Documentation
Case Studies
Support
Team


Release change history
2.5 Beta 2 (9^{th} April 2013)
 Added engine.Compiler.TreatWarningsAsErrors
 SetToRatio now takes an additional argument
 Variable.Random(PointMass) is equivalent to Variable.Constant, constants can be inferred, point masses are quoted correctly for various distributions
 Variable.If(x==value) is equivalent to Variable.Case(x,value). Variable.If(x==i) inside of ForEach(i) is equivalent to Variable.Switch(x).
 Compiler produces better messagepassing schedules
 null constants are allowed
 Improved accuracy of GaussianFromMeanAndPrecision with unknown precision for EP
 InitialiseTo can be applied to array elements, making it simpler to define initialisers for arrays, such as x[item].InitialiseTo(xInitArray[item]);
 SparseVectors display in a more compact format, and display as dense when they are actually dense
 Wishart.Uniform bugfix
 Added Wishart.FromMeanAndMeanLogDeterminant, Discrete.GetMedian
 Added Variable.MatrixTimesScalar, Variable.WishartFromShapeAndRate, Variable.CountTrue
 Added Matrix.Parse
 MatlabReader/Writer now support multidimensional arrays
 Added QueryTypes.MarginalDividedByPrior to replace InferOutput. IGeneratedAlgorithm no longer implements GetOutputMessage (use Marginal with QueryType instead)
 Infer(x, QueryType) requires x to have the QueryType as an attribute, for nondefault QueryTypes
 WetGrassSprinklerRain now works with VMP
 Multiclass Bayes Point Machine now uses a Range for class indexing is no longer unrolled over classes, allowing a larger numbers of classes
 Matrix.SetToOuterTranspose bugfix (affected all VectorGaussians with dimension >= 40)
 Infer.NET Fun inference: new stronglytyped inference function (infer) directed by userspecified compound distribution type; new Model<A,B> type that avoids model recompilation for changes to input data
 Infer.NET Fun syntax: additional operations for inmodel symmetry breaking and providing range, dimension and sparsity information to Infer.NET when necessary
2.5 Beta 1 (28^{th} September 2012)
 Infer.NET is now released as a zip folder
 Infer.NET now requires .NET framework version 4.
 Added Variable.Repeat blocks to the modelling API. The LDA example now uses them.
 Infer.NET Fun, which allows you to write many models directly in F#, is now included as part of the Infer.NET release.
 New examples: Recommender System, DifficultyAbility, and StudentSkills.
 Some examples that were previously standalone solutions have been moved into the Examples Browser.
 InferenceEngine.ShowFactorGraph shows constant values, among other improvements.
 Removed engine.BrowserMode.
 Added engine.Compiler.UseSerialSchedules option.
 Added engine.Compiler.AddComments option.
 Models undergo additional checks for validity. x.SetTo(y) now gives an error if y has been used in any other expressions.
 The generated class is now marked 'partial'.
 Distributions now implement GetLogAverageOfPower.
 MatlabWriter supports bool[] and int[].
 Distributions can be serialized into XML via DataContractSerializer.
 Matrix.SetToEigenvectorsOfSymmetric can compute eigenvectors and eigenvalues of a symmetric matrix.
 GammaFromShapeAndRate supports a Gammadistributed shape with VMP, and a Gammadistributed rate with EP.
 Variable.Binomial supports a Poissondistributed trialCount. '+' supports Poissondistributed integers.
 Variable.Constrain methods are more efficient and consistent with each other. Variable.ConstrainTrue(x) is now equivalent to Variable.ConstrainEqual(x,true), and similarly for ConstrainFalse, ConstrainPositive, and ConstrainBetween.
 Variable.Subarray is more efficient in certain cases.
 Removed a bug that sometimes caused the compiler to never complete.
 Removed a bug that prevented use of Variable.GetItem on Vectors.
2.4 Beta 3 (11^{th} October 2011)
 Variable.Softmax() now accepts sparse vectors and is more robust.
 Speed and memory improvements to LDA example.
 Improvements to the generated code, especially the messageupdate schedules.
