From Monads to Effects and Back

Madoko sample – do not distribute

Niki Vazou
UC San Diego

Daan Leijen
Microsoft Research

Abstract
The combination of monads and effects leads to a clean and easy to reason programming paradigm. Monadic programming is easy to reason about, but can be cumbersome, as it requires explicit lifting and binding. In this paper, we combine monads and effects within a single programming paradigm: we use monads to define the semantics of effect types, and then, use the effects to program with those monads. In particular, we implemented an extension to the effect type system of Koka [20] with user defined effects. We use a type-directed translation to automatically lift such effectful programs into monadic programs, by inserting bind- and unit operations. As such, these user-defined effects are not just introducing a new effect type, but also enable full monadic abstraction and let us “take control of the semi-colon” in a typed and structured manner. We give examples of various abstractions like ambiguous computations and parsers. All examples have been implemented in the Koka language and we describe various implementation issues and optimization mechanisms.

1. Introduction

Monads (proposed by Moggi and others [24, 35]) are used in programming languages to wrap effectful computations, but they can be cumbersome to program with as they require explicit lifting and binding. In this paper, we combine monads and effect typing (proposed by Gifford and others [11, 32]) within a single programming paradigm: we use monads to define the semantics of effect types, and then, use the effect types to program with those monads.

We implemented these ideas as an extension of the effect type system of Koka [20] – a strict, JavaScript-like, strongly typed programming language that automatically infers the type and effect of functions. Koka has a type inference system for a set of standard effects like divergence, exceptions, heap operations, input/output, etc. Here we extend the effect system with monadic user defined effects, where we can define our own effect in terms of any monad. As an example, we define an amb effect for ambiguous computations [17]. In particular we would like to have ambiguous operations that return one of many potential values, but in the end get a list of all possible outcomes of the ambiguous computation. Using our new effect declaration we can define the semantics of the amb effect in terms of a concrete list monad:

\[
\begin{align*}
\text{effect } & \text{amb}(a) = \text{list}(a) \{ \\
& \quad \text{function } \text{unit}(x) \{ [x] \} \\
& \quad \text{function } \text{bind}(xs, f) \{ xs.\text{concatMap}(f) \}
\}\end{align*}
\]

where the unit and bind are the usual list-monad definitions.

Using the above effect definition we can write functions that have the ambiguous effect. For example we can write a flip primitive that returns either true or false and use it to compute the truth table of xor:

\[
\begin{align*}
\text{function } & \text{flip : () } \rightarrow \text{amb bool} \\
\text{function } & \text{xor() : amb bool} \\
& \text{val } p = \text{flip()} \\
& \text{val } q = \text{flip()} \\
& (p || q) && \text{not}(p&&q) \quad \text{// p.q : bool}
\end{align*}
\]

Note how the result of flip is just typed as bool (even though amb computations internally use a list monad of all possible results). Furthermore, unlike languages like Haskell, we do not need to explicitly lift expressions into a monad, or explicitly bind computations using do notation.

Translation. Koka uses an automatic type directed translation that translates a program with user-defined effect types into a corresponding monadic program. Internally, the previous example gets translated into:

\[
\begin{align*}
\text{function } & \text{xor : list(bool)} \{ \\
& \text{bind(} \text{flip() } \text{, } \text{fun(p) } \{ \\
& \quad \text{bind(} \text{flip() } \text{, } \text{fun(q) } \{ \\
& \quad \text{unit(} (p || q) && \text{not}(p&&q) \text{}) \}
\})
\}
\end{align*}
\]

Here we see how the unit and bind of the effect declaration are used: bind is inserted whenever a monadic value is returned and passed the current continuation at that point.

The capture of the continuation at every bind makes monadic effects very expressive. For example, the amb effect can cause subsequent statements to be executed multiple times, i.e. once for every possible result. This is somewhat dual to the built-in exception effect which can cause subsequent statements to not be executed at all, i.e. when an exception is thrown. As such, this kind of expressiveness effectively let us take “control of the semi-colon”.

The marriage of effects and monads. Translating effectful to monadic code is not new. Wadler and Thiemann [36] show that any effectful computation can be transposed to a corresponding monad. If \[\text{y} : \tau \] is the call-by-value type translation of \(\tau \) and \(M_u \) is the corresponding monad of an effect \(u \), they show how an effectful function of type \([\tau_1 \rightarrow u \tau_2] \) corresponds to a pure function with a monadic type \([\tau_1] : M_u([\tau_2]) \). In this article, we translate any effectful function of type \([\tau_1] : M_u([\tau_2]) \), to the function \([\tau_1] : M_u([\tau_2]) \). This is almost equivalent, except for the \(\epsilon \) parameter which represents arbitrary built-in effects like divergence or heap operations. If we assume \(\epsilon \) to be empty, i.e. a pure function like in Wadler and Thiemann’s
work, then we have an exact match! As we shall see, due to the non-monadic effects as an extra parameter, our monads are effectively indexed- or poly-monads [14] instead of regular monads.

Our contributions are summarized as follows:

- Using the correspondence between monads and effects [36], we propose a novel system where you define the semantics of an effect in terms of a first-class monadic value, but you use the monad using a first-class effect type. We build on the existing Koka type system [20] to incorporate monadic effects with full polymorphic and higher-order effect inference.

- We propose (§ 3) a sound type directed monadic translation that transforms a program with effect types into one with corresponding monadic types. This translation builds on our earlier work on monadic programming in ML [31] and automatically lifts and binds computations.

- In contrast to Haskell, programming with monadic effects integrates seamlessly with built-in effects where there is no need for families of functions like map, and mapM, or other special monadic syntax, as we further explain in § 2.2.1.

- In practice, you need to do a careful monadic translation, or otherwise there is the potential for code blowup, or large performance penalties. We present (§ 4) how we optimize effect polymorphic functions and report on various performance metrics using our Koka to JavaScript compiler, which can run programs both in a browser as well as on NodeJS [34].

2. Overview

Types tell us about the behavior of functions. For example, the ML type int → int of a function tells us that the function is well defined on inputs of type int and returns values of type int. But that is only one part of the story, the ML type tells us nothing about all other behaviors; i.e. if it accesses the file system perhaps, or throws exceptions, or never returns a result at all.

Koka is a strict programming language with a type system that tracks effect. The type of a function in Koka is of the form that includes the type of a function in Koka is of the form a → (exn ∈ a) which tells us nothing about all other behaviors: i.e. if it accesses the file system perhaps, or throws exceptions, or never returns a result at all.

In reality, the type of a function in Koka is of the form a → (exn ∈ a) which tells us nothing about all other behaviors: i.e. if it accesses the file system perhaps, or throws exceptions, or never returns a result at all.

In contrast to Haskell for example, where Int really stands for Int, i.e. referring to a value of such type may still diverge or raise an exception.

never results in an exception (and similarly for divergence and state).

Example: Exceptions. Exceptions in Koka can be raised using the primitive error function:

\[
\text{error : string} \rightarrow \text{exn a}
\]

The type shows that error takes a string as an argument and may raise an exception. It returns a value of any type! This is clearly not possible in a strongly typed parametric language like Koka, so we can infer from this type signature that error always raises an exception. Of course, effects are properly propagated so the function wrong will be inferred to have the exn type too:

\[
\text{function wrong() : exn int} \{ \text{error("wrong"); 42} \}
\]

Exceptions can be detected at run-time (unlike divergence) so we can discharge exceptions using the catch function:

\[
\text{function catch\((\text{action : } () \rightarrow \text{exn a,}\)}
\]

\[
\text{handler : exception} \rightarrow a : a
\]

To catch exceptions we provide two arguments: an action that may throw an exception and an exception handler. If action() throws an exception the handler is invoked, otherwise the result of the action() is returned. In both cases catch has a total effect: it always returns a value of type a. For example, function pure always returns an int:

\[
\text{function pure\((\text{ : int} \{ \text{catch\((\text{wrong, fun\((\text{err}) = 0}) \}) \}
\)

Effect polymorphism. In reality, the type of catch is more polymorphic: instead of just handling actions that can at most raise an exception, it accepts actions with any effect that includes exn:

\[
\text{function catch\((\text{action : } () \rightarrow \langle \text{exn} e \rangle a,}\)}
\]

\[
\text{handler : exception} \rightarrow e a : e a
\]

The type variable e applies to any effect. The type expression \(\langle \text{exn} e \rangle\) stands for the effect row that extends the effect e with the effect constant exn. Effectively, this type captures that given an action that can potentially raise an exception, and perhaps has other effects e, catch will handle that exception but not influence any of the other effects. In particular, the handler has at most effect e. For example, the result effect of:

\[
\text{catch\((\text{wrong, fun\((\text{err}) = print(err); 0}) \})
\]

is console since the handler uses print. Similarly, if the handler itself raises an exception, the result of catch will include the exn effect:

\[
\text{catch\((\text{wrong, fun\((\text{err}) = error("oops")}) \})
\]

Apart from exceptions Koka supplies more built-in effects: we already mentioned die that models divergence; there is also io to model interaction with input-output, ndet to model non-determinism, heap operations through alloc, read, and write, and the list goes on. For all built-in effects, Koka supplies primitive operators that create (e.g. error, random, print, etc) and sometimes discharge (e.g. catch, timeout, or runST) the effect.

