-bit word with the complement of the 4-bjt
integer specified by kK in the lower &4 Dits of the word and L*s in the
upper o0 bits,. The result is entered in the XJ register.

ISSUE CONDITIONS

X]

register is free one clock period after instruction issues

X register input path is free two clock perjods after issue

EXECUTION TIMING

No execution delays possible after this instruction issdes from IPT

CcpPo

CP1

ce2

NOTES

Instruction issues from IPT
Transmit J and k designators to register modules
Set XJ reservation flag

Enter comptemem?t of k plus 50 bits of 1°s in operand register B
Clear XJ reservation ftlag

Enter (B8) in X}

| 0102))kk | Inteager sum of (X)) plus k to X] [0102 1}

- -

Inis instruction forms a b64-bit sum of the operand read from the X|
register and the 4=-pit integer specified by k. The result is entered
in the X} rejister

This instruction is intended primarily for incrementing an operand by

a small number, Integer sum instruction 11XX is used for addition of
'arger numberse.

ISSUE CONDITIONS
X] register is free one clock period after instruction issues
X register input path is free tnree clock periods after issue
cXECUTION TIMING
No execution delays possible after this instruction issues from IPT.
CPO Instruction issues from IPT

Transmit J and k designators to reglister modules
Set XJ reservation flag

cP1 Read (X]J) to operand registe~ A
Enter k in fower 4 bits of operand register 3

gcr2 Perform partial add operation
Clear X} reservation flag

cP3 Complete add operation and enter result in X]

HITES

I 0103} 1tkk | Integer difference of (X)) minus k to X} [0103 1}

L A I I Y

This instruction forms the b4-bit difference of the operand read from
the X} register and the 4=-pit integer specified by k. The ~esult

is entered in the X] register.

This instruction is intended primarily for dJecrementing an operand by a

snall number, Integer difference instruction 13XX is used for
subtracting larger numbers

ISSUE CONUITIONS
X} registers is free one clock period after instruction issues
X register input path is free three clock periods after issue
SXECUTION TIMING
No execution delays possible after this instruction issdes from IPT.
CcCPO Instruction issues from IPT
Transmit § and K designators to register modules

Set X} reservation flag

cP1 Read (X)) to operand register A
tnter complement of k plus 60 bits of 1°'s in operand register B

cp2 Perform partial add operation
Clear X)) reservation flag

cP3 Compiete add operation and enter resudlt in X}

I 0110}y kKk Unpack coefficient of (X}]) to Xk

This instruction reads a 64-bit floating point operand from the X] register
unpacks the word, and enters the 48-bit zoefficient plus 16 bits extension
of the coefficient sign bit In the Xk register.

exponent coefficlent
|~ == |me e rrrcc e e |
(X1}) PLili 164 | 48 !
e el I == - 1
| \ /
I out-of-range /
] fiag /
coefficient sign /
1 [
Vv Y
e bl e et E bt |
{Xk)] 16 | L3 |
| === j=semmm e s e ce e |
sign coefficient

eaxtension

No test for out-of-range condition is performed, and the out-of-range f/|ag
and exponent bits in (X]) are reptaced in (Xk) with copies of the sign bit.

ISSUE CONDITIONS
X] register is free one clock period after instruction issues

Xk register is free one clock period after instruction issues
X register input path iIs free two clock periods after issue

EXECUTION TIMING

No execution delays possiblie after this instruction issues from IPT
cro Instruction jssues from IPT

Transmit } and k designators to register modules

Set Xk reservation flag
CP1 Read (X}) to operand regjister A

Extract coefficient and sign

Clear Xk reservation flag

cP?2 ITransmit sign extended coefficient to Xk

HOTES

I 0111) kk | Unpack exponent of (X}) to XK { 0111)

e

Tnis instruction reads a 64-bit floating point operand from the X]
register and unoacks the word, The axoonent portion of (X)) 1Is sign
extended and entered in the Xk rejister,

out-of-range filag

\
\ exponent coefficient
R e e B ettt R et R Tl i
operand (X}) (11111¢ 13 | 48]
{-l-l=-l-v==- i e it !
/ | \ L7 00
bit 63 / l \
coefficient sign bit ! \

complement \
if bit 63 pos. \
\
complement
if bit 63 neg.

v
R e ittt R Rt]
result (Xk) | 51 | 13]
R e e |
53 13 12 090
sign extension exponeant

If (X)) is positivey, bits 48-60 of (XJ) are copied 1o Xk bits 00-12 and the
complement of bit 61 of (X)) iIs copied to Xk bits 13-63.

If (X]) is negative, the complement of bits 48~-63 of (X}) are copied to Xk
bits 00-12 and bit 51 of (X)) is copied to Xk bits 13-63.

Mo test for out-of-range condition i3 oerformed.,

ISSUZ CONDITIONS
X} register is free one clock period after instruction issues
X« register (s free one clock period after instruction issues
X register inout path is free two clock oserjods after i(ssue
FXECUTION TIMING
No execution delays possible after this instruction [ssues from IPT..
CPQO Instruction issues from IPT
Transmit } and k design3ators to register modules
Set Xx reservation flag
cPi Read (X]) to operand register A
Extract exponent

Clear XKk reservation flag

cp?2 Transmit sign extended exponent to Xk

| 0112V)kk | Pack coefficient Xk and axponent X} to Xk (]

Tnis instruction reads a coefficient ooerand from Xk and an exponent
overand from X], packs them into a 64-bjit floating point word, and enters
tne result in the Xk register.

sign
exponent extension coefficient
e i R L I | | =]=====- I et R |
(X 1) W/77777777777777/7771LH 13 I (Xk) WLir7777771 48 i
[-=—mm e e e e |~} =-===--- | f=t-==-=- == mrmme e -~ |
| | / /
-l- - - - - - - - - /
/ i | /
v v v /
b=t=l=-l=--====- e el l
(Xk) 111111} 13 ! 48 i
b=t=-1-]=-====-- I e il |
A exponent coefficient

out-of-range flag

To ensure that the result Is normalized, this instruction must be followed
py a3 floating point add of the result and zero (instruction 20XX).

Mo test for out-of-range condition is performed and the out-of-range flag
bit In the result entered in (Xk) is set to the sign bit,

ISSUE CONDITIONS
X} register is free one clock period afte~ instruction issues
XK register (s free one clock period afte~ instruction issues
X register input path is free two clock periods after issue
EXECUTION TIMING
No execution delays possible after this instruction issues from IPT
crPo Instruction issues from IPT
Transmit | and k designators to register modules
Set Xk reservation flag
cpPt Read (X)) to operand register A
Read (Xk) to operand register B

Ulear Xk reservation flag

cp2 Transmit exponent of (4) and coefficient of (B) to Xk

NOTES

I 0113}k | Integer difference of ze~o minus (Xk) to X] []

This instruction forms the 64-pit difference of zero and the operand
read from the ({Xk) reqgister and enters tne result in the X]
registear,

This instruction is intended for changing the sign of a fixed or filoating
ooint quantity. If (Xk) is zero, a positive zZero will be the resulit,

ISSUE CONDITIONS
X} register is free one clock oeriod after instruction issues

XK register is free one clock period after instruction issues
X register input path is free three clock periods after issue

EXECUTION TIMING
No execution delays possible after this instruction issuyes from IPT.
cPO Instruction issues from IPT
Transmit |} and k designators to register modules

Set X} reservation flag

cP1 Enter all 0°'s in operand register A
Complement (Xk) and enter in operand register 8

cpe2 Perform partial add operation
Clear X)) reservation flag

CP3 Complete add operation and enter result in Xi

I 0120xxxx | Begin system call [MTF] (]

- o -

This instructions, when issued by a3 processor in monitftor mode, sets the
system call flag (SCF). This filag causes each processor not in monitor mode
to set the system call condition in the exchange parameter word, which
causas an exchange to exchange address XA,

Jntil an end system calil instruction 0121 is executed, processors not in
monitor mode will be exchanged.
Thnis instruction will be executed only if monitor mode flag MTF in the

exchange parameter word is set. If MTF is not set, the instruction is
executed 3as a pass instruction.

Tnis instruction is intended to be used to initiate inter-processor

communication by causing processors to heed the system call for program
reassignments,

[SSUE CONDITIONS

None

“XECUTION TIMING
No execution delays possibite after this instruction issues from IPT.
CPO Instruction issues from IPT

cP1 Next instruction may issue

[ap]

| 0121xxxx i End System Call [MTF] {]

This instruction, when issued by 3 processor in monitor mode, clears the
system call flag (SCF).

This instruction will be executed only if the monitor mode flag MIF in
exchange parameter word is sete If MTF is not set, the instruction is

executed as a pass instruction.

The | and k designators are ignored in the instruction.

ISSUE CONDITIONS

None

EXECUTION TIMING

No execution delays possible after this instruction issues from IPT
cPo Instruction issues from IPT

CP1 Next instruction may issue

f 0122}) kk | 3lock input channel (X}J) to address (Xk) [MTF] |]

Tnis instruction initiates the input of 3 block of data arriving on 1/0
channel (X}) and stores the data in consecutive address locations iIn
memory beginning at absolute address (Xk). The length of the block of
data is determined by the I/0 equipment on the channel. Ontly the |ower
4 bits of (X)) are used to spacify the channel number.,

A block of data consists of one or more words sent by the I/0 equipment.
tEach input word is either 8 or 12 pits depending on the channel sejection.
The input words are assembled into 64-0it words for storage in the 8600
memory. Partially assembled d4-bit words are filled out with zeros.

Sample block of sixteen assembled 8-bit words in 8600 memory:

{Xk) | o 1 1 2 13 A 5 5 | 7 1

(Xk)+#1 V8 + 9 10 + 111 12 1 13 | 14 1 15 |

- e W R D SR WS R e R R AR MR R P AR Gm W R N Em Gk R W e YR YR An MR WS eD AP M G W W W WR WP wE = W

Sample block of sixteen assembled 12-blt words in 8600 memory!

(Xk) 1 0 | 1 | 2 i 3 | L I 5 1
XK+t L5 1 s 17 1 8 1 3 1101
(2 1 L0 1 11 1 1z 1 13 1 16 1 15 0

fach input word iIs accompanied by a word flag sent by the I/0 equipment
and is acknowledged by an 8603 channel resume signal sent back to the
[/70 equipment.

The block input operation initiated by this instruction is terminated

by a record flag sent by the I/0 equioment to the 8600, This record flag
must not be sent to the 8600 by the I/0 equipment until after the receipt
of an 8600 channel resume signal acknowledging that the last word has been
receiveda The record fiag will cause one of the 8000 processors to be
interrupted. Another 8600 channel resume will be sent to the I/0 equipment
to indicate that the terminating record flag has been acknowledged and

that 3 processor has been interrupted.

Tnis instruction will be executed only if the monitor mode flag (MTF)

in the exchange parameter word s set. If the MTF is not sety the
instruction iIs executed as a pass instruction.

ISSUE CONDITIONS

X} register is free one clock period after instruction issues
Xk register {s free one clock period after iInstruction issues

cXECUTION TIMING

I 0123)) kk 3lock output channel (X)) from address (Xk) [MTF] {]

Tnis instruction initiates the outout of a block of data over output
channel (X)) from consecutive address locations beginning at the absolute
address specified by (Xk). Onltly the lower 4 bits of (X]J) are used to
specify the channel number.

A record flag is sent to the receiving device with the first 8-bit or
12-bit output data word.

