Secure Wireless Internet Access in Public Places – The CHOICE Network

Anand Balachandran
University of California, San Diego
Victor Bahl, Srinivasan Venkatachary
Microsoft Research, USA
June 14, 2001
Outline

- Motivation
- Recent Related Work
- CHOICE Network Overview
- CHOICE Architecture and Implementation
- PANS (underlying protocol for CHOICE)
- Performance
- Deployment and Conclusions
Motivation

- To design, implement and deploy a system that would
 - empower individual users to seamlessly access the Internet from public areas
 - enable network service providers to control and monitor network access for each user
 - be lightweight, protocol-agnostic, hardware-agnostic and user-friendly
 - be secure for both the user and the host organization
Recent Work

Related Technologies
- Network Security
 - Layer-2
 - Mac-filtering
 - WEP
 - Layer-3
 - IPSec
- Authentication, Authorization, Access Control ...
 - Layer-2
 - 802.1X
 - App-layer
 - AAA, BURP
Existing Security Mechanisms

- Mostly built for enterprise networks
- Layer-2 mechanisms
 - MAC-based filtering – is history
 - WEP key encryption – is being used today
 - …but is insecure and key management is hard [Nikita01, Arbaugh01]
- Layer-3 mechanisms
 - IPSec
 - Not good in wireless scenarios, because seamless mobility is not easy; involves re-establishing security associations
 - Need something that is protocol agnostic
Existing Authentication and Access Control Mechanisms

- **Layer-2**
 - **802.1x**
 - Requires firmware upgrade on existing APs
 - Will not support APs that are based on different radio access technologies

- **App. Layer**
 - **AAA**
 - IETF WG – RFCs are still being revised
 - **BURP**
 - Proposed WG charter at IETF for individual-centric registration for network access
Fully Developed Systems

- Authenticated DHCP – UC Berkeley (1996-97)
 - Hardware-centric approach, not viable for wireless
- Netbar System – CMU (1997-98)
 - Based on specialized and expensive hardware
- Insite System – U Michigan (1997-98)
 - Similar to the Netbar system
- Secure Public INternet ACcess Handler – Stanford (1998-99)
 - User-friendly, not robust against spoofing attacks
Bottom Line

A system for network access should be:

- **Hardware-agnostic**
 - work with any access technology (802.11, Bluetooth, HIPERLAN)

- **Protocol-stack agnostic**
 - Work equally well in the TCP/IP stack and in WAP-based systems

- **Individual Centric**
 - Allow network operators to track who is using the network and how it is being used
 - Give user a choice on how they are authenticated -- protect their privacy

- **Able to support multiple authentication schemes**
 - AAA (Diameter), Global Authenticators, Credit cards

- **Able to support a viable business model**
 - Everyone involved should benefit
CHOICE Network Overview

- Network Service Detection
 - Broadcast beacons [MIU01]
- Authentication
 - Global Authenticator (MS Passport)
- Authorization (Key generation)
 - Key issued by authorizer to client and verifiers
- Access Control
 - Per-packet Verification at verifier
- Service Provisioning
 - Free access to local services, differentiated charging
A Public-area Wireless Network

- Internet
- Local Services
- Wireless Subnet
- Access Point

June 14, 2001
ICC 2001
CHOICE Network Architecture

Global Authenticator

Internet

Verifier Gateway

Local Services

Authorizer Gateway

Access Point

Wireless Subnet
1. Network Service Detection
2. Authentication

- Global Authenticator
- Internet
- Authorizer Gateway
- Verifier Gateway
- Access Point
- Wireless Subnet
- Local Services
3. Authentication Response

Diagram:
- Global Authenticator
- Internet
- Authorizer Gateway
- Verifier Gateway
- Local Services
- Wireless Subnet
- Access Point

Diagram labels:
- Global Authenticator
- Internet
- Authorizer Gateway
- Verifier Gateway
- Local Services
- Wireless Subnet
- Access Point
4. Key Generation
5. Access to Intranet and Internet