The main contribution of this paper is how we extend Koka so that the user can define her own effects, by specifying the type and meaning of new effects and defining primitive operations on them.
2.1. The ambiguous effect

In the introduction we saw how one can define and use the ambiguous \texttt{amb} effect with \texttt{flip} and \texttt{xor} operations. We now discuss the definition and translation in more detail. The \texttt{amb} effect is defined using an \texttt{effect} declaration:

\begin{verbatim}
// source effectful code
function map(xs, f) {
 match(xs) {
 Nil -> Nil
 Cons(y, ys) ->
 val z = f(y)
 val zs = map(ys, f)
 Cons(z, zs)
 }
}

// translated monadic code
function map(d : dict(e), xs, f) {
 match(xs) {
 Nil -> d.unit(Nil)
 Cons(y, ys) ->
 d.bind(f(y), fun(z) {
 d.bind(map(ys, f),
 fun(zs) { d.unit(Cons(z, zs)) })})
 }
}

function xor() {
 val [p,q] =
 map([1,2],
 fun(_{ flip() })
)
 (p || q) && not(p&&q)
}

function xor() {
 dict_amb.bind(
 map dict_amb, [1,2],
 fun(_{ flip() })
),
 fun([p,q] {
 dict_amb.unit(
 (p || q) && not(p&&q))
 })}
}
\end{verbatim}

Figure 1. Dictionary translation of \texttt{map} and \texttt{xor}

biguous. We use \texttt{unit} to lift the pure value to the ambiguous monad. We note that in Koka’s actual translation, \texttt{xor} is translated more efficiently using a single \texttt{map} instead of a \texttt{unit} and \texttt{bind}.

The translation to monadic code is quite subtle and relies crucially on type information provided by type inference. In particular, the intermediate core language is explicitly typed à la System F (§3.1). This way, we compute effects precisely and determine where \texttt{bind} and \texttt{unit} get inserted (§3.3). Moreover, we rely on the user to ensure that the \texttt{unit} and \texttt{bind} operations satisfy the monad laws [35], i.e. that \texttt{unit} is a left- and right identity for \texttt{bind}, and that \texttt{bind} is associative. This is usually the case though; in particular because the effect typing discipline ensures that both \texttt{unit} and \texttt{bind} are \texttt{total} and cannot have any side-effect (which makes the translation semantically robust against rewrites).

2.2. Translating effects

Koka uses a \texttt{type directed} translation to internally translate effectful to monadic code. As shown in the introduction, the \texttt{xor} function is translated as:

\begin{verbatim}
// source effectful code
function xor() : amb bool {
 val p = flip()
 val q = flip()
 (p || q) && not(p&&q)
}

// translated monadic code
function xor() : amb bool {
 val p = flip()
 val q = flip()
 (p || q) && not(p&&q)
}
\end{verbatim}

In particular, \texttt{bind} is inserted at every point where a monadic value is returned, and passed the current continuation at that point. Since \texttt{flip} has an ambiguous result, our type-directed translation binds its result to a function that takes \texttt{p} as an argument and similarly for \texttt{q}. Finally, the last line returns a pure boolean value, but \texttt{xor}’s result type is amb-

Moreover, with the above definition Koka automatically generates the \texttt{to_amb} and \texttt{from_amb} primitives, and a monadic type alias:

\begin{verbatim}
function to_amb (xs : list(a)) : amb a
function from_amb (action : () -> amb a) : list(a)
alias _M_amb(a) = list(a)
\end{verbatim}

that allow us to go from monadic values to effect types and vice versa. These are basically typed versions of the \texttt{reify} and \texttt{reflect} methods of Filinski’s monadic embedding [8].

We use the above primitives to define the \texttt{flip} function that creates the ambiguous effect and the function \texttt{main} that evaluates the effectful computation:

\begin{verbatim}
function flip() : amb bool { to_amb([False, True]) }
function main() : console { print(from_amb(xor())) }
\end{verbatim}

When we evaluate \texttt{main} we get a list of all possible output values: [False, True, True, False]. One can extend such mechanism to, for example, return a histogram of the results, or to general probabilistic results [17, 31].

Later we discuss the more interesting effect of parsers (§2.3), but before that, let’s discuss in more detail how we do a monadic translation of effects.

2.2. Translating effects

Koka uses a \texttt{type directed} translation to internally translate effectful to monadic code. As shown in the introduction, the \texttt{xor} function is translated as:

\begin{verbatim}
function xor() : amb bool {
 val p = flip()
 val q = flip()
 (p || q) && not(p&&q)
}
\end{verbatim}

In particular, \texttt{bind} is inserted at every point where a monadic value is returned, and passed the current continuation at that point. Since \texttt{flip} has an ambiguous result, our type-directed translation binds its result to a function that takes \texttt{p} as an argument and similarly for \texttt{q}. Finally, the last line returns a pure boolean value, but \texttt{xor}’s result type is amb-

Moreover, with the above definition Koka automatically generates the \texttt{to_amb} and \texttt{from_amb} primitives, and a monadic type alias:

\begin{verbatim}
function to_amb (xs : list(a)) : amb a
function from_amb (action : () -> amb a) : list(a)
alias _M_amb(a) = list(a)
\end{verbatim}

that allow us to go from monadic values to effect types and vice versa. These are basically typed versions of the \texttt{reify} and \texttt{reflect} methods of Filinski’s monadic embedding [8].

We use the above primitives to define the \texttt{flip} function that creates the ambiguous effect and the function \texttt{main} that evaluates the effectful computation:

\begin{verbatim}
function flip() : amb bool { to_amb([False, True]) }
function main() : console { print(from_amb(xor())) }
\end{verbatim}

When we evaluate \texttt{main} we get a list of all possible output values: [False, True, True, False]. One can extend such mechanism to, for example, return a histogram of the results, or to general probabilistic results [17, 31].

Later we discuss the more interesting effect of parsers (§2.3), but before that, let’s discuss in more detail how we do a monadic translation of effects.

2.2.1. Translating polymorphic effects

One of the crucial features of Koka is effect polymorphism. Consider the function \texttt{map}:

\begin{verbatim}
function map(xs : list(a), f : (a) -> e b) : e list(b) {
 match(xs) {
 Nil -> Nil
 Cons(y, ys) ->
 val z = f(y)
 val zs = map(ys, f)
 Cons(z, zs)
 }
}
\end{verbatim}

The function \texttt{map} takes as input a function \texttt{f} with some effect \texttt{e}. Since it calls \texttt{f}, \texttt{map} can itself produce the effect \texttt{e}, for any effect \texttt{e}. This means that we can use such existing abstractions on user defined effects too:

\begin{verbatim}
function xor() {
 val [p,q] = map([1,2], fun(_{ flip() })
 (p || q) && not(p&&q)
}
\end{verbatim}

Unfortunately, this leads to trouble when doing a type directed translation: since the function passed to \texttt{map} has a monadic effect, we need to \texttt{bind} the call \texttt{f(y)} inside the \texttt{map}
function! Moreover, since we can apply map to any monadic effect, we need to dynamically call the right bind function.

The remedy is to pass Haskell-like dictionaries or monad interfaces to effect polymorphic functions. In our case, a dictionary is a structure that wraps the monadic operators bind and unit. The dictionaries are transparent to the user and are automatically generated and inserted. During the translation, every effect polymorphic function takes a dictionary as an additional first argument. Figure 1 shows how the map function gets translated.

Now that internally every effect polymorphic function gets an extra dictionary argument, we need to ensure the corresponding dictionary is supplied at every call-site. Once again, dictionary instantiation is type-directed and builds upon Koka’s explicitly typed intermediate core language. Whenever a polymorphic effect function is instantiated with a specific effect, the type directed translation automatically inserts the corresponding dictionary argument. Figure 1 shows this in action when we call map inside the xor function. We can still use map with code that has a non-monadic effect and in that case the translation will use the dictionary of the primitive identity monad, e.g. map (dict_id, [1, 2], square).

A naïve translation is not very efficient though: always using the monadic version of map introduces a performance penalty to all code, even code that doesn’t use any monadic effect. As shown in § 4.1, we avoid this by careful translation. For every effect polymorphic function, we generate two versions: one that takes a monad dictionary, and another that has no monadic translation at all. When instantiating map we use the efficient non-monadic version unless there is monadic effect. This way the performance of code with non-monadic effects is unchanged.

Being able to reuse any previous abstractions when using monadic effects is very powerful. If we insert user-defined effects to a function, only the type of the function changes. Contrast this to Haskell: when inserting a monad, we need to do a non-trivial conversion of the syntax to do notation, but also we need to define and use monadic counterparts of standard functions, like mapM for map.

2.2.2. Interaction between user defined effects

Koka allows combination of user defined effects. Consider a behavior user defined effect, which represents computations whose value varies with time, as in functional reactive programs [7]. We encode the beh effect as a function from time to a. Since a behaviour is a function, it may have effects itself: it can diverge or throw exceptions for example. This means that we need to parameterize the beh effect with two type parameters one for the value a and one for the effect e:

effect beh(e, a) = time → e a { ... }

With the above definition, Koka automatically creates a type alias for the behavioral monad and the respective unit and bind operators:

\[
\text{alias } M_{\text{beh}}(e, a) = \text{time} → e \text{a};
\]

\[
\text{ub} : a → e M_{\text{beh}}(e, a);
\]

\[
\text{bb} : (M_{\text{beh}}(e, a), a → e M_{\text{beh}}(e, b)) → e M_{\text{beh}}(e, b)
\]

As with the amb effect, the user can define primitives that, for example, return the temperature and humidity over time:

\[
\text{temp : ()} → \text{beh int};
\]

\[
\text{hum : ()} → \text{beh int};
\]

We use these primitives to define a function that states that one goes out when temperature is more than 70°F and humidity less than 80%. Koka automatically translates the effectful function to its monadic version:

\[
\text{function go_out() : beh bool function go_out() : time → bool}
\]

\[
\begin{align*}
\text{val } t &= \text{temp()} \quad \text{bb(t temp()), fun(t) }
\text{val } h &= \text{hum()} \quad \text{→ bb(hum()), fun(h) }
\{ (t ≥ 70 \&\& h ≤ 80) \}
\{ (t ≥ 70 \&\& h ≤ 80) \}
\end{align*}
\]