The length of the block of data is dictated by the system I/0 eauipment.
Thne channel output process is terminated by a record flag sent to the
8600 by the I/0 equipment. When the record flag Is received by the 8600,
a parity status word is sent to the I035 indicating whether or not a memory
parity error occurred while reading the output data from the 8600 memorya.
A parity status word of all 0°*s indicates that no parity error occurred;
a parity status word of 1111 (octal) indicates that a oarity did occur.
To insure that the proper parity status word is read, the status word
should not be read by the I0S until the 8600 has returned the channel
resume signal acknowledging that the terminating record flag has been
received and that a processor has been jinterrupted.

Tnis instruction will be executed only if the monitor mode flag MTF in
the exchange parameter word is set. If the monjtor mode flag Is not seft,
the instruction is executed as a pPass.

ISSUE CONDITIONS

X] register is free one clock period after instruction issues
Xk register is free one clock period after instruction issues

EXECUTION TIMING

)

I 0130}))xx | Read channel reguest to Xj [MTF] {]

- - -

Tnis instruction transmits to the (X)) register the identity number of the
I/70 channel which caused an interrupt, Any subsequent I/0 interrupts are
disabled until this instruction is executed.

The k designator iIs ignored in this iInstruction.

This instruction will be executed only if thne monitor mode flag MTF in
the exchange parameter word is set. If MTF is not set, the instruction
will enter X)) with 3*s and have no effect on channel interruots.

ISSUE CONDITIONS

X) register is free one clock perjiod after instruction issues

EXECUTION TIMING

| 0131xxkk | Load XA from (Xk) (MTF] (]

This instruction loads the address contained in the Xk reglister into the
exchange address XA portion of the exchange odarameter word (XPW).

20-bit address

XK /7777777777777 77777/77772777771 7 | 8 | 5]
___________________________________ [meme e | e e
63 19 12 | 05 00
i
8 bits
|
v
....................... | reemce | mmmmmcc s cc e er e e -
XPW [mode | cond.l RA i XA | FL | P]
....................... ' - - —— ‘ - A o - . > . - e e ma e
53 39 32 00
The) designator is ignored in this instruction.
This instruction will be executed only if the monitor mode flag MIF in

the exchange parameter word is set. If MTF is not set, the instruction
is executed 3s a pass instruction.

ISSUE GCONDITIONS

Xk reglister is free one clock period after instruction issues

EXECUTION TIMING
No execution delays possible after this iastruction issdes from IPT

cPo Instruction issues from IPT
Transmit k designator to register modules

cpPi Read (Xk) to DA module

cP2 Transmit XA to XPW register in RRC module

I 0132xxxx | {]
------------ [(1E) 1}
------------ Program error exit —————————
1 0133xxxx | e
------------ [0133 1

{]

[(1F) 1

This instruction format is treated as an error condition and, if executed,
will set tne program error exit flag in the XPW register. This condition
flag Wwill then cause an exchange jump to address (XA). In this case ail
instructions which have issued prior to this instruction will be run to
completion. Any instructions folloWwing this instruction in the current
instruction word wilt not be executed. When all operands have arrived at
the operating registers as a result of previously issued instructions, an
exchange Jump wWill occur to the exchange package designated by (XA).

The] and K designators in these instructions are ignored., The progranm
address stored in the exchange package on the terminating exchange Jump is
advanced one count from the address of the current instruction word. This
is true no matter which parcel of the current instruction word contains
the program error exit instruction.

These jinstructions are not intended for use in normal program code. The
program error exit flag 1Is set in the XPW register to indicate that the
program may be in range but is not executing valid program code,. This
could occur when an incorrectiy coded program jumps into an unused area of
the memory field or into a data field.

- e e - - -
- T R A e an w- — a — — — m. - -

| 0200))kk | kKkkkkkkk | Store data at address K from X] { 0200 1

- - - -

Tnis instruction writes one 64-bit word from the X} register into memory
at the absolute address formed by addiag the address specified by K to
the memory reference address RA from the processor exchange parameter
word XPH.

If the field length FL is exceeded, the memory reference is aborted and the
Jdata field 1imit condition flag iIs set in the exchange parameter word XPH,
and an exchange jJump is made to the exchange address XA in XPHW.

If a parity error occurs in reading the old data at the indicated memory
address, the error is ignored and the orocessor operation continues in a
normal manners,

Thnis instruction allows a8 processor to write data into memory from any
of the 16 X registers in the processor.

ISSUE CONDITIONS

X} register is free
A storage access buffer is avallable for this processor

EXECUTION TIMING
No executlon Jdelays possiblie after this instruction issues from IPT
CPO Instruction issues from IPT

cP1 Transmit 0's to operand register A
Transmit K to operand register B

cP2 Integer add (A) + (3)

I 0201)) kk Store data at address (Xx) from X} [0201 1

—— . -

Tnis instruction writes one word from the X} register into memory at the
aosolute address formed by adding the address specified in the lower 20
pits of Xk to the memory reference address RA from the processor exchange
parameter word (XPW).

If the field length FL is exceeded, the memory reference is aborted, the
data field timit condition flag is set in XPW, and an exchange jump is
made to the exchange address XA in XPW.

If a parity error occurs in reading the old data at the indicated memory
address, tne error is ignored and the orocessor operation continues In a

normal manner.

This instruction allows a3 processor to write data into memory from any
of the 16 X registers in the processorea.

ISSU

m

CONDITIONS
X} register is free one clock period after instruction issues
Xk register is free one clock period after instruction issues
A storage access buffer is available for this processor
EXECUTION TIMING
No execution delays possible after this instruction issues from IPT

cPO Instruction issues from IPT

CP1 Transmit 0°s to operand register A
Transmit (Xk) to operand register B

CP2 Integer add (A) + (8)

I 0202)1k | mkkkkkkk | Read data at address K to X] and {)
——————————————————————— Store (X}) into adidress K [(22) 1

This instruction simultaneously?
reads a word of data from an object program storage field address and
enters that word in tne X} registery and

stores the original contents of the X] register at the same oblect
program storaye field address.

The storage address is determined oy adding the K field from the
instruction to the object program reference address.

A separate test is made to determine if the value of the K field
considered as a 20 bit positive integer is equal to, or greater than,

the current object program field length,. If this is the case, the ob]ect
orogram is interrupted by setting the data field Iimit flag in the
exchange parameter worde. The storage reference (s aborted in this case
and an exchange Jump iSs made to exchange address XA.

ISSUE CONDITIONS

X} register is free one clock period after instruction lissues
A storage access buffer is available for this processor

EXECUTION TIMING

- - -

I 0203)) kK | Read data at address (Xx) to X} and {)
------------ Store (X)) into address (XKk) [(23) 1]

Tnis instruction simultaneousliy?
reads a word of data from an ob)ect program storage field address and
enters that word in the X) register; and

stores the original contents of the X} register at the same obJect
projram storage field address.

Tne storage address is determined by adding the current (X]) to the oblect
pr~ogram reference address.

A separate test is made to determine (f the value of (Xk) considered as a
20-pit positive integer is equal to, or greater than, the current object
program tield lengthe If this is the casey, the oblect program is
interrupted by setting the data field timit flag in the exchange parameter
word (XPW). The storage reference is aonorted in this case and an exchange
jump is made to the exchange address XA in XPWe.

ISSUE CONDITIONS

X} register is free one clock perjod after instruction issues
A storage access buffer is available for this processor

ZXECUTION TIMING

A

- em e - - -

| 0210)}kk | kkxkkkkkk | Read data at 3ddress K to X] {]

- oy am ws -

Tnis instruction reads a word of data from the object program storage
tield and enters that word in the X) register, The storage address s
determined by adding the K field from the instruction to the object
program reference address.

A separate test is made to determine if the value of the K field

considered as a 20-bit positive integer is equal to, or greater than,

the current object orogram field length. If this is the casey the object
orogram Is interrupted by setting the data fieid 1imit flag in the exchange
parameter word (XPW). Thne storage reference is aborted In this case and an
exchange Jump is made to the exchange address XA in XPW.

ISSUE CONDITIONS

X] register is free one clock period after instruction Issues
A storage access buffer is avaitable for this processor

CXECUTION TIMING

Minimum execution time for thls instruction is 15 clock perijiods,
Delays may occur in the arrival of the data word at the X register
due to storage bank conflicts or other processor conflicts in
storage access control.

cpPOD Instruction issues from IPT
Set X] reservation flag

cPOtL Transmit zeroes to operand register A
Transmit K to operand register B

CPO2 Integer add front half

CP0O3 Integer add back half
Transmit integer sum to RA adder in IW module
Transmit reference flag to SA module

CPO&G Transmit lower 8 bits of address to SAC
CPOS Transmit upper bits of address to SAC
CPlb Acknowl edge from SAC

CP14 Clear XJ reservation flag

cPis Data word arrives at the X register

| 0211)Jkk | Read data at adiress (Xk) to X] { }

- e - - -

Tnis instruction reads 3 word of data from the objJect program storage
field and enters that word in the X} register. The storage

address is determined by adding the current contents of the Xk
register to the object program reference address.

4 separate test is made to determine if the value of (XK) considered as a
20-bit positive integer is equal to, or greater than, the current object
program field length.,. If this is the case, the object program is
interrupted by setting the data field timit flag in the exchange parameter
word. The storage reference is aborted in this case and an exchange jJump
is made to the exchange address XA.

ISSUE CONDITIONS

X} register is free one clock veriod after instruction issues
XKk register is free one clock period after instruction issues
A storage access buffer is avajilable for this processor

EXECUTION TIMING

Minimum execution time for this instruction is 15 clock Dseriods.
Delays may occur in the arrival of the data word at the X regi§ter
due to storage bank conflicts or other processor confilicts in
storage access control.

CPOD Instruction issues fom IPT
Set X)) reservation filag

CPO1L Transmit zeroes to operand register A
Transmit (Xk) to operand register 8
Send destination tag to RB module

cpPD2 Integer add front half
cP03 Integqer add back half

Transmit integer sum to RA adder in IW module
Transmit reference flag to SA module

CPO4 Transmit lower 8 bits of address to SAC
CPOS Transmit upper 12 bits of address to SA(Q
CPO>o Acknowledge from SAC

CP14 Clear X] reservation flag

CP1L5 Jata word arrijives at the X register

| 0212))kk | kkkkkkkk | Read program at address K to X} []

- o -

I~is instruction reads a word out of memory at absolute address K

and enters that word into the X} register. (The reference address

R4 and the memory field tength FL from the exchange parameter word are
used In this instruction onty if PRF is set.)

ISSUE CONDITIONS

X)) register is free one clock period after instruction issues
A storage access buffer 1s availabie for this processor

“XECUTION TIMING

Minimum execution time for this instruction (s 15 clock periods.
Delays may occur in the arrival of the data word at the X register
due to storage bank conflicts or other processor conflicts in
storage access control.

cPOG Instruction issues from IPT
Set X} reservation flag

ChPO1 Transmit zeroes to operand register A
Transmit K to operand register B

cpne Integer add front haif
CPD3 Integer add back haif

Transmit integer sum to RA adder in IW module
Transmit reference flag to SA module

CPOG Transmit lower 8 bits of address to SAC
CPDS Transmit upper 12 bits of address to SAC
CPOG Acknowl edge from SAC

CP14 Clear X} reservation flag

CP15 Data word arrives at the X register

I Kkkkkkkk | Read program at address (Xk) to X]

Tnis instruction reads a word out of memory at the absolute address spec-

ified by the

registers.

lower 20 bits the Xk register and enters the word

in the X]

(The memory reference address RA and the memory field ftength FL
from the exchange parameter word are uysed in this instruction only if

the PRF is set.)

