Generics for the Working ML'er

Vesa Karvonen
University of Helsinki
Why Generics?

• An innocent looking example:

```lisp
unitTests
  (title "Reverse")
  (testAll (sq (list int))
    (fn (xs, ys) ⇒
      thatEq (list int)
        {expect = rev (xs @ ys),
         actual = rev xs @ rev ys})))
```

Why Generics?
1. Reverse test
 FAILED:
 with ([521], [7])
 equality test failed:
 expected [7, 521], but got [521, 7].
Hidden Complexity

• Uses quite a few generics:
 – Arbitrary – to generate counterexamples
 – Shrink – to shrink counterexamples
 – Size – to order counterexamples by size ...
 – Ord – ... and an arbitrary linear ordering
 – Eq – to compare for equality
 – Pretty – to pretty print counterexamples
 – Hash – used by several other generics
 – TypeHash – used by Hash (and Pickle)
 – TypeInfo – used by several other generics

• Imagine having to write all those functions by hand to state the property...
Generics?

- A generic can be used at many types:
 \[\alpha \times \alpha \rightarrow \text{Bool.t} \]
 \[\alpha \rightarrow \text{String.t} \]

- Values indexed by one or more types

- Question: What is the relation to ad-hoc polymorphism?

- Problem: Types in H-M are implicit
Generics vs Ad-Hoc Poly.

Generics
- aka “Polytypic”, “Closed T-I ...”, ...
- Defined once and for all
 - O(1)
- Structural
- Inflexible
- Abstract

Ad-Hoc Poly.
- aka “Overloaded”, “Open T-I ...”, ...
- Specialized for each type (con)
 - O(n)
- Nominal
- Flexible
- Concrete
Encoding Types as Values

Value-Dependent

- Witness the value
 \[\alpha \times \alpha \rightarrow \text{Bool}.t \]
 \[\alpha \rightarrow \text{String}.t \]
- Hard to compose
- Easy to specialize
- Vanilla H-M

Value-Independent

- Witness the type
 \[\alpha \leftrightarrow \mathbb{U} \]
- Easy to compose
- Hard to specialize
- GADTs, Existentials, Universal Type

eq : \(\alpha \) Eq.t \(\rightarrow \alpha \times \alpha \rightarrow \text{Bool}.t \)

show : \(\alpha \) Show.t \(\rightarrow \alpha \rightarrow \text{String}.t \)
The Approach in a Nutshell

- Use a value-dependent encoding to allow specialization
- Encode user defined types via sums-of-products and witnessing isomorphisms
- Close relative of Hinze's GM approach
- Encode recursive types using a type-indexed fixed point combinator
- Make type reps open-products to address composability
So, in Practice...

- For each type, the user must provide a type representation constructor (an encoding of the type constructor).
 - This could even be mostly automated.

- As a benefit, the user then gets a bunch of generic utility functions to operate on the type.

- So, instead of $O(mn)$ definitions, only $O(m+n)$ are needed!
Encoding Types

signature CLOSED_REP = sig type \(\alpha \) t and \(\alpha \) s and (\(\alpha \), \(\kappa \)) p end

signature CLOSED_CASES = sig

structure Rep : CLOSED_REP

val iso : \(\beta \) Rep.t \(\rightarrow \) (\(\alpha \), \(\beta \)) Iso.t \(\rightarrow \) \(\alpha \) Rep.t

val \(\otimes \) : (\(\alpha \), \(\kappa \)) Rep.p \(\times \) (\(\beta \), \(\kappa \)) Rep.p \(\rightarrow \) ((\(\alpha \), \(\beta \)) Product.t, \(\kappa \)) Rep.p

val T : \(\alpha \) Rep.t \(\rightarrow \) (\(\alpha \), Generics.Tuple.t) Rep.p

val R : Generics.Label.t \(\rightarrow \) \(\alpha \) Rep.t \(\rightarrow \) (\(\alpha \), Generics.Record.t) Rep.p

val tuple : (\(\alpha \), Generics.Tuple.t) Rep.p \(\rightarrow \) \(\alpha \) Rep.t

val record : (\(\alpha \), Generics.Record.t) Rep.p \(\rightarrow \) \(\alpha \) Rep.t

val \(\oplus \) : \(\alpha \) Rep.s \(\times \) \(\beta \) Rep.s \(\rightarrow \) ((\(\alpha \), \(\beta \)) Sum.t) Rep.s