 Improved evidence calculations for TruncatedGaussians.
 Variable.Switch is more efficient when dealing with a large number of cases.
 Variable.Logistic is more robust with ExpectationPropagation.
 GetItems and Subarray now support jagged arrays.
 Infer.NET now checks that observed arrays are the correct length, at the point when the observation is set. This may break some existing user code where observed arrays are set before the array length is set.
 Variable.ForEach(...) supports any number of ranges.
 Variable.Array() has new overloads for making deep jagged VariableArrays.
 Improved handling of deterministic factors in 'if' blocks (fewer spurious AllZeroExceptions are thrown).
 Dirichlet.Uniform(dimension, initialCount) is now called Dirichlet.Symmetric.
 Infer.NET introduction document.
 Infer.NET 101 document which comes with a series of examples.
 DivideMessages option for Shared variables.
 Bayesian PCA and Discrete Bayesian Network examples.
 Improved the Rand.Poisson sampler.
2.4 Beta 2 (17^{th} December 2010)
 EP now uses message division by default, which speeds up many models. To get the old behavior for a particular variable, add the new DivideMessages attribute to the variable.
 Setting variable.ObservedValue to any value will clear cached inference results, even if the variable was already observed to that value.
 Improved efficiency of Gibbs sampling.
 Gibbs sampling works better with nested if statements.
 Improved numerical accuracy of various factors.
 Improved support for TruncatedGaussian distributions.
 Added Rand.NormalBetween for sampling from truncated Gaussians.
 Added WrappedGaussian distribution and Rotate factor.
 Inference is no longer allowed for local variables in a ForEach block (this has caused some minor changes to the Multiclass BPM classifiers).
2.4 Beta 1 (30^{th} October 2010)
 Extensive improvements to the documentation + additional examples.
 Introduction of quality bands for inference components (algorithms, operators, distributions) to make transparent which components are mature/preview/experimental. Quality auditing functions for giving errors or warnings if certain quality levels are not met by all used components.
 New method of fine tuning what variables are inferred using the OptimiseForVariables property on InferenceEngine.
 Preliminary (experimental) support for max product belief propagation in undirected models.
 Added Silverlight version of the Infer.NET runtime to support using precompiled models in Silverlight 3.0 or above.
 Multicore support now uses .NET framework 4.0 support for parallel tasks (to use set engine.Compiler.UseParallelForLoops = true)
 Added experimental support for sparse Gaussian Processes  see Gaussian process classifier for an example.
 Added the DoNotInfer attribute
 Added Compiling and Compiled events to monitor model compilation
 Ability to monitor the progress of inference using the ProgressChanged event on InferenceEngine.
 Added SumWhere factor
 The indexer of a loop can now be accessed using the Index property on a ForEachBlock. Also, loops can now be cloned.
 Accuracy improvements to several factors, including: BernoulliFromLogOdds, DiscreteFromLogProbs, Logistic, Softmax, and Exp.
 Improved efficiency of factors that manipulate Vectors (GetItem, Concat, etc.).
 Many optimisations of the generated code, reducing computational cost and memory consumption. These are controlled by the new OptimiseInferenceCode switch on the model compiler.
 The generated code now follows a different structure, documented in the user guide. Applications which call directly into generated code will need to be changed.
 Reduced memory consumption in the compiler and the generated code. Added engine.Compiler.FreeMemory option.
 Repeated inference on the same model with different observed data is more efficient. Added Update() method to warmstart the fixedpoint iterations.
 Added ability to control the operator search path, which allows selection between alternate implementations of an operator (e.g. with different speed/accuracy characteristics).
 Deterministic variables (e.g. as a result of observations) can now be inferred.
 SparseVector and SparseList classes.
 Support for sparse messages to reduce memory consumption in models with integers variables over large domains.
 Improvements to Gibbs sampling.
 Several new examples including an LDA wrapper with various scalability options.
2.3 Beta 4 (12^{th} November 2009)
 Added SharedVariableArray2D.
 Variable.GammaFromShapeAndScale now supports random parameters.