ISSUE CONOITIONS

X] register is free one clock after instruction issues
Xk register Is free one clock after instruction issues
A storage access buftfer is available for this processor

IXECUTION TIMING

Minimum

Delays may occur in the arrival
due to storage bank conflicts o~

execution time for this instruction is 15 clock oeriods.

storage access control.

cPOO Instruction issues from IPT
Set X} reservation flag

cPO1L Transmit zeroes to operand register A
Transmit (Xk) to operand register B

CcPO2 Integer add front nalf

cP03 Integer add back half
Transmit integer sum to RA adder in IW module
Transmit reference flag to SA module

CPOD4 Transmit lower 8 bits of address to SAC
Add RA or zero to address

crPOS5 Transmit upper 12 bits of address to SAC

CPO0b Acknowledge from SAC

CP14 Clear X)] reservation flag

CP15 Data word arrives at the X register

of the data word at the X register
other processor conflicts in

- - . AR W G W R G T w m e W e

I 02201 kk | khkkkkkkk | Read program at add~ess (P + K} to X] [0220)

This instruction reads a word out of memory at an absolute address formed
ny adding sign extended K to the current program address P, and enters
that word in the X} register. (The memory reference address RA and the
memory field length FL from the exchange parameter word are used in this
instruction only if the PRF s set,)

ISSUE CONDIVIONS

X] register is free one clock perjod after instruction issues
A storage access buffer s available for this processor

EXECUTION TIMING

Minimum execution time for this instruction is 15 clock periods.
Defays may occur in the arrival of the data word at the X register
due to storage bank conflicts or ofher processor confiicts in
storage access control.

cPaa Instruction issues from IPT
Set XJ reservation flag

crPi1 Transmit P to operand register A4
Transmit K to operand register §

CPO2 Integer add front half
CPG3 Integer add back haif

Transmit integer sum to RA adder in IW module
Transmit reference flag to SA module

CPUO4 Transmit lower 8 bits of address to SAC
CPos Transmit upper 12 bits of address to SAC
CPO6 Acknowledge from SAC

CP14 Clear X} reservation flag

CP15 Data word arrives at the X register

T S L e epp s Sy - . - -

I 02211) kk 1| kKkkkkhkkk | Transmit P + £ to X} [0221 1]

This instruction forms the sum of the current program address P plus a
sign extended increment Ky, and enters the result in the X) reglster. The
result is a o64=-bit word with 3°'s in the upper 44 bDits.

155U

CONDITIONS

m

X] register is free one clock period after instruction issues
X register input path is free three clock periods after issue
eXECUTION TIMING

No execution delays possible after tnis instruction issues from IPT.

CcPO 1st instruction parcet in IPT
Instruction issues
Transmit)] and k designators to register modules
Set X) reservation filag

crP1 2nd instruction parcel in IPT
Enter P In operand register A
Transmit K to operand register B

cre Perform a partial add
Clear XJ reservation flag

cP3 Complete add operation and enter result in X}

NOTES

- . W D s Nm - WY e e e e A e - - - - -

I 0222)1KK | KKKKKKKK | Transmit K to X) [0222 1]

This instruction enters the 20-oit projram constant specified by the
K field in the instruction in the lower 20 bits of the X] register.
The upper bifts of X] are sign extended.

ISSUE CONDITIONS
X|] reglister Is free one clock oeriod afte~ instruction issues

X register input path is free two clock periods after issue

EXECUTION TIMING

No execution delays possible after this instruction issues from IPT

CPO Instruction issues from IPT
Set X} reservation flag

CP1 Transmit K to operand register B8
Clear X} reservation flag

cpe Enter (B) in X]j

NOTES

I 022343100 | Transmit XA to X| (]

This instruction enters the 8=-bit exchange address (XA) portion of the
exchange parameter word (XPW) in the X} register. The k designator shoutd
be zero in this instruction.

The XA portion of XPW contains the exchange package address with the
lowest order 5 bits removede. These lowest order 5 bits of 0°*s are added
in this instruction when XA is transmitted to X].

XPW [mode | cond.t RA | XA | FL | P]
....................... ‘.._..-_..'-.._.._-_-....-..__----_.._-_..--..
5H3 39 \ 32 00
\
\
\
v
_____________________________________ I___-_.-‘__-_-_
(xy) [0°s] XA ! 0's 1
..................................... | _....--..l - -
53 12 05 04 030

ISSUE CONDITIONS

X] register ijs free one clock perjod after instruction issues

X register jinput path is free tWwo clock periods after issue
CXECUTION TIMING

No execution delays possible after this instruction issues from IPT

CPO Instruction issues from IPT
Set X) reservation flag

CcP1 Transmit XA to operand register B
Clear X} reservation flag

crP2 Enter {(8) in X}

NOTES

1. If the Kk designator in tnis instruction is other than zeroy, the upoer
44 bits of X] may be 1°s since a copy of the upper bit of the k
designator 1s placed In the uopper 44 bits of X

I 0230xxkk Set interlock flags from (XKk) (IPF] {]

This instruction sets the [nterlock flags soecified by the lower

20 bits of (Xk)e. *1" bits in lower 20 bits of (Xk) set the corresponding
bits in the 20-bit interiock flag register. *0* bits in (Xk) do not
cnange the contents of the interlock flag register.

The) designator and the upper 44 bits of Xk are ignored in this
instruction

This instruction will be executed only if the interlock flag IPF in the
exchange parameter word is set., If IPF is not set, the instruction is
executed as a3 pass instruction.

| 0231ixxkk | Clear interlock from (Xk) {IPF] {]

This instruction clears any of the 23 interlock flags specified by the

lower 20 bits of (Xk). *1* bits In the Jlower 20 bits of (Xk) clear the
corresponding bits in the 20-bit interlock flag register. ‘0" bits in

(XkK) do not change the contents of the interlock flag register.

The J designator and the upper 44 oits of (Xk) are ignored in this
instructione.

This instruction will be executed only [f the interlock flag IPF in
the exchange parameter word [s set, If IPF is not set, the instruction
will be executed as a pass instftructione.

)

I 02321100 1 Read interlock ftags to (X}) (]

Tnis instruction enters the contents of the 20-bit interlock register in
the lower 20 bits of the X} register. 0*s are entered in the upper 44
bits of X

The k designator should be zero in this instruction.

ISSUE CONDITIONS

X] register is free one clock period afte~ instruction issues
X register input path is free two clock perjods after issue

“XECUTION TIMING

No execution defays possible after this instruction issues from IPT.

CPO Instruction issues from IPT
Set X} reservation flag

CP1 Transmit interlock register to operand register 8
Clear X} reservation flag

cP2 Enter (8) in X}

NOTES

1. If the k designator in this instruction is not zero, the upper 4&
bits of X] may be 1°'s since the upper blit of the k designator is
copied into the upper 44 bits of XJ.

)]

| 0233)4300 | Read internal clock to X] (

This instruction enters the 20-bit current contents of the internal real
time clock counter into the lower 20 bits of the X} register, 0°s are
entered in the upper 44 bits of X].

The k designator should be zero in thls instruction.

This instruction is intended primarily for use in determining the elapsed
time between selected points in program execution.

ISSUE CONDITIONS

X] register is free one clock period after instruction issues

X register input path is free twWwo clock periods after issue
EXECUTION TIMING

No execution delays possible after this instruction issues from IPT

CcPO Instruction issues from IPT
Set XJ reservation flag

crP1 Transmit RTC to operand register B
Clear X} reservation flag

cpP?2 Transmit operand register B to XJ register

NOTES

1. If the k designator in this instruction is not zero, the upper 44
bits of X} may be 1°'s since the upper bit of the k designator is
copied into the upper 44 bits of X]J.

| 0300))kk | kkkkkkkk | Jump to P + K [0300 i

This instruction terminates the current program seqguence 3nd initiates a
new sequencea The value of the K field from the instruction considered
as a 20-bit positive integer is added to the current contents of the P
reglister. No further instructions are issued from the current instruction
worde. If the instruction address stack IAS contains an address equal to
the new content of the P register, the corresponding instruction word is
read to the current instruction word register CIW. If there Is no address
coincidence in the IAS an instruction fetch is initiated for the new
program seguence.

ISSUE CONDITIONS

none

EXECUTION TIMING

Execution time for this instruction is seven clock perjods [if the
destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock periods iIf the destination address
is not In the IAS. Delays may occur in this latter case due to stor-
age bank conflicts or other processor conflicts in storage access
control.

EXECUTION

BRANCH IN

CPOD

CPO1

cpo2

crPo3

CPo&
CPO5
CPO6

cPO7?

TIMING (continued)

STACK

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register 8

Integer add front half

Integer add back half
Transmit integer sum to P register

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction can issue

BRANCH OUT OF STACK

CPOOD

cpPO1

crPo2

CrPO3

CPO4L

cPO5

CPO6

cPO7
cPO8
CP16
CP17
cP18
CP19

CP20

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register B

Integer add front half

Integer add back haitf
Transmit integer sum to P register

No coincidence in IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA adder

Transmit P to NSA register

Upper 12 bits of address to storage access control
Acknowledge from storage access control

Transmit NSA to IAS rank 11

Instruction word arrives at IHWS

Read IWS to CIW register

Read CIW register to IPT

Next instruction can issde

-— e o wn -

I 0301 1)Kk | kkkkkkkk | Call subroutine at P + K [0301]

This instruction enters the current program address P in the X} register
and causes the current program address sequence to unconditionally branch
to 3 new program address sequence beginning at the address formed by
adding the value of the K field from tne instruction considered as a 20-
bit positive integer to the current contents of the P register. No
further instructions are jissued from the current instruction word. If the
instruction address stack IAS contains an address equal to the new content
of the P register, the corresponding instruction word is read to the
current instruction word register CIW. If there iIs no address coincidence
in the IAS an instruction fetch is initiated for the new program sejuence.

The return address is entered in the XJ register by tnis instruction for
use by the subroutine on completion.

ISSUE CONDITIONS

X} register is free one clock period after instruction issues
X register input path is free 3 clock periods after issue

EXECUTION TIMING

Execution time for this instruction is seven clock periods it fthe
destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock periods if the destination address
is not in the IAS. Delays may occur in this Jatter case due to stor-
age bank conflicts or other processor conflicts in sftorage access
controia.

EXECUTION TIMING (continued)

8RANCH IN STACK

CPOD

cpPi1

crPO2

CPO3

CPOu

CPO5

CP0b

crPO7

BRANCH

CrOO

CcrPO1

cpPo2

CrPO3

CPO4

CPOS

CPOb

CPO7
cro3

cP1L7

CP138

CP19

Ccr20n

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register B

Integer add front half
Transmit P & PRF to operand register A

Integer add back hatf

Transmit integer sum to P register
Transmit (A) to X}

Coincidence in IAS

Read IWS to CIW register

Read CIW register to IPT

Next instruction can i(ssue

OUT 0OF STACK

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register B

Integer add front half
Transmit P & PRF to operand register A

Integer add back half
Transmit integer sum to P register
Transmit (A) to X}

No coincidence in IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access conftrol
Transmit P to NSA register
Transmit P to IFA register
Abort IWS rank 0O4-11 shift
Upper 12 bits of address to storage access control

Acknowledge from storage access control

Instruction word arrives at IWS
P/IAS rank 11 coincidence

Read IWS to CIW register
Read CIW register to IPT

Next instruction can issue

I 0302)1kk | Kkkkkkkk | Jump to P + K if (X]) In range { 0302 1

Tnis instruction causes the program sejuence to branch to the current
program address P plus a sign extended increment K if (X}) is In range,
or continue the current program address sequence if (X)) is not in range.
{(X}) iIs not in range for any of the folljowing cases?

