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Abstract

In this paper, we describe a unified prob-
abilistic framework for statistical language
modeling—the latent maximum entropy
principle—which can effectively incorporate
various aspects of natural language, such as
local word interaction, syntactic structure
and semantic document information. Unlike
previous work on maximum entropy methods
for language modeling, which only allow ex-
plicit features to be modeled, our framework
also allows relationships over hidden features
to be captured, resulting in a more expres-
sive language model. We describe efficient
algorithms for marginalization, inference and
normalization in our extended models. We
then present promising experimental results
for our approach on the Wall Street Journal
corpus.

1 Introduction

Statistical language modeling is concerned with de-
termining the probability of naturally occurring word
sequences in a language. Traditionally, the dom-
inant motivation for language modeling has come
from speech recognition, however statistical language
models have recently become more widely used in
many other application areas, such as information re-
trieval, machine translation, optical character recog-
nition, spelling correction, document classification, in-
formation extraction, and bio-informatics.

The goal of language modeling is to predict the proba-
bility of natural word sequences, or more simply, to put
high probability on word sequences that actually oc-
cur (and low probability on word sequences that never
occur). Given a word sequence wyws...wy to be used
as a test corpus, the quality of a language model can

be measured by the empirical perplexity and entropy
scores on this corpus [1]
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The goal is to obtain small values of these measures.

There are various kinds of language models that can
be used to capture different aspects of regularities of
natural language. The simplest and most successful
language models are (1) the Markov chain (n-gram)
source models [16], which are efficient at encoding local
lexical regularities; (2) the structural language model
[5], which effectively exploits relevant syntactic regu-
larities; and (3) the semantic language model [2, 12],
which can exploit document-level semantic regulari-
ties. However each of these language models only aims
at some specific linguistic phenomena. None of them
can simultaneously take into account the lexical infor-
mation inherent in Markov chain models, the hierar-
chical syntactic tree structure in stochastic branching
processes, and the semantic content in bag-of-words
categorical mixture log-linear models—all in a unified
probabilistic framework.

Several techniques for combining language models
have been investigated. The most commonly used
method is simple linear interpolation [5, 11, 15], where
each individual model is trained separately and then
combined by a weighted linear combination, where the
weights are trained using held out data. Even though
this technique is simple and easy to implement, it does
not generally yield effective combinations because the
linear additive form is too blunt to capture subtleties
in each of the component models [15]. Another ap-
proach is based on Jaynes’ maximum entropy (ME)
principle [13]. This approach has several advantages
over other methods for statistical modeling, such as in-
troducing less data fragmentation (as in decision tree
learning), requiring fewer independence assumptions



(as in naive Bayes models), and exploiting a principled
technique for automatic feature weighting. The major
weakness with maximum entropy methods, however,
are that they can only model distributions over ex-
plicitly observed features, whereas in natural language
we encounter hidden semantic [2, 12] and syntactic in-
formation [5] that we do not observe directly.

One way to encode constraints over hidden features
in a maximum entropy model is to first pre-process
the training corpus to obtain explicit values for all
of the hidden features—such as recovering syntactic
structure by running a parser, or recovering semantic
content by using a latent semantic indexer—and then
incorporating statistics over explicitly measured fea-
tures as additional constraints in the model [3, 14, 15].
However, doing so explicitly is not always possible,
and even if attempted, sparse data problems almost al-
ways immediately arise in such complex models. Con-
sequently, the perplexity improvements or word error
rate reductions obtained are often minimal. In this
paper we address the question: is it possible to exploit
the hidden hierarchical structure of natural language
in a maximum entropy method without resorting to
explicit preliminary parsing or semantic analysis?

Recently we proposed a latent maximum entropy
(LME) principle [17, 18] which extends Jaynes’ maxi-
mum entropy principle to incorporate latent variables.
In this paper, we show how our new principle can
be used for statistical language modeling by training
mixtures of exponential families with rich expressive
power. We summarize the LME principle, its problem
formulation, solution and certain convergence proper-
ties. Then we discuss how to use LME for language
modeling. By properly using factorization methods
and exploiting the sparseness of tri-gram features, we
can demonstrate efficient algorithms for feature expec-
tation, inference and normalization. Finally, we apply
this model to the Wall Street Journal data to obtain
experimental results which support the utility of our
approach.

2 Latent Maximum Entropy (LME)

To express a joint probability model, let X € X de-
note the complete data, Y € Y be the observed incom-
plete data and Z € Z be the missing data. That is,
X = (Y, 7). For example, ¥ might be observed natu-
ral language in the form of text, and X might be the
text along with its missing syntactic and semantic in-
formation Z. The goal of maximum entropy is to find
a probability model that matches certain constraints
in the observed data while otherwise maximizing en-
tropy. When the data has both missing and observed
components we extend the maximum entropy principle

to the latent maximum entropy principle as follows.

Latent maximum entropy principle Given fea-
tures f1, ..., fn specifying the properties we would like
to match in the data, select a joint model p, from the
set of possible probability distributions that maximizes
the entropy

max, Zp )logp(z
subject to
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Here p(y) is the empirical distribution of the set of ob-
served components of the training data, and p(z|Y =
y) encodes the hidden dependency structure into the
statistical model.