 Added support for multiplication of a Gaussiandistributed variable with a Gammadistributed or Betadistributed variable.
 Added Variable.Vector for converting random arrays to random Vectors.
 MatlabReader added.
 Improved Gibbs sampling  more models and speed improvements.
 Supports VisualStudio 2010 beta 2 and October 2009 CTP releases of F#, and fixes F# import error for MicrosoftResearch.Compiler.dll
2.3 Beta 3 (4^{th} September 2009)
 Some bug fixes for 2.3 Beta 2.
2.3 Beta 2 (27^{th} August 2009)
 BernoulliFromLogOdds and Logistic now support Expectation Propagation.
 Added plus operator and comparison operators for integer variables.
 Added Concat, Subvector, and GetItem factors for Vector variables.
 DiscreteUniform now allows a random size.
 Observed variables can now be inferred (the result is a point mass distribution on the observed value).
 Changed the order of arguments to Binomial and Multinomial.
 Beta distributions print out differently.
2.3 Beta 1 (3^{rd} August 2009)
 Added Variable.Logistic, Variable.Softmax, Variable.BernoulliFromLogOdds, Variable.DiscreteFromLogProbs, Variable.Binomial, Variable.Multinomial, Variable.AllTrue factors.
 EP evidence is now computed in a different way, which is more numerically stable. This is relevant when implementing new factors or calling operator methods directly. Specifically, the definition of LogEvidenceRatio (the method for computing EP evidence) has changed. However the overall evidence value is the same as before.
 Jagged arrays can now be initialized using InitialiseTo.
 Model is now recompiled when trying to infer a variable not included in an earlier InferAll.
 Improved handling of nested Switch blocks.
 Improved handling of If and Case blocks with nonrandom conditions.
 Better support for SharedVariableArrays and arrays defined by SetTo.
 Can now index 2D arrays by observed variables (both indices must be observed).
 Added Variable.GammaFromShapeAndRate.
 Reduced memory allocation in the generated code. When possible, messages are now allocated once in the Reset() method and reused across calls to Infer.
 Added InferenceEngine.ReturnCopies flag.
 Removed a confusing overload of InferenceEngine.Infer<>
 Improved accuracy of PositiveDefiniteMatrix.SetToInverse. Added LowerTriangularMatrix.SetToInverse, Matrix.SetToOuter(Matrix), Matrix.SetToOuterTranspose(Matrix).
 Experimental multicore support using Parallel Extensions library (to use set engine.Compiler.UseParallelForLoops = true)
 Support for enum types with Variable.EnumDiscrete()
 Some efficiency improvements for If and Switch blocks
 Support for returning arrays of distributions from Infer e.g. Infer<Bernoulli[]>()
 Gibbs sampling. Some factors not yet supported such as gates and array factors.
 F# wrapper  hides some of API complexity, providing distribution and domainspecific Variable and Distribution arrays types.
 IronPython wrapper  hides some of API complexity for IronPython users
 Runs on Linux with Mono
2.2 Beta 2 (7^{th} January 2009)
 Fixed bug in multiplication of a Gamma variable
 Fixed problem with locales which use a comma to represent a decimal point
 Tutorial example for mixture of Gaussians now matches documentation
 Reduced memory consumption when transform browser mode is set to 'never'
 Documented examples using F#, C++/CLI, and IronPython
2.2 Beta 1 (5^{th} December 2008)
Version 2.2.31202 (2^{nd} December 2008)
 Given, Constant and RandomVariable classes are deprecated. Use Variable instead, and set the ObservedValue and IsReadOnly properties as described in the documentation.