val C0 : Generics.Con.t \(\rightarrow \) Unit.t Rep.s

val C1 : Generics.Con.t \(\rightarrow \) \(\alpha \) Rep.t \(\rightarrow \) \(\alpha \) Rep.s

val data : \(\alpha \) Rep.s \(\rightarrow \) \(\alpha \) Rep.t

val Y : \(\alpha \) Rep.t Tie.t

val \(\rightarrow \) : \(\alpha \) Rep.t \(\times \) \(\beta \) Rep.t \(\rightarrow \) (\(\alpha \) \(\rightarrow \) \(\beta \)) Rep.t

val refc : \(\alpha \) Rep.t \(\rightarrow \) \(\alpha \) Ref.t Rep.t

(* ... *)
Binary Tree

```ocaml
datatype α bt =  
  LF  
  | BR of α bt × α × α bt
val bt : α Rep.t → α t Rep.t =  
  fn a ⇒  
    fix Y (fn t ⇒  
      iso (data (C0 (C"LF") ⊕  
                  C1 (C"BR")  
                    (tuple (T t ⊗ T a ⊗ T t))))))  
  (fn LF ⇒ INL ()  
   | BR (a,b,c) ⇒ INR (a&b&c),  
   fn INL () ⇒ LF  
   | INR (a&b&c) ⇒ BR (a,b,c)))
val intBt : Int.t bt Rep.t = bt int
```
The Catch

- Recall that a value-dependent encoding makes it harder to combine generics
 - The type rep needs to be a product of all the generic values that you want [Yang]

- So, we use an open product for the type rep [Berthomieu] and use open structural cases

- A generic is implemented as a functor for extending a given (existing) combination

- But you still need to explicitly define the combination that you want and close it (non-destructively) for use
signature EQ = sig
 structure EqRep : OPEN_REP
 val eq : (α, χ) EqRep.t → α BinPr.t
 val notEq : (α, χ) EqRep.t → α BinPr.t
 val withEq : α BinPr.t → (α, χ) EqRep.t UnOp.t
end
signature EQ_CASES = sig
 include CASES EQ
 sharing Open.Rep = EqRep
end
signature WITH_EQ_DOM = CASES
functor WithEq (Arg : WITH_EQ_DOM) : EQ_CASES
signature HASH = sig
 structure HashRep : OPEN_REP
 val hashParam : (α, χ) HashRep.t → {totWidth : Int.t,
 maxDepth : Int.t} → α → Word.t

 val hash : (α, χ) HashRep.t → α → Word.t
end
signature HASH_CASES = sig
 include CASES HASH
 sharing Open.Rep = HashRep
end
signature WITH_HASH_DOM = sig
 include CASES TYPE_HASH TYPE_INFO
 sharing Open.Rep = TypeHashRep = TypeInfoRep
end
functor WithHash (Arg : WITH_HASH_DOM) : HASH_CASES
Extending a Composition

- **Root generic** ($(G)/with/generic.sml)

  ```sml
  structure Generic = struct
  structure Open = RootGeneric
  end
  ```

- **Equality** ($(G)/with/eq.sml)

  ```sml
  structure Generic = struct
  structure Open = WithEq (Generic)
  open Generic Open
  end
  ```

- **Hash** ($(G)/with/hash.sml)

  ```sml
  structure Generic = struct
  structure Open = WithHash
  (open Generic
   structure TypeHashRep = Open.Rep and TypeInfoRep = Open.Rep)
  open Generic Open
  end
  ```
Defining a Composition

• With the ML Basis System:

```ml
local
  $(G)/lib.mlb
  $(G)/with/generic.sml
  $(G)/with/eq.sml
  $(G)/with/type-hash.sml
  $(G)/with/type-info.sml
  $(G)/with/hash.sml
  $(G)/with/ord.sml
  $(G)/with/pretty.sml
  $(G)/with/close.pretty-with-extra.sml
in
  my-program.sml
end
```
Algorithmic Details Matter

• Generic algorithms:
 – must terminate on recursive types
 – must terminate on cyclic data structures
 – must respect identities of mutable objects
 – should avoid unnecessary computation
 – should be competitive with handcrafted algorithms

• The Eq generic (example in the paper) is easy only because SML's equality already does the right thing!
One of the simplest generics

But, there is a catch

At a sum, which direction do you choose, left or right?