(X)) = 0111 1111 1111 XXXX ssesesassee XXXX positive overflow
(X§) = 1000 0090 0000 XXXX ceesesooove XXXX negative overflow
{(X}) = 0011 1111 1111 XXXX eeesecceosee XXXX positive indefinite
(xX}) = 1100 0000 0000 XXXX eesevesesse XXXX negative indefinite
(X)) = 01XX XXXX XXXX XXXX esesssessse XXXX positive out of range
(X)) = L0XX XXXX XXXX XXXX seesesseses XXXX negative out of range

ISSUE CONDITIONS

X} regjister (s free one clock period after instruction jissues

EXECUTION TIMING

Execution time for this instruction is seven clock periods if the
destination address is currentiy in the jinstruction address stack IAS.
Minimum execution time is 20 clock periods if the destination address
is not in the IAS. Delays may occur in this fatter case due to storage
bank conflicts or other processor conflicts in storage access control.
If (X}) is not in range (branch fatil{ through), execution time is three
clock periods

3RANCH FALL THROUGH

CPOD Instruction issues from IPT
Transmit)} designator to register modules

cPD1 Transmit P to operand register A
Transmit K to operand register B
Transmit (X}) flags to IA module

CrPO2 Begin integer add of (A) and (B)
Branch condition not satisfied

CP03 Next Iinstruction may issue

EXECUTION TIMING (continued)

BRANCH IN STACK

cPoo

crPo1l

cPo2

cP03

POy

crO5S

CPos

cPo7

32 ANCH

cPO0

CrPO1

crPaz

crPad3

CPOY

CPO5

CP0b

cpo7

cPO8

cpP17

P18

CP19

CP20

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register B

Integer add front half
Branch condition satisfied

Integer add back half
Transmlt Integer sum to P register

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

OUT OF STACK

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register B

Integer add front half
Branch condition satisfied

Integer add back half
Transmit Iinteger sum to P register

No colincidence in IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA register

Transmit P to IFA register

Upper 12 bits of address to storage access controi
Acknowledge from storage access control
Instruction word arrives at IWS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may issue

I 0303))Jkk | kkkkkkkk | Jump to P + < [f (X}) not in range [0303 1

R

This instruction causes the program sequence to branch to the current
program address P plus a sign extended increment K if (X)) is not in range,
or continue the current program address sequence If (X}) is in range. (X))
is not in range for any of the following cases?

(X)) = 0111 1111 1111 XXXX eesessesese XXXX positive integer

(X1) = 1000 0000 0000 XXXX eeeseseaeose XXXX negative overflow
(X)) = 0011 1111 1111 XXXX eceseseccsese XXXX positive indefinite
(X)) = 1100 0000 D000 XXXX esessseesse XXXX negative indefinite
(X}) = 01IXX XXXX XXXX XXXX eseeecsesesss XXXX positive out of range
(X)) = 10XX XXXX XXXX XXXX eseseeeesee XXXX negative out of range

[SSUE CONDITIONS

X} register is free one clock perjiod after instruction issues

SXECUTION TIMING

Execution time for this instruction iIs seven ciock periods if the
destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock oeriods if the destination address
is not in the IAS. 0Deftays may occur in this fatter case due to storage
bank conflicts or other processor confiicts in storage access control.
It (X)) is In range (branch fall through), execution time is three
clock periods

SRANCH FALL THROUGH

CPOO Instruction issues from IPT
Transmit) designator to register moduiles

cPOl Transmit P to operand registe~ A
Transmit K to operand register 8
Transmit (XJ) flags to IA module

CPO2 Begin integer add of (A) + (8)
Branch condition not satisfied

cP0O3 Next instruction may issue

EXECUTION TIMING {continued)

BRANCH IN STACK

crPao0

CPO1

CPO0O2

CPO3

CPO4

cprPd5

CPO6

crPaz?

B8R ANCH

crPOQ

CPO1

crPoe

cPO3

CPO4

CPO5

CPO6

cPov

cPoa

crP17

CP18

CP19

cP20

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register 8

Integer add front half
Branch condition satisfied

Integer add back half
Transmit Integer sum to P rejister

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

OUT OF STACK

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register 3

Integer add front half
B8ranch condition satisfied

Integer add back half
Transmit integer sum to P register

No coincidence in IAS
Set out of stack filag 0OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA register

Transmit P to NSA register

Upper 12 bits of address to storage access control
Acknowledge from storage access control
Instruction word arrives at INWS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may issue

- - - - s = - e o . e - - . -

1 0310})kk | Kkkkkkkk | Jump to P + K if (X)) equal to 0 [0310 1}

This instruction causes the progran sejuence to terminate and branch to
the current program address P plus a sign extended increment K [f (X])

is equal to 0, or continue the current program address sequence if (X})
is not equal to 3. (XJ]) Is equal to 0 for both of the following cases:!

00000000 eeo 0000000000 DOUOUOOD plus zero
11111111 eeeeeoescees 11111111 minus zero

(X))
(X1)

"on

ISSUE CONDITIONS

X] register is free one clock period after Instruction issues

EXECUTION TIMING

Execution time for this instruction [s seven clock periods if the
destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock periods [f the destination address
is not in the IAS. Delays may occur in this latter case due to storage
bank conflicts or other processor conflicts in storage access control.
If (X}) is not equal to zero (branch fall through), execution time is
three clock periods

3RANCH FALL THROUGH

crPO0 Instruction issues from IPT
Transmit | designator to register modutes

cpPO1 Transmit P to operand register A
Transmit K to operand register B
Perform partial zero test in register moduies

cpPO2 Begin integer add of (A) + (B)
Transmit partial zero test to IA module
Complete zero test
Branch condition not satisfied

CPO03 Next instruction may issue

EXECUTION TIMING (continued)

8RANCH IN STACK

crPoo

CcPO1

crP02

cPo3

CPOY
CPO5
CPO6
cPo7
53 ANCH
CPOD

CPO1

gcpPo2

gceo3
cPou
cPo5
cPO6
crPov
CP08
CP17

CP18

CPL9

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register 8

Integer add front half

Integer add back half
Transmit integer sum to P register

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

OUT OF STACK

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register B8

Integer add front half

Integer add back half
Transmit Iinteger sum to P regjister

No coincidence in IAS
Set out of stack filag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA register

Transmit P to NSA register

Upper 12 bits of address to storage access control
Acknowledge from storage access control
Instruction word arrives at IWS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may issue

I 0311) kK | kKkkkkkkk | Jump to P + K [f (X}) not equal to @ { 0311 1

This instruction causes the program seguence to terminate and branch to
the current program address P plus a sign extended increment K if (X)) Iis
not equal to 0, or continue the current program address seguence if (X))
is equal to zero. (X)) is equal to 0 for both of the following casest

(X))
(X))

00000000 eeeeeeeesesees 000000000 plus zero
11111111 eeeeaesanees 11111111 minus zero

HoH

ISSUE CONDITIONS

X)} register is free one clock period after instruction issues

EXECUTION TIMING

Execution time for this instruction Is seven clock perlods if the
destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock periods if the destination address
Is not in the IAS. Delays may occur In this latter case due to storage
bank conflicts or other processor conflicts in storage access controle.

If (X)) is equal to zero (branch fall through), execution time is three
clock periods

3RANCH FALL THROUGH
cpPOO Instruction issues from IPT

cPOot Transmit P to operand register A
Transmit K to operand register 8

cPge2 Begin integer add
Branch condition not satisfied

CpPO3 Next instruction may issue

EXECUTICN TIMING {continued)

3RANCH IN STACK

CPOD

crPo1

cPa2

CPO3

CPOL

crPOs5

CPOb

cro7

BR ANCH

(@]

croo

cPO1

crPo2

cP03

CPO4

CPO5

CPO06

cPo7.
cPo8
cPi7
crPis
CP19

CP20

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register 8

Integer add front half

Integer add back half
Transmit integer sum to P register

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

OUT OF STACK

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand reglister 8

Integer add front half

Integer add back half
Transmit integer sum to P register

No coincidence in IAS
Set out of stack filag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA register

Transmit P to NSA register

Upper 12 bits of address to storage access control
Acknowledge from storage access control
Instruction word arrives at IWS

Read IWS to CIW register

Read CIW reglister to IPT

Next instruction may issue

-— e - - -
- s MR e e Gk s G G e W R R TR W e W e

I 0312})kk | Kkkkkkkk | Jump to P + K if (X}) is positive [0312 1]

R

This instruction causes the program seguence to terminate and branch to
the current program address P plus a sign extended increment K If (X]})
is positivey, or continue the current program address sequence if (X}) is
negative.

ISSUE CONDITIONS

X} register is free one clock perjod after iInstruction issues

EXECUTION TIMING

Execution time for this instruction [is seven clock periods if the
destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock periods if the Jdestination address
is not in the IAS. Delays may occur In thls latter case due to storage
bank conflicts or other processor confljicts in storage access control.
If (X)) is negative (branch fall through), execution time is three
ciock periods

BRANCH FALL THROUGH

CPOO Instruction issues from IPT

CPO1 Transmit P to operand register A
Transmit K to operand register B

CrPO2 Begin integer add
Branch condition not satisfied

CPD3 Next instruction may lssue

>

EXECUTION TIMING (continued)

BRANCH IN STACK

cpPog

cPia1

crPo2

CPo3

CPOG

cPas

CPO6

crPO7

BR ANCH

CPOO

cPO1

cpPo2

crPo3

CPO4

CPO5

CPOb

cpov
crp03
crPi7
cp1is
CP13

CP20

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register 8

Integer add front half

Integer add back half
Transmijit integer sum to P register

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

OUT OF STACK

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register 8

Integer add front half

Integer add back half
Transmit Integer sum to P register

No coincidence in IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmlit reference flag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA register

Transmit P to NSA register

Upper 12 bits of address to storage access control
Acknowledge from storage access control
Instruction word arrives at IHWS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may issue

I 03131 Jkk | kkkkkhkkk | Jump to P + K [f (X)) s negative [0313 }

- — - - - -

This instruction causes the program seguence to terminate and branch to
the current program address P plus a sign extended increment K [f (X)) is
negative, or continue the current program address sequence if (X]) is
positivee.