Next, we want to insert ambiguity into the above function. Following Swamy et al. [31] we combine the ambiguous and behavioral effects by tupling them

\[
\text{effect (amb, beh) (e, a) = time → e list(a) }
\]

and Koka creates the appropriate monadic operators

\[
\text{alias } M_{\text{amb}}(e, a) = \text{time} → e \text{list(a)};
\]

\[
\text{uab : a → e M_{\text{amb}}(e, a)};
\]

\[
\text{bab : (M_{\text{amb}}(e, a), a → e M_{\text{amb}}(e, b)) → e M_{\text{amb}}(e, b)};
\]

Then, we define morphisms to lift from a single to the joined effect

\[
\text{morphism amb (amb, beh) \{ fun(xs)\{ fun(t){ xs } \} \} }
\]

\[
\text{morphism beh (amb, beh) \{ fun(b)\{ fun(t){ [b(t)] } \} \} }
\]

With the above morphism definitions, Koka automatically derives internal morphism functions

\[
\text{a2amb :: } M_{\text{amb}}(e, a) → e M_{\text{amb}}(amb, beh)(e, a);
\]

\[
\text{b2amb :: } M_{\text{beh}} (e, a) → e M_{\text{amb}}(amb, beh)(e, a);
\]

and use them to automatically translate our modified go_out function that combines the two user defined effects:

\[
\text{function go_out() function go_out()}
\]

\[
\begin{align*}
\text{val } t &= \text{temp()} \quad \text{bab(b2amb(temp()), fun(t) }
\text{val } h &= \text{hum()} \quad \text{→ bab(b2amb(hum()), fun(h) }
\text{val } u &= \text{flip()} \quad \text{→ bab(a2amb(flip()), fun(u) }
\{ (u || (t ≥ 70 \&\& h ≤ 80)) \}
\{ (u || (t ≥ 70 \&\& h ≤ 80)) \}
\end{align*}
\]

This technique for combining monads by tupling is taken from [31]. But, as further discussed in § 5 our current work, though highly inspired, crucially differs from [31] in that the use of effect polymorphism (instead of effect subtyping that was previously used) makes types much simpler.

There are various language design aspects with regard to morphism declarations – due to space restrictions we highlight the most important ones and defer to [31] and [14] for a more in-depth discussion. First of all, since effect rows are equivalent up to re-ordering of labels, we can only declare one combined monad for a specific set of user-defined effects. For example, we can combine 〈amb, beh〉 in only one of the two possible ways (within the scope of a module). Moreover, the compiler rejects duplicate definitions. Finally, if we assume that the morphism laws hold, the compiler could derive morphisms from the existing ones, i.e. morphisms from ma to mb, and mb to mc can be combined to give rise to a morphism from ma to mc. Currently, in our system we assume that the user provides all required morphisms explicitly, but we plan to implement automatic morphism derivation.
2.2.3. Interaction with build-in Koka effects

User-defined effects, like amb, interact with build-in effects like state, divergence, and exceptions. The formal semantics of Koka [20] are unchanged in our system, and we define the semantics of the user-defined effects simply as a monadic transformation. As such, if we viewed the effects as a stack of monad transformers, the user defined effects would be last with all build-in effects transforming it, i.e. something like div(st(exn(amb(a)))). These semantics still require careful compilation; for example, it is important when doing the internal monadic translation to properly capture local variables in the continuation functions passed to bind.

Here is an example of a more subtle interaction: if we use mutable variables in the ambiguity monad, we may observe that computations run multiple times:

```haskell
function strange() : amb bool {
  var i := 0
  val p = flip()
  val q = flip()
  i := i + 1
  if (i ≥ 4) then True else (p || q) && not(pk&q)
}
```

In this example, we define and increment the mutable variable i. The function strange itself does not have a stateful effect (st(h)) because the mutability is not observable from outside and can be discharged automatically through Koka’s higher-ranked type system [18, 20]. However, executing run(strange) results in [False, True, True, True] where inside the body of strange we can observe that some statements are executed multiple times. This shows the importance of strong typing: in an IDE one would see that the flip() invocations have an amb effect that causes the following statements to potentially execute more than once. This is similar for exceptions, where statements following invocations of functions that may raise exceptions, may not execute at all.

Under the monadic semantics, the interaction with built-in effects is more or less what one would expect, with one exception: the exception effect does not play nice with certain user defined effects due to the (expected) lexical scoping of catch. Exceptions interact with amb as expected, but this is not the case in the context of the parser effect as we further discuss in § 2.3.1.

2.3. The parser effect

We conclude the overview with a more advanced example in the form of monadic parsers. A parser can be defined as a function that consumes the input string and returns a list of (all possible) pairs of parsed tokens and the remaining input: string → list((a,string)). This representation is quite standard but many other designs are possible [15, 21]. Since a parser (like the behaviour effect) is a function, it may have effects itself: parsers can diverge or throw exceptions for example. This means that we need to parameterize the parser effect with two type parameters (instead of one):

```haskell
define parser(e,a) = string → e list((a,string)) {
  function unitl(x) { return fun(s) {[ (x,s) ] } }
  function bindl(p, f) {
    return fun(s) {
      p(s).concatMap(fun(r) { f(r fst)(r snd) } )
    }
  }
}
```

```haskell
function parse(p : () → (parser|e) a, input : string) :
  e list((a,string)) {
  from_parser(p)(input)
}
```

```haskell
function succeed(x : a) : parser a {
  to_parser fun(input) { [ (x,input) ] }
}
```

```haskell
function satisfy(pred : (string) → maybe((a,string))) {
  to_parser fun(input) {
    match(pred(input)) {
      Just((x,resl)) → [(x,resl)]
      Nothing → []
    }
  }
}
```

```haskell
function choice(p1 : () → (parser|e) a,
                p2 : () → (parser|e) a) : (parser|e) a {
  to_parser fun(input) {
    match(parse(p1,input)) {
      Nil → parse(p2,input)
      res → res
    }
  }
}
```

Figure 2. Parser primitives

Given the above definition, Koka automatically derives the conversion functions:

```haskell
function to_parser( p : string → e list((a,string)) ) : (parser|e) a
function from_parser( action : () → (parser|e) a) :
  e (string → e list((a,string)))
```

which can be used by the parser-library developer to build primitive parsing operators as shown in Figure 2: `parse` that takes a parsing computation and an input string and runs the parser; `succeed(x)` that returns its argument x, without consuming the input; `satisfy(pred)` that parses the string iff it satisfies p; and `choice(p1,p2)` that chooses between two parsers p1 or p2.

Note how the effect e in from_parser occurs both as the effect of the function, but also in the returned parser function. Essentially this is because we cannot distinguish at the type level whether an effect occurs when constructing the parser (i.e. before the first bind), or whether it occurs when running the parser.

Having set up the parser effect and its primitives, we combine them to construct other parsers. For example, `many(p)` is a parser that applies p zero or more times. A `digit` can be parsed as a character where `satisfy isDigit`. Combining these two, `many(digit)` gives a list of parsed digits.

```haskell
function main(input : string) : div list(int, string) {
  parse(integer, input)
}
```

```haskell
function integer() : (parser,dig) int {
  val ds = many(digit)
  ds.foldl(0,fun(i,d) { i*10 + d })
}
```

```haskell
function digit() : parser int { satisfy( ... )
```
2.3.1. Interaction with exceptions

Because the parser monad is defined as a function exception handling does not work as expected. Take for example the following parser that may raise an exception:

```haskell
function division() : (parser, expr int) int {
  val i = integer(); keyword("/"); val j = integer()
  if (j == 0) then error("divide by zero") else i/j
}
```

Suppose now that we catch errors on parsers, as in the following safe version of our parser:

```haskell
function safe() : parser int {
  catch( division, fun(err) { 0 } )
}
```

If `catch` is implemented naïvely the behaviour of `safe` would not be the expected one. In particular, if `catch` just wraps a native try-catch block, then the exceptions raised inside `division` will not be caught: after the monadic translation, `division` would return immediately with a parser function as, only invoking the parser function would actually raise the exception (i.e. when the parser is run using `parse`). Effectively, the lexical scoping expectation of the `catch` would be broken.

Our (primitive) `catch` implementation takes particular care to work across monadic effects too. Since `catch` is polymorphic in the effect, the type directed translation will actually call the specific monadic version of `catch` and pass a dictionary as a first argument. The primitive monadic `catch` is implemented in pseudo-code as:

```haskell
function catch_monadic( d : dict(c), action, handler ) {
  catch( { d.bindCatch( action, handler ) }, handler )
}
```

Besides catching regular exceptions raised when executing `action()`, it uses the special `bindCatch` method on the dictionary that allows any user-defined effect to participate in exception handling. This is essential for most effects that are implemented as functions. For the parser, we implement it as:

```haskell
effect parser(e,a) = string → e list((a,string)) {
  function bindCatch( p, handler ) {
    fun(s) { catch( { p(s) }, fun(err) { handler(err(s)) } ) }
  }
}
```

With this implementation in place, the parser effect participates fully in exception handling and the `safe` parser works as expected, where any exception raised in `division` is handled by our handler, i.e. the expression `parse(safe,"1/0")` evaluates to 0.