One solution is to analyze the type...

```haskell
fun a ⊕ b = case hasBaseCase a & hasBaseCase b
  of true & false ⇒ INL o getS a
  | false & true ⇒ INR o getS b
  | _ ⇒ ...
```
Does it Have a Base Case?

id \ T = \top

fix \ \lambda t

iso

data

\top \ C0 (C''LF''') \ T \lor \bot = \top

C1 (C''BR''')

tuple

id \bot = \bot

\bot \land \bot = \bot

\bot \land \top = \bot

int \ T

\top \lor \bot = \top

\bot \land \top = \bot

t \bot
val pretty : (α, χ) PrettyRep.t → α → Prettier.t

- Features:
 - Uses Wadler's combinators
 - Output mostly in SML syntax
 - Doesn't produce unnecessary parentheses
 - Formatting options (ints, words, reals)
 - Optionally shows only partial value
 - Shows sharing of mutable objects
 - Handles cyclic data structures
 - Supports infix constructors
 - Supports customization
The Library

- Provides the framework (signatures, layering functors) and
- several generics (17+) from which to choose
- Most of the generics have been implemented quite carefully
- Available from MLton's repository
- MLton license (a BSD-style license)
In the Paper

- Implementation techniques
 - Sum-of-Products encoding
 - Type-indexed fixpoint combinator
 - Layering functors

- Discussion about the design

- NOTE: Some of the signatures have changed (for the better) after writing the paper, but the basic techniques are essentially same
Conclusion

• Works in plain SML'97

• Allows you to define generics both independently and incrementally and combine later for convenient use

• And I dare say the technique is reasonably convenient to use – definitely preferable to writing all those utilities by hand
Shopping List

- Definitely:
 - First-class polymorphism
 - Existentials
 - In the core language!

- Maybe:
 - Deriving
 - Type classes – well, something much better

- Wishful:
 - Lightweight syntax
 - `let open DSL in ... end vs (open DSL ; ...)`
Pickle

\[
\text{val pickle} : (\alpha, \chi) \text{PickleRep.t} \rightarrow \alpha \rightarrow \text{String.t}
\]
\[
\text{val unpickle} : (\alpha, \chi) \text{PickleRep.t} \rightarrow \text{String.t} \rightarrow \alpha
\]

- **Highlights:**
 - Platform independent and compact pickles
 - Tag size depends on type
 - Introduces sharing automatically
 - Handles cyclic data structures
 - Actually uses 6 other generics
 - Some & DataRecInfo
 - Eq & Hash
 - TypeHash
 - TypeInfo
List of Generics

- Arbitrary
- DataRecInfo
- [Debug]
- Dynamic
- Eq
- Hash
- Ord
- Pickle
- Pretty
- Reduce
- Seq

- Shrink
- Size
- Some
- Transform
- TypeExp
- TypeHash
- TypeInfo
Example: Generic Equality

• Desired:
  ```
  val eq : α Eq.t → α × α → Bool.t
  - Where Eq.t is the type representation type constructor
  ```

• Just define:
  ```
  structure Eq = (type α t = α × α → Bool.t)
  val eq : α Eq.t → α × α → Bool.t = id
  ```

• How to build type representations?
Equality types are trivial:

\[
\begin{align*}
&\text{val unit : Unit.t Eq.t = op =} \\
&\text{val int : Int.t Eq.t = op =} \\
&\text{val string : String.t Eq.t = op =}
\end{align*}
\]

So are some non-equality types:

\[
\begin{align*}
&\text{val real : Real.t Eq.t = fn (l, r) ⇒} \\
&\quad \text{PackRealBig.toBytes l = PackRealBig.toBytes r} \\
&\quad \text{Makes sense: reflexive, symmetric, antisymmetric, and transitive} \\
&\quad \text{Application: unpickle \ (pickle x) = x}
\end{align*}
\]

What about user-defined types?
UDTs via Sums-of-Products 1/2

• First define sum and product datatypes:

\[
\text{datatype } (\alpha, \beta) \text{ sum } = \text{INL of } \alpha \mid \text{INR of } \beta \\
\text{datatype } (\alpha, \beta) \text{ product } = \& \text{ of } \alpha \times \beta \\
\text{infix } \& \oplus \otimes
\]