ISSUE CONOITIONS

X] register is free one clock period after instruction issues

EXECUTION TIMING

Execution time for this instruction is seven clock periods if the
destination address is currentily in the instruction address stack IAS.
Minimum execution time [is 20 clock periods [if the destination address
is not in the IAS. Delays may occur in this latter case due to storage
bank conflicts or other processor conflicts in storage access control.
If (X)) is positive (branch fall through), executfion time is three
clock periods

BRANCH FALL THROUGH

CPOO Instruction issues from IPT

cPO1 Transmit P to operand register A
Transmit K to operand register B

crg2 Begin integer add
Branch condition not satisfied

CcPO3 Next instruction may issue

EXECUTION

BRANCH IN

crPag

CPO1

CrO2

CcP03

CPO&4

CPO5

CPOb6

cPO7

TIMING (continued)

STACK
Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register B

Integer add front half

Integer add back half
Transmit integer sum to P register

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

BRANCH OUT OF STACK

CPOD

cPot

crPo2

CrPO3

CPO4

CPG5

cPoe

CPo7
cpros
cP17
cP18
CP19

ce20

Instruction issues from IPT

Transmit P to operand register A
Transmit K to operand register B
L4

Integer add front half

Integer add back half
Transmit integer sum to P register

No coincidence in IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA register

Transmit P to NSA register

Upper 12 bits of address to storage access control
Acknowledge from storage access control
Instruction word arrjives at IWS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may [ssue

e o . e e o e . e U W e s - - - - -

I 0320)1)KK | KKKKKKKK 1 Call subroutine at address K [0320 1

- . - - - —

This instruction enters the current program address P in the X] regilister
and causes the current program address sequence to unconditionally branch
to a new program address sequence beginning at the address specified by
the K field from the instruction.

ISSUE CONDITIONS

X} register is free one clock perjiod after issue

EXECUTION TIMING

Execution time for this instruction is seven clock periods if the
destination address is currently in the instruction address stack IAS.
Minimum execution time is 28 clock overiods if tnhe destination address
is not in the IAS. Delays may occur in tnhis Jatter case due fto
storage bank conflicts or other processor conflicts in storage access
control.

EXECUTION TIMING (continued)

S5 ANCH IN STACK

CPOO

CPi1

cpPo2

cPO3

CPO4

CPO5

CPib

cro7

BRANCH

crPOO

CPO1

cPO2

cpo3

CPO&4

CPOS

CPOb

crPo7?

cpGo3

cpiv7

crPis

CPL3

gcrP239

Instruction issues from IPT

Transmit Zeros to operand register A
Transmit K to operand register 8

Integer add front half
Transmit P & PRF to operand register A

Integer add back half

Transmit integer sum to P register
Transmit (A) to X}

Coincidence in IAS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may issude

OUT OF STACK

Instruction issues from IPT

Transmit zeros to operand register A
Transmit K to operand register B

Integer add front half

Transmit P § PRF to operand register A
Integer add back half

Transmit integer sum to P register
Transmit (A) to X]}

No coincidence In IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA register

Transmit P to NSA register

Upper 12 bits of address to storage access control

Acknowledge from storage access control

Instruction word arrjives at IHKWS
P/IAS rank 11 coincidence

Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

I 0321))kk | Call subroutine at address (Xk} [0321)

Tnis instruction enters the current program address P in the X} register
and causes the current program address sequence to uncondijitionally branch

to a new program address sequence dDedinning at address specified by the
contents of the Xk register.

ISSUE CONDITIONS

X} register Is free one clock period after iInstruction issues
XKk register is free one clock pneriod after instruction [ssues

EXECUTION TIMING

txecution time for this instruction is seven clock perijods if the
destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock oeriods if the destination address
is not in the IAS. Delays may occur in this latter case due to

storage bank conflicts or other processor conflicts in storage access
controle.

EXECUTION TIMING (continued)

BRANCH IN STACK

ceao

CPO1

cprPoe

crPO3

CPO4

CPG5

CcrPO6

crPov

BR ANCH

CPOO

CrPO1

gprPo2

cpPo3

CPO4

CPO5

CPO®

cPaov

cP03

cCP17

CP18

CpP19

cP20

Instruction issues from IPT

Transmit zeros to operand register A
Transmit (Xk) to operand register 8

Integer add front half
Transmit P & PRF to operand register A

Integer add back haif

Transmit integer sum to 2 register
Transmit (A) to Xj

Coincidence [n IAS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may issuJe

OUT OF STACK

Instruction Issues from IPT

Transmit zeros to operand register A
Transmit (Xk) to operand register B8

Integer add front half
Transmit P & PRF to operand register A

Integer add back half
Transmit integer sum to P register
Transmit (A) to X]

No coincidence in IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of address to storage access contraol
Transmit P to IFA register
Transmit P to NSA register
Upper 12 bits of address to storage access control

Acknowledge from storage access control

Instruction word arrives at IWS
P/IAS rank 11 coincidence

Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

- - - -

I 0322} kk | kKkkkkkkk | Catl tibrary routine at address K []
----------------------- [Clear PRF] [(34)]

- e -

This instruction clears the program reference flag PRF. The X] register is
cleared and entered with the current contents of the P register. The P
register is cleared and entered with the value of the K field. The IAS

is cleared so that all address registers contain 3333333333, No further
instructions are issued from the current jinstructfion word. Any insftruction
fetcnes In process are discarded on arrival. A new instructjon fetch is
initiated for the absolute address now contained in the P register.

This instruction is intended for use by an oblect program in caliling a
resident library routine which is outside of the object program fields. The
K field in the instruction contains the absolute address of the library
routine entrances. The return address s entered in the X] register by this
instruction for use by the library routine on completion.

The program reference fiag PRF is cleared by this instruction so that the
resident library routine code can be executed directly from the resident
locations. All Instructions except the ten data storage reference group
instructions are executed in absolute mode.

The instruction address stack IAS is cleared to avoid conflicts
petween the old oblect program which js refative to RA and the library
routine addresses which are absolute.

ISSUE CONDBITIONS

X] register is free one clock period after instruction issue
X register lnput path is free three clock periods after issue

EXECUTION TIMING

Minimum execution time for this instruction is 18 clock oeriods.
Delays may occur in the arrival of the new instruction word at the
processor IWS due to storage bank conflicts or other orocessor
conflicts in storage access control.

EXECUTION TIMINS (continued)

CrPOD

crPOt

crPo2

CPO3

CrPo4

CPO5

CPO6

CPa7

crPos

CP16

cp17

CcP18

cP19

crP20

Instruction issues from IPT

Transmit zeros to operand register A

v/

Transmit K to operand register B
Clear program reference flag PRF

Integer add front nalf

Transmit P to operand register A

Clear instruction address stack IAS

Abort fetches in process

Integer add back half

Transmit operand register 4 to X} register
Transmit integer sum to P register

No P/IAS coincidence
Set out-of-stack flag OSF

Transmit reference flag to SA module
Lower 8 bits of address to SA module
Transmit P to NSA

Transmit P to IFA

Upper 12 bits of address to SA module
Acknowledge from SA module

Enter address in IAS

Instruction word arrijives at IHWS

Read IWS to CIW register

Read CIW to IPT

Next instruction may issue

R e

- - — - ™ -
- - - - -

I 032311 kk | Call liorary routine at address (Xk) {Clear PRF] [0323 1}

This instruction clears the program reference flag PRF. The X register
indicated by the } designator is cleared and entered with the current
contents of the P register. The P register Is cleared and entered with
the current contents of the X register indicated by the k designator.

The instruction address stack IAS is cleared so that all address registers
contain 3333333333. No further instructions are issued from the

current instruction word. Any instruction fetches in process are

di scarded on arrival. A new instruction fetch is initiated for the
ansolute address now contained in the P register.

This instruction is intended for use by an object program in calling a
resident library routine which Is outside of the object program field.
The Xk register contains the absolute address of the library routine
entrance. The return address is entered in the X} register by this
instruction for use by the library routine on complietion.

The program reference flag PRF is clieared by this instruction so that
the resident |ibrary routine code can be executed directly from tne
resident locations. All instructions Wwith the exception of the fen
data storage reference instructions are executed in absolute mode,

The instruction address stack IAS is cleared to avoid possible
conflicts between the old ob}lect program code which is relative to RA
and the library routine addresses which are absolute.

ISSUE CONDITIONS

X} register is free one clock period after iInstruction issue
Xk register is free one clock period after instruction issue
X register input path is free three clock periods after issue

EXECUTION TIMING

Minimum execution time for this instruction is 18 clock periods.
Dglays may occur In the arrival of the new instruction word at the
processor IWS due to storage bank conflicts or other processor
conflicts in storage access control.

EXECUTION TIMING (continued)

cPOD

crPO1

cPo2

CPO3

CPO4

CPOS

CPO6

cePaoz

cros

CP16

CcP17

cP18

cP19

Instruction issues from IPT

Transmit zeros to operand register A
Transmit Xk to operand register B
Cilear program reference flag PRF
Integer add front hait

Transmit P & PRF to operand register A
Clear instruction address stack IAS
Abort fetches in process

Integer add back half

Transmit operand register A to X} register
Transmit integer sum to P register

No coincidence in IAS
Set out=-of-stack flag OSF

Transmit reference flag to SA module
Lower 8 bits of address to SA module
Transmit P to IFA register

Transmit P to NSA reglster

Upper 12 bits of address to SA module
Acknowledge from SA module

Transmit NSA to IAS

Instructlon word arrives at INWS

Read IWS to CIW register

Read CIW to IPT

Next instruction may [ssue

- e - —— - -—— e - -

t 0330})kk | Subroutine exity, computed Jump to (X}) + K { 0330 3}

This instruction terminates the current orogram sequence and initiates a
new seguence. The P register is cleared and entered with the integer sunm
of the content of the X register indicated by the } designator and the
value of the k designator considered as a 4-bit positive integer, No
further instructions are issued from the current instruction word. If the
instruction address stack IAS contains an address eqgual to the new content
of the P registery the corresponding instruction word is read to the cur-
rent instruction word register CIW.e If there is no address coincidence in
the IAS an instruction fetch is initiated for the new program sequence.

This instruction is intended for use by a subroutine in returning to a
calling programs. It may also be used as a normal unconditional Jump to a
computed destinations The k designator is added to the content of the

X reglster to provide a convenient vehicle for passing over error exit
instructions when a subroutine is ~eturning to a calling program.

ISSUE CONDITIONS

X] register is free one clock period after instruction issues

EXECUTION TIMING

Execution time for this instruction is seven clock periods if the

destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock periods if the destination address
is not in the IAS. O0Oefays may occur in this ftatter case due to stor-

age bank conflicts or other processor confiicts in storage access
controtl.

EXECUTION

BRANCH IN
CrPa0

CrPO1

crPa2

CP0O3

CPO4

CPO5

CPO6

cPo7

TIMING {continued)

STACK
Instruction issues from IPT

Transmit X]| to operand register A
Transmit k to operand register 8

Integer add front half

Integer add back half
Transmit integer sum to P register

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

BRANCH OUT OF STACK

CPOD

CcrPO1

CrP02

CPO03
CPO4
CPO5

CP0O6

cpoz
CrPO8
crPi7
CP18
CP19

CcrP20

Instruction issues from IPT

Transmit X} to operand register A
Transmit kK to operand register B

Integer add front half

Integer add back half
Transmit integer sum to P register

No coincidence in IAS
Set out of stack fiag OSF

Transmit P to RA adder
Transmit reference flag to storage access control

Lower 8 bits of agddress to storage access control
Transmit P to IFA register

Transmit P to NSA register

Upper 12 bits of address to storage access control
Acknowtledge from storage access control
Instruction word arrives at IWS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may issue

- e am - -

- - - - -

I 0331})1kk | Library routine exit to (X}]) + k [set/clear PRF] [0331 1}

This instruction sets or clears the program reference flag PRF. 8it 52 of
(X]) causes the PRF to be set if it is a "1" or cleared if it is a '"0",

The P register is cleared and entered with the integer sum of the contents
of the X} reglster and the value of the k designator considered as a 4-bit
positive integer. The instruction address stack (IAS) is cleared so that
all address registers contain dibits 3333333333. No further instructions
are issued from the current instruction word. Any instruction fetches in
process are discarded on arrivale. A new instruction fetch Is initiated
for the relative address now contained In the P register.

