Andrew Kennedy: Mechanized Metatheory

Publications

High-Level Separation Logic for Low-Level Code
Jonas Jensen, Nick Benton and Andrew Kennedy. In Proceedings of ACM SIGPLAN Symposium on Principles of Programming Languages (POPL). January 2013.

Separation logic is a powerful tool for reasoning about structured, imperative programs that manipulate pointers. However, its application to unstructured, lower-level languages such as assembly language or machine code remains challenging. In this paper we describe a separation logic tailored for this purpose that we have applied to x86 machine-code programs.

The logic is built from an assertion logic on machine states over which we construct a specification logic that encapsulates uses of frames and step indexing. The traditional notion of Hoare triple is not applicable directly to unstructured machine code, where code and data are mixed together and programs do not in general run to completion, so instead we adopt a continuation-passing style of specification with preconditions alone. Nevertheless, the range of primitives provided by the specification logic, which include a higher-order frame connective, a novel read-only frame connective, and a "later" modality, support the definition of derived forms to support structured-programming-style reasoning for common cases, in which standard rules for Hoare triples are derived as lemmas. Furthermore, our encoding of scoped assembly-language labels lets us give definitions and proof rules for powerful assemblylanguage "macros" such as while loops, conditionals and procedures.

We have applied the framework to a model of sequential x86 machine code built entirely within the Coq proof assistant, including tactic support based on computational reflection.

Using Coq to Generate and Reason About x86 Systems Code
Nick Benton, Jonas Jensen and Andrew Kennedy. Workshop on Syntax and Semantics of Low-Level Languages (LOLA 2012). June 2012.

Slides: PDF or pptx.

Strongly Typed Term Representations in Coq
Nick Benton, Chung-Kil Hur, Andrew Kennedy and Conor McBride. To appear in Journal of Automated Reasoning: Special issue on Binding, Substitution and Naming.

There are two approaches to formalizing the syntax of typed object languages in a proof assistant or programming language. The extrinsic approach is to first define a type that encodes untyped object expressions and then make a separate definition of typing judgements over the untyped terms. The intrinsic approach is to make a single definition that captures well-typed object expressions, so ill-typed expressions cannot even be expressed. Intrinsic encodings are attractive and naturally enforce the requirement that metalanguage operations on object expressions, such as substitution, respect object types. The price is that the metalanguage types of intrinsic encodings and operations involve non-trivial dependency, adding significant complexity. This paper describes intrinsic-style formalizations of both simply-typed and polymorphic languages, and basic syntactic operations thereon, in the Coq proof assistant. The Coq types encoding object-level variables (de Bruijn indices) and terms are indexed by both type and typing environment. One key construction is the boot-strapping of definitions and lemmas about the action of substitutions in terms of similar ones for a simpler notion of renamings. In the simply-typed case, this yields definitions that are free of any use of type equality coercions. In the polymorphic case, some substitution operations do still require type coercions, which we at least partially tame by uniform use of heterogenous equality.

Coq source for simply-typed language Coq source for polymorphically-typed language

Some Domain Theory and Denotational Semantics in Coq
Nick Benton, Andrew Kennedy and Carsten Varming. 22nd International Conference on Theorem Proving in Higher Order Logics (TPHOLs'09), August 2009.

We present a Coq formalization of constructive omega-cpos (extending earlier work by Paulin-Mohring) up to and including the inverse-limit construction of solutions to mixed-variance recursive domain equations, and the existence of invariant relations on those solutions. We then define operational and denotational semantics for both a simply-typed CBV language with recursion and an untyped CBV language, and establish soundness and adequacy results in each case.

Coq source

Talk on typed representation of syntax used in this work, presented at Semantics Lunch at University of Cambridge Computer Laboratory.