• And equality on sums and products:

\[
\text{val op } \oplus : \alpha \text{ Eq.t } \times \beta \text{ Eq.t } \rightarrow (\alpha, \beta) \text{ Sum.t Eq.t } = \\
\text{ fn (eA, eB) } \Rightarrow \text{ fn (INL l, INL r) } \Rightarrow \text{ eA (l, r) } \\
\mid (\text{INR l, INR r) } \Rightarrow \text{ eB (l, r) } | _ \Rightarrow \text{false}
\]

\[
\text{val op } \otimes : \alpha \text{ Eq.t } \times \beta \text{ Eq.t } \rightarrow (\alpha, \beta) \text{ Product.t Eq.t } = \\
\text{ fn (eA, eB) } \Rightarrow \text{ fn (IA & IB, rA & rB) } \Rightarrow \\
\text{ eA (IA, rA) andalso eB (rA & rB)}
\]
Then define isomorphism witness type:

\[
\text{type } (\alpha, \beta) \text{ iso } = (\alpha \to \beta) \times (\beta \to \alpha)
\]

- Note: Should be total!

And equality given a witness:

\[
\text{val iso : } \beta \text{ Eq.t } \to (\alpha, \beta) \text{ Iso.t } \to \alpha \text{ Eq.t } = \text{fn eB } \Rightarrow
\text{fn (a2b, b2a) } \Rightarrow \text{fn (lA, rA) } \Rightarrow \text{eB (a2b lA, a2b rA)}
\]

Example:

\[
\text{val option : } \alpha \text{ Eq.t } \to \alpha \text{ Option.t Eq.t } = \text{fn a } \Rightarrow
\text{iso (unit } \oplus \text{ a)}
\]

\[
(\text{fn NONE } \Rightarrow \text{INL () } | \text{ SOME a } \Rightarrow \text{INR a},
\text{fn INL () } \Rightarrow \text{NONE } | \text{ INR a } \Rightarrow \text{SOME a})
\]
Value Recursion Challenge

• What about recursive datatypes:
  ```
  val rec list : α Eq.t → α List.t Eq.t = fn a ⇒
  iso (unit ⊕ (a ⊗ list a))
  (fn [] ⇒ INL () | x::xs ⇒ INR (x & xs),
    fn INL () ⇒ [] | INR (x & xs) ⇒ x::xs)
  - Type checks, but diverges!
  ```

• \(\eta\)-expansion not a solution
 - Doesn't work for pairs of functions

• We must use a fixpoint combinator
 - But how do you compute fixpoints over arbitrary products of multiple abstract types?
Type-Indexed Fix 1/3

• Signature for a type-indexed fix:

```plaintext
signature TIE = sig
  type α dom and α cod type α t = α dom → α cod
  val fix : α t → (α → α) → α
  val pure : (Unit.t → (α × (α → α))) → α t
  val ⊗ : α t × β t → (α, β) Product.t t
  val iso : β t → (α, β) Iso.t → α t
end
```
Type-Indexed Fix 2/3

• An implementation of type-indexed fix:

```plaintext
structure Tie :> TIE = struct
  type α dom = Unit.t and α cod = Unit.t → α × (α → α)
  type α t = α dom → α cod
  fun fix aW f = let val (a, tA) = aW () () in tA (f a) end
  val pure = const
  fun iso bW (a2b, b2a) () () =
    let val (b, tB) = bW () () in (b2a b, b2a o tB o a2b) end
  fun op ⊗ (aW, bW) () () =
    let val (a, tA) = aW () () val (b, tB) = bW () ()
    in (a & b, fn a & b ⇒ tA a & tB b) end
end
```
Type-Indexed Fix 3/3

• An ad-hoc witness for functions:

```plaintext
structure Tie = struct open Tie
    val function : (α → β) t = fn ? ⇒
        pure (fn () ⇒ let
            val r = ref (fn _ ⇒ raise Fix)
            in
                (fn x ⇒ !r x,
                 fn f ⇒ (r := f ; f))
            end) ?
        end
```

• Back to the Eq generic...
Tying the Knot

• First we define a fixpoint witness for the `Eq` type representation

  ```haskell
  val Y : α Eq.t Tie.t = Tie.function
  ```

• Example:

  ```haskell
  val list : α Eq.t → α List.t Eq.t = fn a ⇒
  Tie.fix Y (fn aList ⇒
    iso (unit ⊕ (a ⊗ aList))
      (fn [] ⇒ INL () | x::xs ⇒ INR (x & xs),
       fn INL () ⇒ [] | INR (x & xs) ⇒ x::xs))
  ```