This instruction is intended for use by 3 library routine oudtside of the
object program field. The X} register contains the return address of the
calling obJect program refative to the object program reference address RA.
The k designator is added fto the oblect program return address to provide

a convenient vehicle for passing over error exit branch instructions which
may be encoded in the objJect program following the library routine calling
instructione. Various error exits in the library routine may use different
Kk values to select the various error exit branch instructions

The program reference flag PRF [s set by this instruction so that ail fu-
ture instruction fetches will be relative to RA. The instruction address
stack IAS is cleared to avoid possible conflicts between the old library
routine addresses which are absolute, and the new object program addresses
which are relative. -

ISSUE CONDITIONS

X} register is free one clock period after instruction issue

CXECUTION TIMING

Minimum execution time for this inst~uction is 18 clock periods.
ODelays may occur in the arrival of the new instruction word at the
processor IWS due to storage bank conflicts or other processor
conflicts in storage access c¢ontrol.

EXECUTION TIMING (continued)

CPaO0

CPO1

cpo2

CPD3

CPOL

CPO5

0 3113)

crPo7

CrPo8

CP16

CP17

CP18

CP19

CP210

Instruction issues from IPT
Transmit X] to aperand register A
Transmit kK to operand register B
Set PRF to bit 62 of X]

Clear IAS

Integer add front nalf

Clear instruction address stack IAS
Abort fetches in process

Integer add back half

Transmit integer sum to P register
Transmit integer sum to RA adder

No coincidence in [AS
Set out-of-stack flag OSF

Transmit reference flag to storage access control
Lower 8 bits of address to storage access control
Add RA to integer sum

Upper 12 bits of address to storage access control
Acknowledge from storage access control

Transmit NSA to IAS

Instruction word arrives at IWS
Advance NSA

Read IWS to CIW register
Read CIW register to IPT

Next instruction may issue

- e . - -

—— - - - - -

Tnis instruction causes the current program address sequence to uncondit-
ionally branch to a new program address sequence beginning at the address
specified by the valuz of the K field from the instruction. No further
instructions are issued from the current instruction word. If the
instruction address stack IAS contains an address egual to the new
content of the P register, the corresponding instruction word is read

to the current instruction word register CIW. If there is no address
coincidence in the IAS an instruction fetch Is initiated for the new
program sequence.

ISSUE CONDITIONS

EXECUTION TIMING

Execution time for this instruction is seven clock periods if the
destination address is currently in the instruction address stack IAS.
Minimum execution time is 20 clock oeriods if the destination address
is not in the IAS. Delays may occdr in this latter case due to stor-
age bank confiicts or other processor conflicts in storage access
control.

EXECUTION

BRANCH IN

cPOoD0

CPp1

cpoz

cPO3

CPO&4
CPO5S
crPo6

ceovz

TIMING {(continued)

STACK
Iinstruction issues from IPT

Transmit zeros to operand register
Transmit K to operand register B8

Integer add front half

Integer add back half
Transmit integer sum to P register

Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT

Next instruction may lissde

3R ANCH OUT OF STACK

CPOO

crPo1

cpoz

cPO3

CPO&

CPO5

CP0OB

cPo7
CPDS8
CP16
CcP17
cPi8
CP1g

crP20

Instruction issues from IPT

Transmit zeros to operand register
Transmit K to operand register 8

Integer add front half

Integer add back half
Transmit integer sum to P register

No coincidence in IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmit reference flag to storage

Lower 8 bits of address to storage
Transmit P to IFA register
Transmit P to NSA register

A

access control

access control

Upper 12 bits of address to storage access control

Acknowledge from storage access control

Transmit NSA to IAS rank 11
Instruction word arrijives at IWS
Read IWS to CIW register

Read CIW register to IPT

Next instruction may issue

I 0333xxxx | Exchange Exit {]

This instruction causes the current program sequence to terminate with an
exchange Jump to address (XA) which is the absolute address of an exchange
packages The lowest order 5 bits have been removed from (XA) because
exchange packages reside in low storage addresses at address multiples

of 32.

The | and k designators in this Instruction are ignored. The program
address stored in the exchange package [n the terminating exchange Jump is
advanced one count from the address of the current instruction word. This
is true no matter which parce! of the current instruction word contains
the exchange exit instruction.

ISSUE CONDITIONS
None
EXECUTION TIMING

CPO0 Instruction issues from IPT

CPO01 Exchange exit flag set in XPW in RD module

CP02 Set interrupt flag in RD module

CP03 Interrupt condition sent to IA module

CP04 Clear CIW and IPT
Clear IAS
Abort fetches in progress

CPDS5 Exchange sequence flag set - may be delayed waiting fors

1) all clear registers; 2) no fetch in progress

All 1's to NSA
Transmit XA to IFA

CPO0t Set storage sequence CP1 for XPW

CPO07 Set storage sequence (CP2 for XPHW
Transmit exchange count as read/write tag to R3 module
Transmit exchange count as address to IW module
Advance exchange count
Set one storage reservation

CP08 Set storage sequence (CP3 for XPW

CP03 Send reference flag to SA module for XPW
Set storage sequence CPL for X register 33

EXECUTION TIMING (continued])

crP10

cpit

e

cP13

Send lower 8 bits of address to SA module

Set storage sequence CP2 for X register 33

Transmit exchange count as read/write tag to R3 module
Transmit exchange count as address to IW module
Advance exchange count

Set two storage reservations (block go exchange)

Send upper 12 bits of address to SA module
Set storage sequence CP3 for X register 33

Acknowledge from SA module (may be delayed by conflicts)
Send reference flag to SA module for X register 33

Send lower 8 bits of address to SA module
Set storage sequence CP1 for X register 32
Clear two storage reservations flag

The sequence continues as above fo~ the other registers.
The setting of storage sequence CPl1 alternates between
3 clock periods and 4 clock periods for ad)acent registers.

CP52

CP63

XPW or X Set storage Enter word
Register sequence CP1 into register
XPHW CPG6 gcpz1

33 (F) 09 24

32 (E) 13 28

31 (D} 16 31

30 (C) 20 35

23 (B) 23 38

22 (4) 27 42

21 (9) 30 45

20 (8) 34 49

13 (7) 37 52

12 (6) 41 56

11 (5) Lt 59

10 (4) 48 63

03 (3) 51 66

02 (2) 55 70

0L (1) 58 73

a0 () 62 77

Set storage seqgquence CPl1 for X register 00

Enter storage word into X register 10

Set storage sequence CP2 for X reglister 00

Transmit exchange count as read/write tag to [module
Transmit exchange count as address to IW module
Advance exchange count

EXECUTION TIMING (continued) . =memee-—--

CPok4 Set storagze sequence (CP3 for X register 00 = s=em-e---

CPb5 Send reference flag to SA module for X register 00
End exchange sequence

CP65 Send lower 8 bits of address to SA module
Enter memory word into X register 03
No P/IAS coincidence
Set out-of-stack flag

CPo67 Send upper 12 bits of address to SA module for X register 00
Send fetch reference flag to SA4 module

CP&8 Acknowledge for X register 00 from SA module
Send lower 8 bits of fetch address to SA module

CP63 Send upper 12 bits of fetch address to SA module

CrP78 Enter memory word into X register 02
Acknowledge for fetch from SA module

CP73 Enter memory word into X register 01
CP77 Enter memory word into X register 00
CP738 NSA to IAS rank 1t

CP79 Storage to IWS
P/IAS rank 11 coincidence

CP80 IWS to CIW
crP8i CIW to IPT

cP82 Next instruction may issue

I 100nyinn | Save lower (X}) for n »2its [100X 1}

Tnis instruction reads a b4-bit operand from the XJ register, forms a mask
(1*s in the lower n bits, 0's in the upper bits), and performs a bit-bpy-bit
logical product of (X}]) and the maske The result is entered in the X]J

register, A sample of the instruction ovoeration is listed below in binary

notation.
Samplet? n = 000100 {n 1

0000 eeeseecesvsssse 0000 1111
1011 ceevevvesess 1010 1101

- - e - - s - A e m- wm e A e w W m E w

mask
be-bit (X}) operand

I
[
[ae)
[}
[ow]
.

.
.
.
.
.
.
.
.
.
.
.

[ne)
s
(o)
()
[N
[
(=)
—-

bb-bit (X)) result

ISSUE CONDITIONS

-

X} register is free one clock perjiod after instruction iIssues
X register input path is free two Cclock periods after issue

EXECUTION TIMING
CPO Instruction issues from IPT
Transmit }J and n designators to register modules
Set X} reservation flag
CP1 Read (X)) to operand register A
Enter 1's In lower n bits of operand register 3
Clear X] reservation flag

cpP2 Enter logical product of (A) and (8) in X}

NOTES

1. The maximum number of mask bits which may be specified
by n is 53 decimale.

- - - an - -

I 101nyinn | Blank lower (X)) for n dits { 101X 1]

This instfruction reads a 64-bit operand from the X)) register, forms a mask
(1*s in the lower n bits, 0°s In the uJpper Dits), complements the mask, and
performs a bit-by-bit logical product of (X)) and the complemented mask.
The result is entered in the X] register. A sample of the instruction
operation is tisted below in binary notation.

Sampie?! (64 bits)

n = 1111020 [Crmmmme=- n | =————— >])
mask = DOOD 1111 1111 ® e eesscsssse 1111

complemented mask = 1111 D000 000D eeeeceensceee 0000
(X)) initial = 1011 1100 1010 eeoecessessss 1101

- e = - . - - - e W S G e e 4D P R YR e W e S W e

® 0% 5 9 ¢ 8000 0N 0000

1
[es
o
>
|l
o
o
(o)
(o)
(e)
Q
o
(e}

(X}) terminal

ISSUE GONDITIONS

X] register is free one
X register input path Is free two clock periods after issue

EXECUTION TIMING
cPO Instruction issues from IPT
Transmit §| and n deslignators to register modules
Set X] reservation flag
crPi1 Read (X)) to operand register A
Enter 1°*s in lower n bits of operand register 8

Ctear X} reservation flag

ce2 Enter logical product of (A) and (8) complement in X]

1. The maximum number of mask bpits which may be specified
by n is 63 decimal.

_—— e - ——— - - - - - - -

I 102ni)inn | Left shift (X}) by n bits (circular) [102X 1

This instruction reads a 64-bit operand from the X} register, shifts the
operand left circularly by n bit positions, and writes the word back into
the X} register. n is a 6-bit positive integer operand with the 2-bit

i designator as the upper 2 bits and the k designator as the lower 4 Difts,
In the example below, the n designator is 0001060

10110000ece0e++«00000000
00000000eeeess00001011

Sample (b4 bits)? (X]) operand
(X]) result

In a teft circular shift operation, each bit shifted off the upper end of
the bh=bit word is inserted in the lowest order bit position.