Here is the type of `bindCatch` and its default implementation:

```haskell
function bindCatch( action : () → (expr | e) m((expr | e),a),
  handler : exception → e m(e,a) ) : e m(e,a)
{ catch(action,handler) }
```

Expressions\(\epsilon \) are extended with effect types.

```haskell
expressions e ::= \( \epsilon \) | e | e e
  | X x : \sigma . e
  | val \( \epsilon \)
  | if e then e else e
  | e [\sigma] | \Lambda \epsilon . e
```

Types\(\tau \) are extended with user-defined effects.

```haskell
types \( \tau \) ::= \( \alpha \rightharpoonup \tau \)
  | \epsilon e u \tau u
  | k

kinds \( \kappa \) ::= * | e values, effects
  | k effect constants
  | u user effects

type scheme \( \sigma \) ::= \forall \alpha u . \kappa
```

Figure 3. Syntax of explicitly typed Koka, \(\lambda^u \).

In the above type we write \(m \) for the particular monadic type on which the effect is defined. A nice property of this type signature and default implementation is that Koka type inference requires you to define `bindCatch`, only when needed for your particular monad. For example, the default works as is for the `amb` effect since its monad disregards the \(e \) parameter, but the default is correctly rejected by the type checker for the `parser` since the signature of `catch` requires the \(m(\langle expr | e \rangle) \) to be unified with \(m(e,a) \).

3. Formalism

In this section we formalize the type-directed translation using an explicitly typed effect calculus we call \(\lambda^u \). First, we present the syntax (§3.1) and typing (§3.2) rules for \(\lambda^u \). Then, we formalize our translation (§3.3) from effectful to monadic \(\lambda^u \). Finally, we prove soundness (§3.4) by proving type preservation of the translation.

3.1. Syntax

Figure 3 defines the syntax of expressions and types of \(\lambda^u \), a polymorphic explicitly typed \(\lambda \)-calculus. \(\lambda^u \) is System F [12, 28] extended with effect types.

Expressions. \(\lambda^u \) expressions include typed variables \(\epsilon \), typed constants \(e \), \(\lambda \)-abstraction \(\Lambda x : \sigma . e \), application \(e e \), value bindings \(\text{val} \; \epsilon = e; e \), if combinators \(\text{if} \; e \; \text{then} \; e \; \text{else} \; e \), type application \(e [\sigma] \) and type abstraction \(\Lambda \epsilon . e \). Each value variable is annotated with its type and each type variable is annotated with its kind. Finally, each \(\lambda \)-abstraction
In strict languages one distinguishes between values and expressions to restrict type abstraction and application over value expressions. For simplicity, here we omit this separation and rely on the Koka type checker to guarantee that we only generalize over expressions with a total effect (hence there is no need for the ‘value restriction’ [20]).

Types and type schemes. Types consist of explicitly kinded type variables \(\alpha \) and application of constant type constructors \(\epsilon^a(\tau_1^n, \ldots, \tau_n^a) \), where the type constructor \(\epsilon \) has the appropriate kind \(\kappa_0 = (\kappa_1, \ldots, \kappa_n) \to \kappa \). We do not provide special syntax for function types, as they can be modeled by the constructor \((_ \to _): (\alpha, e) \to \alpha\) that, unlike the usual function type, explicitly reasons for the effect produced by the function. Finally, types can be qualified over type variables to yield type schemes.

Kinds. Well-formedness of types is guaranteed by a kind system. We annotate the type \(\tau \) with its kind \(\kappa \), as \(\tau^\kappa \). Apart from the kind of types (\(\alpha \)) and the kind of functions (\(\to \)), we have kinds for effect rows (\(e \)), effect constants (\(k \)), and user-defined effects (\(u \)). We omit the kind \(\kappa \) of the type \(\tau^\kappa \), and write \(\tau \), when \(\kappa \) is immediately apparent or not relevant. For clarity, we use \(\alpha \) for regular type variables and \(\mu \) for effect type variables. Finally, we write \(e \) for effects, i.e. types of kind \(e \).

Effects. Effects are types. Effect types are defined as a row of effect labels \(L \). Each effect row is either empty () or a polymorphic effect variable \(\mu \), or an extension of an effect row \(e \) with an effect constant \(l \), written as \((\hat{e}l) \). Effect constants are either built-in Koka effects, i.e. anything that is interesting to our language like exceptions (\(\epsilon \)), divergence (\(\epsilon \)) etc. or lifted user-defined monadic effects like the ambiguous effect \(\epsilon^\mu \) \(: u \). Note that for an effect row to be well-formed we use the user effect function to lift \(\text{user}(\text{amb}^\mu) : : k \) to the appropriate kind \(\kappa \). For simplicity, in the rest of this section we omit the explicit lifting and write \(\text{amb}^\mu \) to denote \(\text{user}(\text{amb}^\mu) \) when a label of kind \(k \) is expected.

Finally, Figure 3 includes definition of type constants and syntactic sugar required to simplify the rest of this section.

Type rules. Figure 4 describes type rules for \(\lambda^\kappa \) where the judgment \(\vdash e : \sigma \) assigns type \(\sigma \) and effect \(e \) to an expression \(e \). All the rules are equivalent to the System F rules, except for rule \(\text{(LAM)} \) where the effect of the function in the type is drawn from the effect annotation in the \(\lambda^\kappa \)-abstraction. \(\lambda^\kappa \) is explicitly typed, in that variables are annotated with their type and functions with their effect, hence, type checking does not require an environment. By construction, the Koka type inference rules always produce well-formed \(\lambda^\kappa \). Soundness of \(\lambda^\kappa \) follows from soundness of Koka as described in [20]. Next, we write \(\vdash e : \sigma \) if there exists a derivation \(\vdash e : \sigma \) for some effect \(e \).

3.2. Type inference for effect and morphism declarations

In this subsection we present how Koka preprocesses the effect and morphism declarations provided by the user. Figure 5 summarizes the rules that the Koka compiler follows to desugar the user definitions to \(\lambda^\kappa \). After desugaring, Koka proceeds to effect- and type- inference as presented in previous work [19, 20].

Type and Effect Checking

\[
\begin{align*}
\text{(T-CON)} & \quad \vdash \epsilon^\alpha : \sigma \mid \epsilon \\
\text{(T-VAR)} & \quad \vdash x^\alpha : \sigma \mid \epsilon
\end{align*}
\]

\[
\begin{align*}
\text{(T-TLAM)} & \quad \vdash e : \sigma [\] \\
& \quad \vdash \Lambda \alpha^e. \epsilon : \forall \alpha . \sigma | \epsilon \\
& \quad \vdash e : \forall \alpha . \sigma | \epsilon
\end{align*}
\]

\[
\begin{align*}
\text{(T-APP)} & \quad \vdash \epsilon | \tau_2 | \epsilon \\
& \quad \vdash e_1 : \tau_1 \to \epsilon | \tau_2 | \epsilon \\
& \quad \vdash e_2 : \tau_1 | \epsilon
\end{align*}
\]

\[
\begin{align*}
\text{(T-LAM)} & \quad \vdash \epsilon | \tau_1 | \epsilon \\
& \quad \vdash \lambda x : \tau_1 . \epsilon : \tau_1 \to \epsilon | \tau_2 | \epsilon
\end{align*}
\]

\[
\begin{align*}
\text{(T-VAL)} & \quad \vdash \epsilon | \sigma | \epsilon \\
& \quad \vdash e_1 : \sigma | \epsilon \\
& \quad \vdash e_2 : \sigma | \epsilon \\
\text{(T-IF)} & \quad \vdash \epsilon | \sigma | \epsilon \\
& \quad \vdash \epsilon | \sigma | \epsilon
\end{align*}
\]

Figure 4. Type rules for explicitly typed Koka.

3.2.1. Effect Declarations

The Identity Effect. Before we look at the general type inference rule for effect declarations we start with a concrete example, namely the identity effect \(\epsilon \):

\[
\text{effect \(\epsilon \) = } \begin{cases}
\text{function \(\text{unit} \) \{ \(x \) \} } & \\
\text{function \(\text{bind} \) \{ \(f(x) \) \} }
\end{cases}
\]

From the above effect definition, initially, Koka generates a type alias that isolates the first line of the definition and relates the effect name with its monadic representation.

\[
\text{alias \(\epsilon \) = } \begin{cases}
\text{unit} \to \mu
\text{bind} \to \mu \beta \mu. (\mu \epsilon \beta \mu, \alpha \to \mu) \to \mu (\mu \epsilon \beta \mu, \alpha)
\end{cases}
\]

Given the definitions of \(\text{unit} \) and \(\text{bind} \), Koka automatically constructs the primitives required by the rest of the program to safely manipulate the identity effect:

- \(\epsilon \) the effect constant that can be used inside types,
- \(\epsilon \) the function that converts monadic computations to effectful ones,
- \(\epsilon \) the dual function that converts effectful function to their monadic equivalent, and finally,
- \(\epsilon \) the internal effect dictionary that stores \(\epsilon \)’s monadic operators.