• Thanks to Tie.⊗, mutually recursive datatypes are not a problem.
Composability 1/2

• To address composability, the type representation is made to carry extra data χ:

```plaintext
signature OPEN_REP = sig
  type ($\alpha$, $\chi$) t and ($\alpha$, $\chi$) s and ($\alpha$, $\kappa$, $\chi$) p
  val getT : ($\alpha$, $\chi$) t $\rightarrow$ $\chi$
  val mapT : ($\chi$ $\rightarrow$ $\chi$) $\rightarrow$ (($\alpha$, $\chi$) t $\rightarrow$ ($\alpha$, $\chi$) t)
  val getS : ($\alpha$, $\chi$) s $\rightarrow$ $\chi$
  val mapS : ($\chi$ $\rightarrow$ $\chi$) $\rightarrow$ (($\alpha$, $\chi$) s $\rightarrow$ ($\alpha$, $\chi$) s)
  val getP : ($\alpha$, $\kappa$, $\chi$) p $\rightarrow$ $\chi$
  val mapP : ($\chi$ $\rightarrow$ $\chi$) $\rightarrow$ (($\alpha$, $\kappa$, $\chi$) p $\rightarrow$ ($\alpha$, $\kappa$, $\chi$) p)
end
```
Composability 2/2

- And structural cases made to build the extra data:

signature OPEN_CASES = sig

structure Rep : OPEN_REP

val iso : (δ → (α, β) Iso.t → γ) →

 (β, δ) Rep.t → (α, β) Iso.t → (α, γ) Rep.t

val ⊗ : (γ × δ → ε) →

 (α, κ, γ) Rep.p × (β, κ, δ) Rep.p →

 ((α, β) Product.t, κ, ε) Rep.p

val Y : x Tie.t → (α, x) Rep.t Tie.t

val list : (γ → δ) → (α, γ) Rep.t → (α List.t, δ) Rep.t

val int : γ → (Int.t, γ) Rep.t

(* ... *)
Layering Generics

• The open rep and cases allow one to extend a generic. We do so by means of layering functors:
 - LayerRep (OPEN_REP, CLOSED_REP) :> LAYERED_REP
 - LayerCases (OPEN_CASES, LAYERED_REP, CLOSED_CASES) :> OPEN_CASES
 - LayerDepCases (OPEN_CASES, LAYERED_REP, DEP_CASES) :> OPEN_CASES
The Benefit

● Having the binary tree type rep means that we can
 - pretty print binary trees,
 - pickle and unpickle them,
 - compare them for equality,
 - hash them
 - reduce and transform them,
 - ...

● Let's try...
Goals and Requirements

- Available yesterday (SML'97)
- Reasonably expressive (eq, ord, show, read, pickle-unpickle, hash, arbitrary, ...)
- Support all types (mutually rec., mutable)
- Specialization required by applications
- Composability for convenient use
- Not a toy – Algs must do The Right Thing
- Reasonably efficient
In Summary

• First you select which generics you want,
 – add the generics one-by-one to a composition, and
 – close it for use

• Then you define type rep constructors for your types

• And you then get to use those generic utility functions with your types
Three type cons for type reps?

- SML's datatypes are not binary sums and tuples & records are not binary products!

- So, we generalize:

 \[
 \text{signature CLOSED_REP} = (\text{type } \alpha \ t \ \text{and} \ \alpha \ s \ \text{and} \ (\alpha, \ k) \ p)
 \]

 - Distinguishes between complete and incomplete types as well as tuples and records

 - The extra tycons are useful; sometimes you really want different representations for sums and products (e.g. pickle/unpickle, read)
Order

datatype order = LESS | EQUAL | GREATER

val order : Order.t Rep.t =
 iso (data (C0 (C"LESS") ⊕ C0 (C"EQUAL") ⊕ C0 (C"GREATER")))
 (fn LESS ⇒ INL (INL ()) | EQUAL ⇒ INL (INR ()) | GREATER ⇒ INR (),
 fn INL (INL ()) ⇒ LESS | INL (INR ()) ⇒ EQUAL | INR () ⇒ GREATER)

iso
 /
data
 /
⊕

⊕
C0 (C"GREATER")

⊕
C0 (C"LESS")

⊕
C0 (C"EQUAL")