This Iinstruction is intended for use [n data processing as distinguished
from numerical computation, and Is used whenever a data word is to be shift-
ed to the left by a predetermined number of places. If the shift count |is
derived Iin the execution of a program, instructions 0012 or 0013 should be
usede

ISSUE CONDITIONS

X} register is free one clock period after issue
X register input path is free three clock periods after issue

EXECUTION TIMING
No execution delays possible after this instruction issues from IPT

CPO Instruction issues from IPT
Set X} reservation flag

cP1 Read (X)) to operand register A
Clear X) reservation flag

cep2 Begin operand shift

CP3 Complete operand shift
Transmit operand to X}

NOTES
1. The maximum shift count which may be specified by (X]) is 63 decimat.
2, If the shift count is 0 this instruction reads the operand from reg-
ister X} and returns it unaltered to register Xje. The timing for this
case is the same as for the general case.
3, If the operand pits are all 1°s or all 0's they are treated in the

same manner as any other bit pattern and the timing iIs the same as
for the general case.

I 103n)inn | Right shift (X)) by n pits (with sign extension) [103X 1

- - - -

This instruction causes the shift unit to read a 64=-bit operand from the X]j
register to operand register A, shift the operand right with sign extension
by n bit positions, and wWrite the word back info the X] register. n is a b-
bit positive integer operand with the 2-bit | designator as the upper 2 bits
and the k designator as the lower 4 bits. In the sample operations below
the n designators are 111010 and 000011 binary.

Sample (b4 bits): (X}{) operand = (01000000sesees00000111
n = 111010 {(X}) result 00000000,4+044000100080

11000000+e0ee400100010
1111100040440400000100

1

Sampile (64 bits): (X}) operand
n = 000011 (X{) result

tach bit shifted off the lower end of the b4-bit word is discarded and the
highest order bjit is repltaced with a copy of the original operand sign Dbit.

This instruction is used whenever a data word is to be shifted right with
sign extension by a predetermined number of olaces. If the shift count is
derived In the execution of a program, instruction 0012 or 0013 should be
used,

ISSUE CONDITIONS

X} register is free one clock period after instruction issues
X register input path is free threa clock periods after Issue

EXECUTION TIMING
No execution delays possible after this instruction issues from IPT

cPD Instruction issues from IPT
Set X] reservation flag

chP1 Read (X)) to operand register A
Ctear X] reservation flag

cp2 Begin operand shift

CP3 Complete operand snift
Transmit operand to X)

NOTES

1+ The maximum shift count which may be specified by (X])
is 63 decimal.

—— e e - - - w e wn e W

I 11ii) kK | Kkkkkkkk | Integer sum of (X]) plus K to Xi [11XX]

e - . . v A -

Thnis instruction forms the 1°'s complement sum of the b4=-bit operand read
from the X] register and the integer soecified by sign extended K. The
result Is entered in the Xi register. An overflow condition is ignored.

ISSUE CONDITIONS
Xi register is free one clock period after instruction issues

X} register is free one clock period after instruction issues
X register input path is free tnree clock perijods after issue

SXECUTION TIMING

No execution delays possible after this instruction [ssues from IPT
CPO Instruction issues from IPT

Transmit |} and k deslignators to register modules

Set Xi reservation flag

CP1 Enter (X)) in operand register A
Enter K in operand register 3

cpPe Perform add operation
Ciear Xi reservation flag

cP3 Enter result in Xi

WITES

| 2ii)y ki Integer sum of (X)) olus (Xk) to Xi [12XX 1

Tnis instruction forms a b4=-bit 1's comnplement sum of the operands read
from the X) and Xk registers and enters the result in the Xi register.

The operands are assumed to be signed integerse. An overfliow condition

is ignored.

This instruction is iIntended for the addition of integers and s also
useful in merging and comparing data fields during data processing.

ISSUE CONDITIONS

Xi register is free one clock period after instruction issues
X} register is free one clock period after instruction lissues
Xk register is free one clock period after instruction issues
X register input path is free tnree clock periods after issue

CXECUTION TIMING
No execution delays possible after this instruction issues from IPT

CPO Instruction issues from IPT
Transmit iy } and k designators to register modules
Set Xi reservation flag

CP1 Enter (X]) in operand register A
Enter {(Xk) in operand register B

cp2 Perform add operation
Clear Xi reservation flag

cPR3 Enter result In Xi

NOTES

1. If the } and k designators have the same value, the designated b4-bit
operand is added to itself and the resulting sum entered in the Xi
register.

2e If the | designator has the same value as the]| designator or the
k designatory this instruction becomes a replace add instructione.
The initial (Xi) is added to the other operand and the result then
stored back in the Xi register.

P e Y - - -

I 13ii))kk | Integer difference of (X]J) minus (Xk) to Xi [13XX]

Tnis instruction forms the b4-bit 1°s conplement difference of the operands
read from the XJ and Xk registers and enters the result of (X)) minus {(Xk)
in the X1 register. The operands are assumed to be signed integers. An
overflow condition is ignored.

This instruction is intended for subtraction of integers and iIs also useful
in comparing data fields during data processinge.

ISSUE CONDITIONS

Xi register is free one clock after fnstruction issues

X] register is free one clock after instruction issues

Xk register is free one clock after instruction issues

X register input path [s free three clock periods after issue
EXECUTION TIMING

No execution delays possible after this instruction issues from IPT

cPo Instruction issues from IPT

Transmit 1y }] and k designators to register modules

Set Xi reservation flag

cP1 Enter (X)) in operand register A
Complement (Xk) and enter in operand register B

cp2 Perform add operation
Clear X1 reservation flag

cP3 Enter result in Xi

NOTES
1. If the } and k designators have the same valuey the designated o4-bit
operand Is subtracted from itself,. The result is a positive zero
entered in the Xi register.
2. If the i designator has the same value as the | designator or the

k designator, this instruction becomes a replace subtract instruction.
The inltial (Xi) is read as an operandy, and the resulting difference
is then stored in the same register,

| 20ii})kk | Floating sum of (X)) pius (Xk) to Xi { 20Xx 1

This instruction forms the double preclision sum of two floating point
operands read from the X} and Xk registers and enters the normalized
single precision upper half of the result in the Xi register.

The operands are not rounded in this operation and may or may not be
normalized. They are unpacked from fioating point format and the exponents
compared. The coefficient with the smaller exponent (s shifted down by

the difference of the exponents so as to align bits of corresponding
significancey, and a 937-bit adder forms a double precision 1°s complement
SUMa A 4B8-bjit result coefficient is read from the upper half of this

SUMe

If an overflow of the highest order coefficient bit occurs during

the addition process,y, the result coefficient is displaced one bit and
the result exponent is corrected by one count. The upper half result
entered in the X| register is normalized.

This instruction is intended for use in floating point calculations

where rounding of operands is not desired. This is the casz in multipie
precislion arithmetic and in calculation involving error analysis,.

ISSUE CONDITIONS
Xi register Is free one clock period after instruction issues
X] register is free one clock period after Instruction issues
Xk register is free one ctlock period after instruction issues
X register input path is free eight clock periods after issue

EXECUTION TIMING

No execution delays possibte after this instruction issues from IPT.

EXECUTION TIMINSG (continued)

cPO

CP1

cP2

CP3

CP4

CP5

CPb

CcP7

Instruction issues from IPT

Transmit I,] and k designators to register modules
Set X} reservation flag

Read (X}]) to tloating add module FA

Read (Xk) to floating add module FA

Compare exponents

Transmit coefficients to pre-add shift register
Select smaller exponent

Shift coefficients for bit alignment
Transmit coefficients to 97-bit adder

Form double precision sum
Transmit DP sum to bit position network

Determine significant bit position
Transmit result to shift network

Perform 96-bit normalize shift
Clear X] reservation flag

Enter upper half of result in Xi

B T e

L
—— - - - . - -

I 2101))kkKk | Floating differance of (X)) minus (Xk) to Xi [21XX]

- - - - -

This insftruction forms the floating point difference of two floating point
operands read from the X} and Xk registers and enters the normalized result
of (X)) minus (Xk) in the XI register. The result entered in Xi is the
upper half of 3 double precision number,

The operands are not rounded in this operation and may or may not be
normalized.s (Xk) is complemented. (X}) and the complemented (Xk) are
unpacked from floating point format. The exponents are compared and the
coefflcient with the smaller exponent is shifted down by the difference of
the exponents so as to align bits of corresponding significance. A 97-bit
adder then forms a doubte precision 1°*s complement sum and a 48-bit result
coefficient is read from the upper half of this sum into the Xi register
together with the result exponent.

If an overflow of the highest order coefficient bit occurs during the
addition process, the result coeffjicient is dispfaced one bit and the
result exponent (s corrected by one count.

This instruction is intended for use in floating point calculations where
rounding of opeands is not desired. This Is the case in muitiple precision
arithmetic and Iin calculation invoiving error analysis.

ISSUE CONDITIONS

Xi register is free one clock period after instruction issues
X] register is free one clock period after instruction lssues
XKk register Is free one clock period after instruction issues
X register input path is free elght clock periods after issue

“XECUTION TIMING

No execution delays possible after this instruction issues from IPT.

- - - .

EXECUTION TIMING (continued)

cere Instruction issues from IPT
Transmit i, | and k designators to register modules
Set X] reservation flag

CP1 Read (X)) to fioating add module FA
Read compltement of (Xk) to floating add module FA
Compare exponents
Transmit coefficients to pre-add shift register

cprP2 Select smaller exponent

cp3 Shift coefficients for bit alignment
Transmit coefficients to 97-bit adder

CPL Form double precision sunm
CP5 Transmit DP sum to bit position network
CPb Determine significant bit position

Transmit result to shift network

GP7 Perform 96~bit normalize shift
Clear X} reservation flag

CP8 Enter upper half of result in Xi

b 2211) kK 1 Floating product of (X]) times (Xk) to Xi [22xx 1]

- -

This instruction muitiplies two normalized fioating point operands read
from the X] and Xk registers and enters the result in the Xi register,
The result entered in Xi is the upper half of a double precision product.

The two operands are unpacked from floating point format (the operands are
not rounded). The exponents are added to determine the exponent for the
result.

The coefficients are mulftinlied as signed integers to form a 96-bit doubife
precision integer product. The upper nhalf of this product is then extract-
ed to form the &8-bit coefficient for the result, If the doubie precision
product has only 95 significant bits, 3 1-bit normalizing shift is perform-
ed pefore extracting the upper half, and the exponent for the result is
corrected by one count,

This instruction is intended for use in single and multipte precision float-
ing point calculations. Used together with the 012 instruction, this
instruction forms a 95-bit double orecision product in two X registers with
no foss of precision.

ISSUE CONDITIONS
X1 register is free one clock period after Instruction issues
X} register is free one clock period after instruction issues
Xk register Is free one clock period after Instruction issues
X register input path Is free eight clock periods after issue

EXECUTION TIMING

No execution delays possible after this instruction issues from IPT

EXECUTION TIMING (continued)

CPO Instruction issues from IPT
Transmit 1, } and k designators to register modules

cpP1 Transmit (X}) and (Xk) to fioating multiply module MA
Perform sign corrections
Separate exponents from coefficients

cP2 Form first 16x48 product
cP3 Form second 1ox&8 product
CP4 Form third 16x48 oroduct
CPS Merge the three 16x48 products into 96-bit result register
crP8 Enter upper 48 bits in Xi

- P - — - - -

I 23iiJ)kk | Branch backward i words If (X}) < (Xk) [23XX 1}

This instruction causes the current program sequence to terminate and
branch backward the number of words specified by the | designator if
(X)) minus (Xk) is negatjive, or continue the current program address
sequence [f (X}) minus (Xk) is zero or positive.