 Support for jagged arrays
 Variables must now be defined in all branches of an If or Case block unless they are local to that block
 If, Case, and Switch statements can now take nonrandom conditions
 Generated code is now fully commented
 DLL structure simplified to Infer.Compiler.dll and Infer.Runtime.dll
 Namespace changes:
 Algorithms moved to MicrosoftResearch.Infer namespace
 Many utility classes moved into MicrosoftResearch.Core namespace and subnamespaces (e.g. MicrosoftResearch.Core.Math)
 Many classes have been marked internal
 DistributionArray etc are now for internal use only. They implement IDistribution, and the API provides methods to retrieve .NET arrays of distributions
 Several methods for creating random int/Vector variables now optionally take a range to indicate the cardinality/dimensionality of the variable
 Easier to use generated code in a standalone fashion
 Distribution classes are now serializable
 Shared variable improvements including support for SharedVariableArray
 Support for extracting multiple elements from an array using indexing
 Snapshot of the online documentation is now included in the installed product
 Many bug fixes
Internal version 2.1.30904 (4^{th} September 2008)
 Removed dependence on Reflector.
 Support for 3D random variable arrays.
 InitialiseTo() can take a Given, so that initializers may be changed at runtime.
 Added Variable.Max for taking the maximum of two random doubles.
 Added Variable.Copy, Variable.PointMass, Variable.Uniform for various distributions.
 Added operator overloads for +,,*,/ random variables with constants.
 Added ^ operator for VectorGaussian.
 Added option InferenceEngine.Compiler.WriteSourceFiles=false to prevent writing source files (they are compiled in memory instead).
 Improved accuracy of SetToSum methods.
 Improved accuracy of messagepassing across if/case/switch blocks.
 Expectation Propagation now handles Beta/Dirichlet distributions in a more robust way, reducing the occurrence of ImproperMessageExceptions.
 SetToSum now forces a proper distribution by default for Beta/Dirichlet. Setting the static field AllowImproperSum=true restores the old behavior.
 The order that loop variables appear in array indices can now be different from the nesting order of the loops.
 More fixes to SetTo in if/case/switch blocks.
 Fixed handling of AreEqual factor in VMP.
 Fixed evidence computation for various factors.
 Fixed bugs in scheduling.
 Fixed bug in Rand.Perm.
 Fixed handling of nested if/case blocks.
Internal version 2.1.30523 (23^{rd} May 2008)
 New API for SharedVariables.
 Fixed handling of SetTo in if/case/switch blocks.
 Fixed handling of And and Or factors in VMP.
 Fixed handling of array variables defined inside gates (they were sometimes incorrectly inferred as constant).
 VectorGaussian marginal prototype is now inferred for Factor.VectorGaussian with constant arguments.
 GivenArray.Value and ConstantArray.Value are now IList<T> instead of T[].
 Reduced the occurrence of improper message exceptions during EP.
 InitialiseTo only accepts distribution classes (not arrays as previously).
 Range constructor no longer accepts a name (use the Named method instead).
 Improved handling of boundary cases in Factor.IsBetween.
 Variable.ConstrainBetween is more efficient (has a dedicated operator class).
 Speed ups to DistributionArray
 Changed default GeneratedSource folder to be below the current folder.
 The name of generated classes can now be specified, using the inference engine ModelName property.
 Removed debug messages, and instead made InferenceEngine.ShowProgress default to true (on).
Internal version 2.1.30320 (20^{th} March 2008)
 Proper attribute added to message function parameters which must be proper. Currently, this has the same behaviour as the "SkipIfUniform" attribute.
 Improved handling of corner cases in SetToSum.
 Shared variables work with VMP
 Marginal prototypes are propagated automatically for Factor.GetItem and Factor.GetItems.
 XML code documentation added to install for improved Intellisense
 Some optimisations for message operators
 Improved diagnostic messages during compile
Internal version 2.1.30310 (10^{th} March 2008)
 Increased accuracy in some EP messages
 Improper message exceptions happen less often
 Improved scheduling of VMP
 Fixed indexing of constant/given arrays by random integers
 Fixed click model example
Internal version 2.1.30305 (5^{th} March 2008)
Highlights:  Expectation propagation (EP)
 Variational Message Passing (VMP)
 Belief propagation (sumproduct algorithm) as a special case of EP.
 Exponential family distributions: Gaussian, Gamma, Beta, etc.
 Factors for arithmetic and boolean operations
 Modelling API
 Model compilation for efficient execution
 Consistent operator syntax for message computation
 Plates
 Gates
 Evidence computation
 Many application samples and tutorial examples

false,false,1