Dictionaries. The first three values are user-visible but the final dictionary value is only used internally during the monadic translation. The type of the effect dictionary (e.g. \(\text{dict}_{\epsilon} \)), is a structure that contains the monadic operators...
Declarations of User Effects and Morphisms

\[\Gamma, \mu^\# \vdash \alpha \mapsto_{k} \tau \vdash \ast \quad \Gamma' = \Gamma, M_{\text{old}}(\mu, \alpha) = \tau \quad \Gamma' \vdash \alpha_1 : \forall \mu. \alpha \rightarrow \mu M_{\text{old}}(\mu, \alpha) \]

\[\Gamma' \vdash \mu \alpha \beta : \forall \mu \beta. (M_{\text{old}}(\mu, \alpha), \alpha \rightarrow \mu M_{\text{old}}(\mu, \beta)) \rightarrow \mu M_{\text{old}}(\mu, \beta) \]

\[\Gamma', \text{eff}^\#, \text{dict}_{\text{ef}} : \text{dict}(M_{\text{ef}}) \]

\[\Gamma \vdash \text{effect} \text{eff}(\mu, \alpha) = \tau \{ \text{unit} = e_1; \text{bind} = e_2 \} : \text{to} : \forall \alpha \mu. (M_{\text{old}}(\mu, \alpha)) \rightarrow \langle \text{eff}(\mu) \alpha \rangle, \text{from} : \forall \alpha \beta \mu. (\rightarrow \langle \text{eff}(\mu) \alpha \rangle \rightarrow \mu M_{\text{old}}(\mu, \alpha)) \]

\[(\text{MORPH}) \quad s \equiv (h_1, \ldots, h_n) \quad t \equiv (l_1, \ldots, l_m) \quad \Gamma \vdash e : \forall \alpha \mu. M_s(\mu, \alpha) \rightarrow \mu M_t(\mu, \alpha) \]

\[\frac{}{\Gamma \vdash \text{morphism} st e} \]

\[\Gamma' \]

\[\text{Figure 5. Type rule for effect and morphism declarations.} \]

unit and bind of the effect. It can as well include the monadic map which will otherwise be automatically derived from unit and bind, and the bind_catch method to interact with primitive exceptions. Thus, we define the dictionary structure as a type that is polymorphic on the particular monad, represented as type variable \(m :: (e, \ast) \rightarrow \ast \).

\[\text{struct tdict}(m) \{ \]

\[\text{unit} : \forall \mu. \alpha \rightarrow \mu m(\mu, \alpha) \]

\[\text{map} : \forall \beta \mu. (m(\mu, \alpha), \alpha \rightarrow \beta) \rightarrow \mu m(\mu, \beta) \]

\[\text{bind} : \forall \beta \mu. (m(\mu, \alpha), \alpha \rightarrow \mu m(\mu, \beta)) \rightarrow \mu m(\mu, \beta) \]

\[\text{bind_catch} : \forall \alpha \mu. (m\langle \text{exc}(\mu, \alpha) \rangle, \text{exc} \rightarrow \mu m(\mu, \alpha)) \rightarrow \mu m(\mu, \alpha) \}

With this we can type dict_old : tdict(M_old).

General user-defined effects. Figure 5 generalizes the previous concrete example to any user-defined effect declaration. The judgment:

\[\Gamma \vdash \text{effect} \text{eff}(\mu, \alpha) = \tau(\mu, \alpha) \{ \text{unit} = e_1; \text{bind} = e_2 \} : \Gamma' \]

states that under a kind- and type- environment \(\Gamma \), the effect declaration \(\text{eff} \) results in a new type environment \(\Gamma' \) that is extended with the needed types and primitives implied by \text{eff}. As shown in Figure 5, we first check well-formedness of the effect types, and then check that unit and bind operations have the proper types. Finally, the environment is extended with the corresponding types and values.

3.2.2. Morphism Declarations

As a morphism example, we assume the existence of the two user defined effects from the Overview (§ 2), the ambiguous and the behaviour. Moreover, we assume that the user appropriately defined their joined effect \(\langle \text{amb, beh} \rangle \). From these three user effect definitions, Koka desugarer yields three aliases, say:

\[\text{alias } M_{\text{amb}}(x, \alpha) = \text{list}(\alpha) \]

\[\text{alias } M_{\text{beh}}(x, \alpha) = \text{time} \rightarrow \text{e} \alpha \]

\[\text{alias } M_{\langle \text{amb, beh} \rangle}(x, \alpha) = \text{time} \rightarrow \mu \text{list}(\alpha) \]

Then, the user can define morphisms that go from \text{amb} or \text{beh} to the combined effect \(\langle \text{amb, beh} \rangle \):

\[\text{morphism } \langle \text{amb, beh} \rangle \{ \]

\[\text{fun}(x \cdot \text{list}(\alpha)) : \text{time} \rightarrow \text{e} \alpha \text{list}(\alpha) \{
\text{fun}(t) [x(t)]
\}\}

\[\text{morphism } \langle \text{beh, beh} \rangle \{ \]

\[\text{fun}(x \cdot \text{time} \rightarrow \text{e} \alpha) : \text{time} \rightarrow \text{e} \text{list}(\alpha) \{
\text{fun}(t) [x(t)]
\}\}

From the above definitions, Koka will generate two morphism functions:

\[\text{amb} \triangleright \langle \text{amb, beh} \rangle : \forall \mu \text{. } M_{\text{amb}}(\mu, \alpha) \rightarrow \mu M_{\langle \text{amb, beh} \rangle}(\mu, \alpha) \]

\[\text{beh} \triangleright \langle \text{amb, beh} \rangle : \forall \mu \text{. } M_{\text{beh}}(\mu, \alpha) \rightarrow \mu M_{\langle \text{amb, beh} \rangle}(\mu, \alpha) \]

The above morphisms are internal Koka functions that will be used at the translation phase to appropriately lift the monadic computations.

General user-defined morphisms. Figure 5 generalizes the previous concrete example to any morphism declaration. The judgment:

\[\Gamma \vdash \text{morphism } \text{st } e : \Gamma' \]

states that under a kind- and type- environment \(\Gamma \), the morphism declaration from effect raws \(s \rightarrow t \) results in a new type environment \(\Gamma' \) that is extended with the morphism from the source effect \(s \) to the target effect \(t \), when the expression \(e \) has the appropriate morphism type. The first premise ensures that \(s \) is always a sub-effect of the target effect \(t \).

3.3. Type-directed monadic translation

Next, we define the type-directed monadic translation \(e \mapsto_e e' \) that takes an effect expression \(e \) to the monadic expression \(e' \).

Computed effects. Our translation needs two effects \(e \) and \(v \): the maximum (inferred) effect \(e \) and the minimum (computed) effect \(v \). After type inference, every function body has one unified effect \(e \), that consists of the unification of all the effects in that function. Our translation computes bottom-up the minimal user-defined portion of each separate sub-expression, where \(v \) should always be contained in \(e \). Specifically, we define computed effects \(v \) as effect types \(\epsilon \) that have the following grammar:

\[\epsilon ::= \mu \mid \{ \ell_1, ..., \ell_n \} \quad (n \geq 0) \]

Thus, computed effects can be a row of user-effect labels (including the empty row) or an effect variable. Note that because user effects are always constants, and according to the equivalence rules for rows [20], we consider computed effect rows equal up to reordering. For example \(\{ \ell_1, \ell_2 \} \equiv \{ \ell_1, \ell_1 \} \).

As shown by the grammar, the computed effects are restricted in that a row of monadic effects cannot end with a polymorphic tail \(\mu \). This limits the functions that a user can write: no user-defined effects can be in a row that has a polymorphic tail. We believe that this restriction is not too severe in practice since it only restricts functions that are higher-order over user-defined effects where the function parameter is open-ended in the side-effects it can have. This is quite unusual and easy to circumvent by stating the allowed effects explicitly. The advantage of adding this restriction
bind\(\xi\)\((\sigma, e, e, e)\) = \text{val} x = e; e

\begin{align*}
\text{bind}^{\gamma}_{\xi}(\sigma, e, e, e) &= \text{dict}_{\xi_\sigma}.\text{map}(\sigma_{\xi_\sigma})(e_{\xi}, \lambda^{\xi_\sigma} x : \sigma_{\xi_\sigma}, e) \\
\text{where} \quad &\vdash e_{\xi} : \text{mon}(\sigma_{\xi_\sigma}, \xi_{\sigma_\xi}), \vdash e : \sigma \\
\text{bind}^{\mu}_{\nu}(\sigma, e, e, e) &= \text{dict}_{\nu_\sigma}.\text{bind}(\sigma_{\nu_\sigma}, e, e')(e')
\end{align*}

\begin{align*}
e' &= \text{lift}_{\xi\nu}(e_{\nu\xi}, e_{\xi}) \\
\text{bind}^{\mu}_{\nu}(\sigma, e, e, e) &= \text{dict}_{\nu_\sigma}.\text{bind}(\sigma_{\nu_\sigma}, e, e')(e') \\
\text{where} \quad &\vdash e_{\xi} : \text{mon}(\sigma_{\xi_\sigma}, \xi_{\sigma_\xi}), \vdash e : \text{mon}(\nu, e, \sigma)
\end{align*}

\text{Figure 6.} Helper functions for binding and lifting.

is great though: we completely circumvent the need to add constraints to the type language and can simplify the translation significantly compared to earlier work [31].

We convert a regular effect type \(\epsilon\) to a computed effect \(\bar{\epsilon}\), and dually, we apply \(\bar{\epsilon}\) to an effect \(\epsilon\) to remove the user-defined effects:

\begin{align*}
\langle P|\epsilon \rangle &= \langle P|\bar{\epsilon} \rangle & \text{if } \bar{\epsilon} \neq \mu \\
\langle P|\epsilon \rangle &= \tau & \text{if } \bar{\epsilon} = \mu \\
\langle \epsilon \rangle &= \langle \bar{\epsilon} \rangle = \langle \bar{\epsilon} \rangle & \text{if } \bar{\epsilon} \neq \mu \\
\mu &\equiv \mu \\
\langle l | v_1 \rangle \oplus \langle l | v_2 \rangle &= \langle l | v_1 \oplus v_2 \rangle & \text{if } l \notin v_2
\end{align*}

Again, this function is partial but we can show that the usage in the translation over a well-typed koka program never leads to an undefined case.