- Global Authenticator
- Internet
- Authorizer Gateway
- Verifier Gateway
- Policy Manager
- Local Services
- Wireless Subnet
Key Generation – Behind the Scenes

- Underlying Protocol
 - **PANS** *(Protocol for Authorization and Negotiation of Services)*
 - A *(key, token)* pair is issued to each client
 - “token” is tagged to the packet and encrypted with the “key”
Key Generation – more

- Encryption algorithm is flexible and negotiable
 - download latest encryption code into clients and servers
 - Unlike WEP no need for upgrades to AP hardware
- Encryption method is flexible
 - Client negotiates with servers at attachment time
 - 3DES, RC4, ECC etc.
- Key length is flexible
- Key can be changed multiple times in a session
- Data integrity obtained via MD5 checksum
Access Control – Implementation

packet from upper layer

Client

Verifier

User

WINSOCK API

Legacy Protocols

TCP/IP

ioctl

PANS Intermediate Miniport Driver

Network Driver Interface Specification (NDIS)

NDIS Miniport(s)

Kernel

PANS User module

June 14, 2001

ICC 2001
Access Control – Implementation

packet from upper layer

User
WINSOCK API
Legacy Protocols
PANS Intermediate Miniport Driver
Network Driver Interface Specification (NDIS)
NDIS Miniport(s)
Kernel
PANS User module
ioctl

Client
Verifier

June 14, 2001
ICC 2001
Access Control – Implementation

User

PANS TAG added

Legacy Protocols
TCP/IP

PANS Intermediate Miniport Driver

Network Driver Interface Specification (NDIS)

NDIS Miniport(s)

WINSOCK API

Kernel

Client

Verifier

User

PANS User module

ioctl

June 14, 2001

ICC 2001
Access Control – Implementation

User

WINSOCK API

Legacy Protocols

TCP/IP

PANS Intermediate Miniport Driver

Network Driver Interface Specification (NDIS)

NDIS Miniport(s)

Kernel

Client

Verifier

June 14, 2001

ICC 2001
Access Control – Implementation

User

WINSOCK API

Legacy Protocols

PANS Intermediate Miniport Driver

Network Driver Interface Specification (NDIS)

NDIS Miniport(s)

ioctl

Kernel

Client

Verifier

June 14, 2001

ICC 2001
Access Control – Implementation

- NDIS Miniport(s)
- Network Driver Interface Specification (NDIS)
- TCP/IP
- Legacy Protocols
- WINSOCK API
- PANS Intermediate Miniport Driver
- PANS User module

ioctl

PANS_TAG removed
Verifier Throughput With PANS

Throughput (Mbits/sec)

Number of Nt-ttcp connections

Without PANS Driver
With PANS Driver
Verifier CPU Utilization with PANS

- Without PANS Driver
- With PANS Driver

Number of Nt-ttcp connections vs. CPU Utilization of the PANS Verifier (%)
Per-packet RTT with PANS

![Graph showing per-packet RTT with and without PANS driver. The graph compares the RTT in milliseconds against buffer size in bytes. The x-axis represents buffer size in bytes, ranging from 0 to 15000, and the y-axis represents per-packet RTT in milliseconds, ranging from 0 to 3.5. Two lines are plotted: one for 'Without PANS Driver' and another for 'With PANS Driver'.]
Summary – CHOICE benefits

- CHOICE is:
 - Complete software solution – hardware- and access-technology agnostic
 - Easily downloadable and requires no modifications to protocol stack
 - User-friendly – registration and authentication are web-based
 - Prevents unauthorized access – safe for the host organization
 - Robust against address spoofing and eavesdropping – safe for the end user

Network deployed and operational in a mall
CHOICE Deployment

- Deployed at Crossroads Shopping Center, Bellevue, WA
- Operational since Fall 2000
- Provides free access to local services
- Able to track user locations

- Location-based services
 - Active maps, guides
 - Mall buddy discovery
 - Location-based chat
 - On-sale Mall Server