If the branch condition (X}) < (Xk) is satisfied, the difference of

the current contents of the P register and the [designator considered
as a b-bit positive integer becomes the new contents of the P register.
No further instructions are issued from the current instruction word.
If the instruction address stack IAS contains an address egual to the
new contents of the P register, the corresponding instruction word is
read to the current instruction word register CIW. If there is no
address coincidence in the IAS, an instruction fetch (s initiated for
the new program sequence,

ISSUE CONDITIONS
X} register is free one clock period after instruction issues
XK register (s free one clock period after instruction issues

EXECUTION TIMING
Execution time for this instruction is seven clock periods if the
destination address js currently in the instruction address stack IAS.
Minimum execution time is 20 clock periods if the destination address
is not in the IAS., Delays may occur in this fatter case due to storage
bank conflicts or other processor confljicts in storage access control.
If (X]) < {(Xk) (branch fall through), execution time (s three clock
periods.

BRANCH FALL THROUGH

crPOgQ Instruction issues from IPT

CPO1 Transmit (X}) to operand register A
Transmit (Xk) to operand register B8

cpo2 Begin integer add
Branch condition not satisfied

cP0O3 Next instruction may [ssue

EXECUTION TIMING (continued)

8RANCH IN STACK

croo

crPdl

cPde

CPO3

CPOo&4

CPO5

CPOb

crPo7

BR ANCH

CcPOO

cPOt
cpPo2

CPG3

CPOG
CPO5

CPO6

crPo7
CP08
cP17
ceP13
CP19

cpP20

Instruction issues from IPT

Transmit (X}) to operand register A
Transmit (Xk) to operand register 0

Integer ada front haltf
Branch condition satisfied

Select P - | Input to P register
Coincidence in IAS
Read IWS to CIW register
Read CIW register to IPT
Next instruction may issue
OUT OF STACK
Instruction issues from IPT

Transmit (Xj) to operand register A
Transmit {(Xk) to operand register 8

Integer add front half
Branch condition satisfied

Select P - i input to P register

No coincidence in IAS
Set out of stack flag OSF

Transmit P to RA adder
Transmit reference filag to storage access control

Lower 8 bits of address to storage access control
Transmit P to IFA register

Transmit P to NSA register

Upper 12 bits of address to storage access control
Acknowledge from storage access control
Instruction word arrives at IWS

Read IWS to CIW register

Read CIW register to IPT

Next instruction may 1ssdJde

- o - -

- = -
J T A R

| 3011} kk | kikkikkkkk | Read data at address (X)) + K to Xi

Tnis instruction reads a word of data from the oblect program storage
field and enters that word in the Xi register, The storage address is
determined by adding the sum of (XJ) and the K field from the instruction
to the object program reference address.

A separate test Is made to determine if the value of (X]) + K considered
as a 20-bit positive integer is equal to, or greater than, the current
oblect program fietd lengthe If thlis is the case, the ob)ect program is
interrupted by setting the data field limit flag in the exchange parameter
word and an exchange Jump is made to the exchange address XA.

ISSUE CONDITIONS

Xi register is free one clock period after instruction issues
X] register is free one ciock period after instruction issues
A storage access buffer is available for this processor

EXECUTION TIMING
Minimum execution time for this instruction is 15 clock periodse.
Delays may occur in the arrival of the data word at the X register
due to storage bank conflicts or other processor conflicts in
storage access controle.

cPOO Instruction issues from IPT

crPo1 Transmit (X)) to operand register A
Transmit K to operand register B8

CcCPO2 Integer add front half
CPO3 Integer add back half

Transmit integer sum to RA adder in IW module
Transmit reference flag to SA module

CPOG Lower 8 bits of address arrive at SAC
cPO5 Upper 12 bits of address arrive at SAC
CPO6 Acknowliedge from SAC

crP15 Data word arrives at the X register

(]

b 31ii)) kk Read data at address (X]) + ({Xk) to (Xi) [31xXX 1}

Tnis instruction reads a word of data from the object program storage
field and enters that word in the Xi ragister. The storage address is
determined by adding the sum of (X]) olus (Xk) to the objJect program
reference addresss

L separate test is made to determine if the value of (X)) plus (Xk)
considered as a 20-bit positive integer Is equal! to, or greater than,

the current objlect program field lengtn,. If this is the casey the oblect
program is interrupted by setting the data field limit flag in the
exchange parameter worde The storage ~eference is aborted in this case
and an exchange Jump is made to the exchange address XA.

ISSUE CONOITIONS

Xi register Is free one clock period after instruction issues
X} register is free one clock period after instruction issues
Xk register is free one clock period after instruction issues
A storage access buffer is avaltable for this processor

tXECUTION TIMING

Minimum execution time for this instruction is 15 clocx periods.
Delays may occur in the arrival of the data word at the X register
due to storage bank conflicts or other processor conflicts in
storage access controile.

CcrPO0 Instruction issues from IPT

CPO1 Transmit (X}]) to operand register A
Transmit (Xk) to operand register B

cpPne Integer add front half

CPO3 Integer add back half
Transmit integer sum to RA adder in IW module
Transmit reference flag to SA module

CPO« Lower 8 bits of address arrive at SAC
CPrO%S Upper 12 bits of address arrive at SAC
CP0b Acknow ledge from SAC

CP15 Data word arrijives at tne X register

I 32il))kk | Kkkkkkkk | Store data at address (X]) + K from Xi [32XX 1}

- = - - -

This instruction forms an absolute address by adding the address indicated
by the sum of (X)) and slgn extended K to memory reference address RA from
the processor parameter word XPW, and sWrites one word from the Xi register
into memory at that absolute address.

If the memory field length FL iIs exceeded, the memory reference is aborted
and an exchange Jump is made to the exchange address XA In the processor
parameter word XPW. If a parity error occurs in reading the old data at the
indicated memory address, the error is ignored and the processor operation
continues in a normal manner.

Tnis instruction allows a processor to write data into memory from any X
registers.

ISSUE CONDITIONS
Xi register is free one clock period after instruction issues
X] register is free one clock period after instruction lIssues
Xk register is free one clock period after instruction issues
A storage access buffer is avallable for this processor

EXECUTION TIMING

No execution delays possible after this instruction issues from IPT.

P 3301} kK Store data at address (X)) + (Xk) from Xi [33XX]

IThis instruction forms an absoliute address by adding the address indicated
oy the sum of (X]) and (Xk) to memory reference address RA from the
processor parameter word XPW, and writes one word from the Xi register into
memory at that absolute address.

If the memory field length FL is exceeded the memory reference is aborted
and an exchange Jump is made to the exchange address XA In the processor
parameter word XPHW. If a parity error occurs in reading the old data at the

indicated memory addressy the error is ignored and the processor operation
continues in a normal manner.

This instruction allows a processor to write data into memory from any X
register.
ISSUE CONODITIONS
Xi register is free one clock period after instruction issues
X)] register is free one clock period after instruction issues
Xk register is free one clock perijiod after instruction issues
A storage access buffer is available for this processor
FXECUTION TIMING
No execution delays possible after this instruction issues from IPT.
CPO Instruction issues from IPT
cpP1 Transmit (X}) to operand register A
Transmit (Xk) to operand register B
Transmit (Xi) to SW module
cr2 Integer add front haif
CP3 Integer add back half
Transmit integer sum to RA adder in IW module
Transmit reference flag to SA module
CP4 Lowar 8 bits of address arrive at SAC

CP5 Upper 12 bits of address arrive at SAC

CPb Acknowledge from SAC

APPENDIX

INDEX

A3BREVIATION PAGE

{) Indicates the contents of thne register, address, etc.
snaecified within the parenthesis

A Operand register A

3] Operand register B

CIW Current instruction word register

cp Clock period

DA Divide approximation functional unit A
e Divide approximation functional unit B

F 4-bit instruction code 1-0
Fa Floating add functional unit A

£33 Floating add functional unit B

FL Field tength

-A/X

M3

MM

MTF

e

NSA

SV F

4-bit X register designator

Lower 2 or 4 bits of 6 or 8 bit instruction codes
Instruction address stack module

Instruction address stack

Instruction fetch address

Inter-processor interlock flag

Instruction parcel translator

Instruction word stack moddle

Instruction word stack

4-bit X register designator

4-bit X register designator

20=-bit program constant

Floating multiptly functional unit A
Floating multiply functionatl unit 8
Memory bank module

Monlitor filag

6-bit constant i, k

Next stack address

FP interrupt fltag on overflow/indefinite

A~2

P3
P1
p2

p3

PRF

RA

RA

R3

RG

RO

RF

SWS

XAC

xd

XD W

Xi

X}

XK

XP W

Program address rejister

Processor
Processor
Processor
Processor

Program r

Reference
Register
Register
Register
Register

Record fI

Storage a
Storage a
Storage a
Storage w

Storage w

External

X registe

NN o

eference flag

address
module, bits 00-15
module, bits 15-31
module, Dits 32-47
module, bits 48-53

ag

ccess control module A
ddress stack

ccess control module B
ord stack module

ord stack

access control

r specified by iy }y or kK designators

X

X

X

X

X

reglister
register
register
register

register

data words

specified by
specified by
specifjied by

speciflied by

Exchange parameter word

i designator
| designator
k designator

storage readout

QUATERNARY OCTAL DECIMAL HEXADECIMAL
{(di-bits)

0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3
10 4 4 4
11 5 5 5
12 6 6 6
13 7 7 7
20 10 8 8
21 11 g 9
22 12 10 A
23 13 11 8
30 14 12 c
31 15 13 0
32 16 14 £
33 17 15 F
100 20 16 10
101 21 17 11
102 22 18 12
103 23 19 13
110 24 20 14
111 25 21 15
112 26 22 16
113 27 23 17
120 30 24 18
121 31 25 19
122 32 26 1A
123 33 27 18
130 34 28 1C
131 35 29 1D
132 36 30 1E
133 37 31 1F
200 40 32 20
201 41 33 21
202 42 34 22
203 43 35 23
210 4 36 24
211 45 37 25
212 46 38 26
213 47 39 27
2290 50 40 28
221 51 41 29
222 52 42 2 A
223 53 43 2B

3~-1

230
231
232
233

300
341
382
303

310
311
312
313

320
321
322
323

330
331
332
333

1000
1100
1200
1300

2000
2100
2200
2300

3000
3100
3200
3300

10000
20000
30000

100000
200000
300000

1000000
2000000
3goo004go

10000000
20000000
30000000

100000000
200000000
300000000
1000000000

54
55
56
57

60
51
he
63

64
65
66
67

70
71
72
73

74
75
76
77

100
120
140
160

200
220
240
260

3900
320
340
360

400
1000
1400

2000
4000
5000

10000
200090
30000

440000
100008
140000

200000
400000
5600000
1000000

44
45
46
47

48
49
50
51

52
53
54

55

56
57
58
59

o0
51
62
63

bl
80
96
112

128
144
160
176

192
208
224
240

256
512
768

1024
2048
3072

4096
8192
12288

16384
32768
49152

65536
131072
196608
262144

2C
20
2E
2F

30
31
32
33

34
35
36
37

38
39
3A
38

3C
3D
3E
3F

40
50
50
70

80
90
AQ
80

co
DO
£0
FO

100
200
300

400
800
coo

1000
2000
3000

4000
8000
cooao

10000
20000
30000
40000