\textbf{Type translation.} The type operator \([\]\) translates effectful-to-monadic types.

\begin{align*}
[\alpha^\kappa] &= \alpha^\kappa \\
[\tau \rightarrow \epsilon \tau'] &= [\tau] \rightarrow \epsilon \text{mon}(\bar{\tau}, e\epsilon \tau') \\
[\epsilon^\kappa(\tau_1, \ldots, \tau_n)] &= [\epsilon^\kappa(\tau_1), \ldots, \tau_n] & \text{with } \epsilon \neq \rightarrow \\
[\forall \alpha^\kappa, \sigma] &= \forall \alpha^\kappa.\sigma \\
[\forall \alpha^\kappa \sigma] &= \forall \alpha^\kappa.\text{tdict}(\sigma) = \langle \sigma \rangle
\end{align*}

For function types \(\tau \rightarrow \epsilon \tau'\) the effect \(\epsilon\) is split to the build-in effect portion \(\epsilon\) and the user-defined portion \(\tau\). The effect of the translated type is only the build-in portion \(\epsilon\) while the result is monadically wrapped according to the user-defined portion \(\tau\) using the mon operator.

\begin{align*}
\text{mon}(\langle \rangle, e, \sigma) &= \sigma \\
\text{mon}(\langle \xi_1, ..., \xi_n \rangle, e, \sigma) &= M\langle \xi_1, ..., \xi_n \rangle(\epsilon, e, \sigma) & \text{where } n \geq 1 \\
\text{mon}(\mu, e, \sigma) &= \text{evaluated at instantiation}
\end{align*}

The mon operation derives a monadic result type and effect. For polymorphic effect types, mon cannot be computed until instantiation. We therefore keep this type unevaluated until instantiation time. As such, it is really a \textit{dependent type} (or a type parametrized over types). In our case, this is a benign extension to \(\lambda^\alpha\) since \(\lambda^\alpha\) is explicitly typed. After instantiation, the type argument is not polymorphic, thus mon will return a concrete type.

The translation uses another dependent type to get the type of a polymorphic dictionary (see Figure 7):

\begin{align*}
\text{tdict}(\langle \rangle) &= \text{tdict}(\langle M_{\alpha\beta} \rangle) \\
\text{tdict}(\langle \xi_1, ..., \xi_n \rangle) &= \text{tdict}(\langle M_{\xi_1}, ..., \xi_n \rangle) & \text{where } n \geq 1 \\
\text{tdict}(\mu) &= \text{evaluated at instantiation}
\end{align*}

Note that the type translation function \([\]\) reveals how the to\(\alpha\) and from\(\alpha\) functions are internally implemented. If we apply type translation to their signatures, we see that both become identity functions. For example, the type translation type of to\(\alpha\) is \([M_{\alpha\beta}(\epsilon, \alpha) \rightarrow \langle \epsilon \rangle(\alpha)]\) which is equivalent to \(M_{\alpha\beta}(\epsilon, \alpha) \rightarrow \epsilon M_{\alpha\beta}(\epsilon, \alpha)\), i.e. we can implement to\(\alpha\) simply as \(\lambda x.\). Similarly, from\(\alpha\) is implemented as \(\lambda f.\).

\textit{Monadic Abstractions}. Figure 6 defines two syntactic abstractions that we use to lift and bind effect computations.

- \text{lift}_{\xi\nu}(\epsilon, e) lifts the expression \(e\) from the source \(v_\nu\) to the target \(v_\xi\) computed effect. If the computed effects are the same \(e\) is returned. If effects are different \(v_\nu \neq v_\xi\) and the source effect is empty, the lifting is performed via a call to the unit field of the dictionary of the target effect \text{dict}_{\nu_\sigma}. Otherwise, the lifting is performed via the morphism \(v_\nu \triangleright v_\xi\). Note that the monadic unit and the morphism operators are effect polymorphic thus \text{lift} is also parametric on an effect \(\epsilon\); that is used to instantiate the effect variable of \text{unit} and \(\triangleright\). Furthermore, lift fails if the morphism \(v_\nu \triangleright v_\xi\) is not defined.

- \text{bind}^{\gamma}_{\xi}(\sigma, e, e, x, e) binds the expression \(e_x\) to the variable \(x\) that appears in \(e\). The expression \(e_x\) (resp. \(e\)) has computed (minimum) effect \(v_\nu\) (resp. \(v\)) and \(e\) is the combined (maximum) effect of the binding. If \(e_x\) does not have any computed effect binding is simply a val-binding, otherwise both expressions are lifted to the effect \(v_\nu \oplus v\) and binding is performed via a call in the \text{bind} field of the dictionary of the target effect \text{dict}_{\nu_\xi\nu}.

As an optimization, if \(v = \langle \rangle\) our system uses the monadic map instead of lifting \(\epsilon\) to \(v_\nu\) and then using \text{bind}. As in lift the combined effect \(\epsilon\) is used to instantiate the effect variable of the monadic operators. This optimization is similar to the ones used to avoid unnecessary “administrative” redexes, which customary CPS-transform algorithms go to great lengths to avoid [6, 29].

\subsection{3.3.1. Monadic Translation}

We use all the above operators to define the translation relation \(\sim_{\epsilon\nu}\) \(e' \mid v\) as shown in Figure 7, where \(\epsilon\) is inherited and \(v\) synthesized.

\textit{Values}. Values have no effect, and compute \(\langle \rangle\). Rules (CON) and (VAR) are simple: they only translate the type of the expression and leave the expression otherwise unchanged. Rule (LAM) states that when translating \(\lambda x.\tau.\epsilon\) the type \(\tau\) of the parameter is also translated. Moreover, the effect \(\epsilon\) dictates the maximum effect in the translation of the body \(e\). Finally, we lift the body of the function from the computed minimum effect to \(\epsilon\).

\textit{Type Operations}. Type abstraction and application preserve the computed effect of the wrapped expression \(e\), and the Koka type system guarantees that type abstraction only happens over total expressions. In (TLAM-E) we abstract over an effect variable \(\mu\), thus we add an extra value argument, namely, the dictionary of the effect that instanti-
Translation

\[
\begin{align*}
\text{(CON)} & \quad e \sigma \rightsquigarrow e[\sigma] \mid \emptyset \\
\text{(VAR)} & \quad x \sigma \rightsquigarrow x[\sigma] \mid \emptyset \\
\text{(LAM)} & \quad e \rightsquigarrow e' \mid v \quad \frac{e \rightsquigarrow e' \mid v \quad \Lambda x : \tau . e \rightsquigarrow e''}{\frac{x}{\Lambda x : \tau . e \rightsquigarrow e''} \downarrow} \quad \frac{e \rightsquigarrow e' \mid \emptyset \quad \Lambda \mu . e \rightsquigarrow \Lambda \mu . \chi \downarrow \mu} {\frac{\mu}{\Lambda \mu . \chi \downarrow \mu}} \\
\text{(TAP)} & \quad e \rightsquigarrow e' \mid v \quad \frac{\kappa \neq e}{e \rightsquigarrow e'} \\
\text{(TAPP)} & \quad e \rightsquigarrow (\tau \kappa) \quad \frac{e \rightsquigarrow e' \mid (\tau \kappa)}{e \rightsquigarrow [e'] \mid (\tau \kappa)} \\
\text{(APP)} & \quad e_1 \rightsquigarrow e_1' \mid v_1 \quad e_2 \rightsquigarrow e_2' \mid v_2 \quad e_1 \downarrow v_3 \quad e_1 e_2 \rightsquigarrow \text{bind}_{\tau_1 \tau_2}^{v_3}(e, e_1', e_2, y) \mid v \\
\text{(VAL)} & \quad e_1 \rightsquigarrow e_1' \quad e_2 \rightsquigarrow e_2' \quad e_1 \downarrow v_2 \quad e_1 \rightsquigarrow e_1' \quad v = v_1 + v_2 + v_3 \\
\text{(IF)} & \quad e_1 \rightsquigarrow e_1' \mid v_1 \quad e_2 \rightsquigarrow e_2' \mid v_2 \quad e_3 \rightsquigarrow e_3' \quad v = v_1 + v_2 + v_3 \quad \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \rightsquigarrow \text{bind}_{\tau_1 \tau_2}^{v_3}(e, e_1', e_2, y) \text{ else } \text{bind}_{\tau_1 \tau_3}^{v_3}(e, e_3') \mid v
\end{align*}
\]

Figure 8. Computing minimal effects of function expressions.

As an optimization, we compute the minimal effect as \(e_1 \downarrow v_3\), which is presented in Figure 8. In this example, we can apply \((\text{Opt-TAPP})\) and use a fully pure invocation of the value \((\text{Val})\). As it turns out, in practice this optimization is very important and saves much unnecessary binding, lifting, and passing of dictionaries. Since a row-based effect system like Koka uses simple unification, all sub expressions get unified with the final type. With this optimization we basically recover some of the subtyping and we can do it separately from the initial type inference. This is important in practice as we can now clearly separate the two complex phases and keep using simple unification during type inference.

Finally, the rule \((\text{Val})\) translates \(\text{val-binding} \quad \text{val} \; x \; = \; e_1 \; \text{by} \; e_2 \; \text{in} \; e_3\) by binding \(e_1\) to \(x\) in \(e_2\). Similarly, the rule \((\text{IF})\) translates \(\text{if } e_1 \text{ then } e_2 \text{ else } e_3\) by first binding \(e_1\) to a fresh variable \(y\), since \(e_1\) may have user-defined effects and then lifting both branches to the computed effect \(v\) that is the union of the computed effects of the guard \(v_1\) and the two branches \(v_2\) and \(v_3\).

3.4 Soundness

From previous work on type inference for Koka \([20]\) we have that the resulting explicitly typed Koka is well-typed, i.e.

Lemma 1.

(Explicit Koka is well-typed)

If \(\Gamma \vdash k : \sigma \mid e \rightsquigarrow e\) then \(\vdash e : \sigma \mid e\).

Here, the relation \(\Gamma \vdash k : \sigma \mid e \rightsquigarrow e\) is the type inference relation defined in \([20]\) where the source term \(k\) gets type \(\sigma\) with effect \(e\) and a corresponding explicitly typed term \(e\).

The new part in this paper is that our translation preserves types according to the \(\lbrack \cdot \rbrack\) type translation:

Theorem 1.

(Type Preservation)

If \(\vdash e : \sigma \mid e \rightsquigarrow e'\) and \(\lbrack \cdot \rbrack\), then \(\vdash e' : [\sigma]\).

Proof. In Appendix A we give a proof of soundness for a more general Theorem (General Type Preservation): if
\[\vdash e : \sigma \quad \text{and} \quad e \sim_{e} e' \mid v, \quad \text{then} \quad \vdash e' : \text{mon}(v, e, [\sigma]). \]

Theorem 1 follows as a direct implication for a computed effect \(v \equiv () \).

This property is strong since Koka has explicit effect types, i.e., it is not possible to have a typed translation simply by using \(\bot \), and as such it gives high confidence in the faithfulness of the translation. This is related to the types of bind and unit for example which are both guaranteed to be total functions (since they are polymorphic in the effect).

4. Implementation

We implemented monadic user-defined effects in Koka and the implementation is available at koka.codeplex.com. Koka’s compiler is implemented in Haskell and it transforms Koka source code to JavaScript:

- The compiler takes as input Koka source code as specified in [20] extended with effect and morphism declarations.
- Next, it performs type inference and transforms the source code the Koka’s intermediate representation which is very similar to \(\lambda^{ex} \) of Figure 3.
- Then, it applies the translation rules of Figure 7, i.e. it uses the inferred types and effects to apply our effect to monadic translation.
- Finally, the monadic intermediate Koka is translated to JavaScript.

The goal of our implementation is to build a sound, complete, and efficient translation with minimum run-time overhead. We get soundness by § 3.4, and in § 4.2 we discuss that the translation is complete, modulo the monomorphic restriction. Moreover (§ 4.1), our translation is optimized to reduce any compile- and run-time overhead as far as possible. We conclude this section by a quantitative evaluation of our translation.

4.1. Optimizations

We optimized the translation rules of Figure 7 with three main optimization rules: only translate when necessary, generate multiple code paths for effect polymorphic functions, and use monadic laws to optimize bind structures.

Selective Translation. Looking at the existing Koka source code, we observed that most of the functions are user-defined effect free. A function is user-defined effect free when (1) it does not generate user-defined effects, (2) it is not effect polymorphic (as any abstract effect can be instantiated with a user-defined one), and (3) all the functions that calls or defines are user-defined effect free.

A user-defined effect free function is translated to itself. Thus our first optimization is to skip translation of such functions. This optimization is crucial in code that does not make heavy use of user-defined effects. As it turns out, 229 out of 287 Koka library functions are not translated.

Two versions of effect polymorphic functions. The translation rule (TAdv-E) is quite inefficient when the applied effect \(e \) is not user-defined: the identity dictionary is applied and it is used to perform identity monadic operators. User-defined effect free functions are the common case in Koka code, and as such they should not get polluted with identity dictionaries.

As an optimization, when translating an effect polymorphic function we create two versions of the function:

<table>
<thead>
<tr>
<th>before translation</th>
<th>after translation</th>
<th>percentage increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>lines</td>
<td>bytes</td>
<td>lines</td>
</tr>
<tr>
<td>2678</td>
<td>89038</td>
<td>3248</td>
</tr>
</tbody>
</table>

4.2. The Monomorphism Restriction

The Monomorphism Restriction restricts value definitions to be effect monomorphic. Consider the following program:

```
function poly(x : a, g : (a) -> b) : c b
val mr = if (expensive() \geq 0) then poly else poly
```

How often is `expensive()` executed? The user can naturally assume that the call is done once, at the initialization of \(mr \). But, since \(mr \) is effect polymorphic (due to `poly`), our translation inserts a dictionary argument. Thus, the call is executed as many times as \(mr \) is referenced. To avoid this situation the Koka compiler rejects such value definitions, similar to the monomorphism restriction of Haskell. Aside from this restriction, our translation is complete, i.e., we accept and translate all programs that plain Koka accepts.

4.3. Evaluation

Finally, we give a quantitative evaluation of our approach that allows us to conclude that monadic user-defined effects can be used to produce high quality code without much affecting the compile- or running-time of your program.

In Figure 10 we present the static metrics and the file size of our five benchmarks: (1) `amb` manipulates boolean formulas using the ambiguous effect, (2) `parser` parses words and integers from an input file using the parser effect, (3) `async` interactively processes user’s input using the asynchronous effect, and (4) `behamb` combines the ambiguous and the behavior effects (5) `core` is Koka’s core library that we translate.
so that all library’s functions can be used in effectful code. On these benchmarks we count the file size in lines, the total compilation time, the translation time and we compute the percentage of the compilation time that is spent on translation. The results are collected on an Intel Core i5 machine.

Static Time. As Figure 10 suggests the compile-time spend in translation is low (less than 3% of compilation time). More importantly, the fraction of the time spend in translation is minor in code that does not use monadic effects, mostly due to our optimizations (§ 4.1).

Run Time. To check the impact of our translation on runtime we created “monadic” versions of our examples, i.e. a version of the amb that uses lists instead of the amb effect and a version of the parser that uses a parser data type. We observed that our monadic translation does not have any run-time cost mostly because it optimizes away redundant calls (§ 4.1).

We conclude that our proposed abstraction provides quality code with no run-time and low static-time overhead.

5. Related work

Many effect typing disciplines have been proposed that study how to delimit the scope of effects. Early work is by Gifford and Lucassen [11, 22] which was later extended by Talpin [33] and others [25, 32]. These systems are closely related since they describe polymorphic effect systems and use type constraints to give principal types. The system described by Nielsens et al. [25] also requires the effects to form a complete lattice with meets and joins. Wadler and Thiemann [36] show the close connection between monads [24, 45] and the effect typing disciplines.

Java contains a simple effect system where each method is labeled with the exceptions it might raise [13]. A system for finding uncought exceptions was developed for ML by Pessaux et al. [26]. A more powerful system for tracking effects was developed by Benton [4] who also studies the semantics of such effect systems [5]. Recent work on effects in Scala [30] shows how restricted polymorphic effect types can be used to track effects for many programs in practice.

Marino et al. created a generic type-and-effect system [23]. This system uses privilege checking to describe analytical effect systems. Their system is very general and can express many properties but has no semantics on its own. Banadas et al. [1] layer a gradual type system on top this framework. This may prove useful for annotating existing code bases where a fully static type system may prove too conservative.

Our current work relies heavily on a type directed monadic translation. This was also described in the context of ML by Swamy et al. [31], where we also showed how to combine multiple monads using monad morphisms. However, Koka uses row-polymorphism to do the typing, while [31] uses subtyping. A problem with subtyping is that the inferred types can be too complicated to understand. For example, in an η-robust version, the type inferred for function composition in [31] is:

\[\forall a \in \text{b}, c \in \mu_3, \mu_4. (\mu_1 \geq \mu_2 \geq \mu_3 \Rightarrow (b \rightarrow \mu_2 \rightarrow c) \rightarrow \mu_3 \rightarrow (a \rightarrow \mu_1 \rightarrow \mu_4 \rightarrow (a \rightarrow \mu_3 \rightarrow c)) \]

which is much harder to read than the type inferred in Koka:

\[\forall (a, b, c, e) \in (b \rightarrow c, a \rightarrow e) \rightarrow c \]

where no constraints are present.

A similar approach to [31] is used by Rombf et al. [29] to implement first-class delimited continuations in Scala which is essentially done by giving a monadic translation. Similar to our approach, this is also a selective transformation; i.e. only functions that need it get the monadic translation. Both of the previous works are a typed approach where the monad is apparent in the type. Early work by Filinski [8, 9] showed how one can embed any monad in any strict language that has mutable state in combination with first-class continuations (i.e. callcc). This work is untyped in the sense that the monad or effect is not apparent in the type. In a later work Filinski [10] proposes a typed calculus where monads are used to give semantics to effects. This proposal has many similarities with our current work, but does not explore effect inference and polymorphism, which both are features crucial for a usable effect system.

Algebraic effect handlers described by Plotkin et al. [27] are not based on monads, but on an algebraic interpretation of effects. Even though monads are more general, algebraic effects are still interesting as they compose more easily. Bauer and Pretnar describe a practical programming model with algebraic effects [2] and a type checking system [3]. Even though this approach is quite different than the monadic approach that we take, the end result is quite similar. In particular, the idea of handlers to discharge effects, appears in our work in the form of the from primitives induced by an effect declaration.

6. Conclusion

Using the correspondence between monads and effects [36], we have shown how you can define the semantics of an effect in terms of a first-class monadic value, but you can use the monad using a first-class effect type. We provide a prototype implementation that builds on top of Koka’s type- and effect inference system.

In “The essence of functional programming” [35], Wadler remarks that “by examining where monads are used in the types of programs, one determines in effect where impure features are used. In this sense, the use of monads is similar to the use of effect systems”. We take the opposite view: by examining the effect types one can determine where monads are to be used. In Wadler’s sense of the word, the essence of effectful programming is monads.

References

A. Proof of soundness

We prove a generalization of the Type Preservation Theorem 2 in the paper where the computed effect is u not restricted to (). Then our main theorem follows trivially.

Definition 1.
Since \(\text{mon}(\langle \tau_1 | \ldots | \tau_n \rangle, \epsilon, \tau) = M(\langle \tau_1 | \ldots | \tau_n \rangle, \epsilon, \tau)\), we can rewrite dictionary and morphism types using \(\text{mon}(\langle \tau_1 | \ldots | \tau_n \rangle, \epsilon, \tau)\), as:

\[
\text{struct tdict}(m) \{
 \text{unit : } \forall \alpha. \, \tau \rightarrow \mu \text{ mon}(m, \mu, \alpha) \\
 \text{map : } \forall \alpha. \beta. \mu(m, \mu, \alpha) \rightarrow \beta \rightarrow \mu \text{ mon}(m, \mu, \beta) \\
 \text{bind : } \forall \alpha. \beta. \mu(m, \mu, \alpha) \rightarrow \mu \text{ mon}(m, \mu, \beta)
\}
\]

\(v_1 \triangleright v_2 : \text{forall } \alpha. \, v_1(\nu_1, \epsilon, \alpha) \rightarrow \tau \, \epsilon \, v_2(\nu_1, \epsilon, \alpha)\)

Theorem 1.

(Lifting) If \(\vdash e : \text{mon}(\nu_1, \epsilon, \sigma)\), then \(\vdash \text{lift}_{\nu_1}(e, \epsilon) : \text{mon}(\nu_1, \epsilon, \sigma)\).

Proof. Let \(e' \equiv \text{lift}_{\nu_1}(e, \epsilon)\)

- If \(v_1 = v_2\), then \(e' = e\) but by assumption \(\vdash e : \text{mon}(\nu_1, \epsilon, \sigma)\).
- If \(v_1 = \langle\rangle\), then \(e' = \text{dict}_{\nu_1}.unit(\epsilon, \sigma)(\epsilon)\). By the type of unit we have that the call to unit is well-typed and that the result has the appropriate type, i.e., \(\vdash e' : \text{mon}(v_1, \epsilon, \sigma)\).
- Otherwise, \(e' = v_1 \triangleright v_1(\sigma, \epsilon)\). By the type of \(\triangleright\) we have that the call is well-typed and that the result has the appropriate type, i.e., \(\vdash e' : \text{mon}(v_1, \epsilon, \sigma)\).

Theorem 2.

(Binding) If \(\vdash \epsilon_1 : \text{mon}(v_1, \epsilon_1, \sigma_1)\) and \(\vdash \epsilon_2 : \text{mon}(v_2, \epsilon_2, \sigma_2)\), then \(\vdash \text{bind}_{\nu_1}^\tau(\epsilon_1, \epsilon_2, x, \epsilon_2) : \text{mon}(v_1 \oplus v_2, \epsilon, \sigma_2)\).

Proof. Let \(e' \equiv \text{bind}_{\nu_1}^\tau(\epsilon_1, \epsilon_2, x, \epsilon_2)\)

- If \(v_1 = \langle\rangle\), then \(v_1 \oplus v_2 = v_2\) and \(e' = \text{val } x = \epsilon_1; \epsilon_2\) and by rule (T-Val) \(\vdash e' : \text{mon}(v_1 \oplus v_2, \epsilon, \sigma_2)\).
Theorem 3.

(General Type Preservation)

If \(e \vdash : \sigma \) and \(e \sim e' \vdash v \), then \(e' \vdash : \mathsf{mon}(v, e, [\sigma]) \).

Proof. By induction of the structure of the derivations, and checking at each rule that the results are well-typed.

• (CON): Let \(e \equiv e' \). Assume \(e \vdash : \sigma \) and \(e' \sim_{\mathsf{let}} e' \). Then \(e' \equiv e' \). By (T-CON) \(e \vdash : [\sigma] \), so that mon(\(e \), \(e \), [\(e \) \]) has the appropriate type, i.e., \(\vdash e' \vdash : \mathsf{mon}(v, e, [\sigma]) \).

• (VAR): Let \(e \equiv e'' \). Assume \(e \vdash : \sigma \) and \(e'' \sim \mathsf{let}_{\lambda} e'' \). Then \(e'' \equiv e'' \). By (T-VAR) \(\vdash e'' : [\sigma] \), so that mon(\(e \), \(e \), [\(e \) \]) has the appropriate type, i.e., \(\vdash e'' \vdash : \mathsf{mon}(v, e, [\sigma]) \).

• (LAM): Let \(e \equiv x : \tau \cdot e_2 \). Then \(\vdash x : \tau \vdash e_2 \). By (T-LAM) \(\vdash \lambda x : \tau \cdot e_2 : [\tau \rightarrow \sigma] \). By the same rule we have \(\mathsf{let}\mathsf{on}(\lambda x : \tau \cdot e_2, v) \vdash : [\sigma] \), so that mon(\(e \), \(e \), [\(e \) \]) has the appropriate type, i.e., \(\vdash e \vdash : \mathsf{mon}(v, e, [\sigma]) \).

By the definition of \(\vdash \mathsf{let}\mathsf{on}(\lambda x : \tau \cdot e_2, v) \vdash : [\sigma] \), we have \(\vdash e \vdash : \mathsf{mon}(v, e, [\sigma]) \).

By the induction on the structure of the type scheme \(\sigma \).

B. The Asynchronous effect

As another example, we present how user-defined effects can be used to simplify asynchronous programming. Asynchronous code can have big performance benefits but it notoriously cumbersome to program with since one has to specify the continuation (and failure continuation). This style of programming is quite widely used in the JavaScript community for XHR calls on the web, or when programming Node.js servers. Consider the following asynchronous JavaScript code that uses promises [16]. This example is somewhat simple but also in many ways typical for asynchronous code:

```javascript
function main() {
  game().then(null, function(err) {
    println("an error happened");
  });
}
```
function game() {
 return new Promise().then(function() {
 println("what is your name?");
 readline().then(function(name) {
 println("Ah. And who is your mentor?");
 readline().then(function(mentor) {
 println("Thinking...");
 wait(1000).then(function() {
 println("Hi " + name + ". Your mentor is " + mentor);
 });
 });
 });
 });
}

The asynchronous functions here are readline and wait. Both return immediately a so-called Promise object, on which we call the then method to supply its success continuation: a function that takes as argument the result of readline and uses it at its body. Finally, then takes a second (optional) argument as the failure continuation. If a failure occurs within a continuation with no failure continuation, execution skips forward to the next then. In this example if any error occurs, it will be forwarded to the main function which will die by printing "an error occurred".

Programming with callbacks in tricky. Common errors include doing computations outside the continuation, forgetting to supply an error continuation, using try - catch naively (which don’t work across continuations), and mistakes with deeply nested continuations (e.g. the pyramid of doom).

Asynchronicity as an effect. In Koka, we can actually define an async effect that allows us to write asynchronous code in a more synchronous style while hiding all the necessary plumbing, that behave asynchronous, i.e., have exactly the same behaviour as the previous example. We define the asynchronous effect as a function with two arguments, the success and the failure continuation:

effect async(c,a) = (a → e ()), exception → e ()) → e ()

function unit(x) {
 return fun(c,e) { c(x) }
}

function bind(m,f) {
 return fun(c,e) {
 m(fun(x) {
 val g = catch({ f(x) }, fun(exn) { return fun (_,__) { ec(exn) } })
 g(c,e)
 }, ec)
 }
}

function bindCatch(m,h) {
 return fun(c,e) {
 catch({
 n(c, fun(err) { h(err)(c,e) })
 }, fun(err) { h(err)(c,e) })
 }
}

This one is quite complex but that is somewhat expected of course – getting asynchronicity right is complicated. As usual, Koka automatically creates the primitives to async and from async. We use these to define other functions: run(action) turns the async computation action into an io computation. readline is an async wrapper for the primitive readline function that is explicitly called with its success continuation.

function readline() : (async.consolestring {
 to_async fun(cont,eccont) { readline(cont) }
}

Finally, using these two primitives and the async effect we can now program nice and “vertical”, synchronous-like code for our initial JavaScript example:

function main() {
 run(game)
}

function game() : (async.io) () {
 println("what is your name?")
 val name = readline()
 println("Ah. And who is your mentor?")
 val mentor = readline()
 println("Thinking...")
 wait(1000)
 println("Hi " + name + ". Your mentor is " + mentor)
}

Moreover, just like other effects, we can use any abstraction as usual, like mapping asynchronous computation over lists etc. Of course, we need more primitives, like fork which starts multiple asynchronous computations in parallel and finished when all are done.

The strong typing is crucial here as it provides good indication that the code is potentially asynchronsous! It is generally recognized that knowing about asynchronicity is important, but other effects like exceptions, divergence, or heap mutation, are not always treated with the same care. In Koka, all effects are considered essential to the type of a function and asynchronicity is treated in the same way as any other effect.

Semantically, the asynchronous effect is not quite like our earlier examples which could be implemented in Koka as is. For example, note the invocation of catch in the definition of bind. Why is that necessary? and what happens if we would forget it? The reason behind this is that asynchronicity cannot exist within the basic semantics of Koka (as described in [20]). In particular, we introduce new constants supplied by the runtime environment that behave outside of Koka semantics, like readline. Effectively, every time an asynchronous operation is executed, the program terminates and is revived again when the continuation is executed. This is also why run cannot be implemented in Koka itself but needs special runtime support too – it effectively needs to ‘wait’ until all asynchronous operations are done and then return its result (or throw an exception). Of course, since Koka is implemented on top of JavaScript all these primitives (and many more) are provided the host runtime systems (i.e. NodeJS and browsers).

C. Download

The current prototype of the work in this article is freely available online. It is not yet ready for prime-time since some checks are lacking, but by the time of the conference we hope to have it online on http://www.rise4fun.com/koka. Currently, one can build the development branch though and play with the examples in this paper:

- Pull the koka-monadic branch from http://koka.codeplex.com and follow the build instructions on that page.
- Try out the examples in test/monadic/esop15, like amb or parser.

The basic Koka compiler compiles to JavaScript and is quite mature at this point. In fact, Koka was used to create a sophisticated online markdown processor called Madoko,
which was used to completely write this article! Try it at http://www.madoko.net.