The LME principle is strictly more general than the
ME principle, and only becomes equivalent to ME in
the special case when the features only depend on the
observable data Y. However, if the features depend on
unobserved components of the data Z then ME only
models the observed part of the data, and LME differs
from ME [18].

Below we will apply the LME principle to the problem
of combining language models. However, we first con-
sider a small improvement that will prove useful. In
many statistical modeling situations, the constraints
used in the maximum entropy principle are subject to
errors due to the empirical data, especially in a very
sparse domain. One way to gain robustness to these
errors is to relax the constraints but add a penalty to
the entropy of the joint model [6, 7].

Regularized LME principle
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Here a = (ay,...,an) and a; is the error for each con-
straint, and U : RV — R is a smoothing convex func-
tion [6, 7] which has minimum at 0. The regularization
term U penalizes deviations in more reliably observed
constraints to a greater degree than deviations in less
reliably observed constraints.



3 A Training Algorithm

We are now left with the problem of solving the con-
strained optimization problem posed in (1) and (2).
Note that due to the nonlinear mapping introduced
by p(z|Y = y) we have nonlinear constraints (2) on
the objective and the feasible set is no longer convex.
So even though the objective function (1) is concave,
no unique optimal solution can be expected. In fact,
minima and saddle points may exist.

To make progress, we first restrict p(z) to be an ex-
ponential model, py(z) = <I>;1 exp (3, Aifi(z)), where
®, is a constant that ensures Y px(z)=1. This as-
sumption makes it possible to formulate an iterative
algorithm for finding feasible solutions (below). Our
algorithmic strategy then is to generate many feasi-
ble candidates (by restarting the iterative procedure
at different initial points), evaluate their entropy and
select the best model. The hardest part of this process
is generating feasible solutions.

The key observation to finding feasible solutions is
to note that the stationary points of the penal-
ized log-likelihood of the observed data, R(A, o) =
Ey p(y) logpa(y) + U*(A), are among the feasible set
of the relaxed constraints; where U* () is the convex
conjugate of U.! That is, to find feasible solutions
it suffices to find models that maximize the penalized
log-likelihood on observed data using standard itera-
tive approaches. We use an iterative procedure, EM-
IS, which employs an EM algorithm [10] as an outer
loop, but uses a nested GIS/IIS algorithm [3, 8, 9] to
perform the internal M step. Assuming the Gaussian
prior, we obtain

EM-IS algorithm

F step:

Compute 2, W) 2. o (2lY =) fily, 2), i=1.N

M step:

Perform K parallel updates of the parameter values
Ai, i = 1...N by iterative scaling (GIS or I11S) as follows
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Figure 1: LME, an EM procedure embedding an itera-
tive scaling loop, where A(AU+s/K) A\(+(s=1)/K) A(5))
is the auxiliary function in IIS, s denotes the index of
one cycle of full parallel update of A;,2 = 1,---, N
and K denotes the number of cycles of full parallel
updates.

(7+s/K)
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where f(z) = Zf\;l fi(z). The value of 6}j+s/K) can
be obtained by bisection line search or solving the non-

linear equation (4) by Newton-Raphson iteration.

The embedded EM-IS training algorithm is illustrated
in Figure 1. A natural interpretation of this iterative
procedure is that, if the right hand side of (2) is con-
stant, then the optimal solution py(z) is a log-linear
model with parameters provided by GIS/IIS. Once we
obtain py we can calculate the value of the right hand
side of (2). If this value matches the value previously
assigned, then by the optimality condition we have
reached a stationary point of the log-likelihood and a
feasible solution of the LME problem; otherwise, we
iterate until the constraints are met.

Theorem 1 The EM-IS algorithm monotonically in-
creases the likelihood function L(X), and all limit
points of any EM-IS sequence {\U+s/K) j > 0}, s =
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Figure 2: Natural language, observed incomplete data
are words, sentences, documents, missing data are syn-
tactic structure at sentence level, semantic content at
document level, where dark nodes denote missing in-
formation.

1...K, belong to the set

r = {)\E%N:aR—(A):0} (5)
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Therefore, EM-1S asymptotically yields feasible solu-
tions to the LME principle for log-linear models [18].

4 LME for Language Modeling

Natural language is a complex, hierarchically orga-
nized code used to represent messages. Simple low
level patterns are combined in a well-defined manner
to form more complex patterns at successively higher
levels. The function of the hierarchy is to constrain the
ways in which the individual low level patterns can be
combined, and build redundancy into the source code
to make it robust to errors made by speakers. As a
result, relatively few primitive patterns can be com-
bined in a multilevel hierarchy to form a rich, robust
information-bearing code. To illustrate, note that a
sequence of words can be viewed as a concatenation
of low level n-grams (Markov chain), while the gener-
ation of such sequences is also governed by a hidden
hierarchical grammar (syntax) and by certain seman-
tic components, such as hidden document topics (Fig-
ure 2). A good language model should therefore be
able to consider all of these information sources simul-
taneously.

The latent maximum entropy principle can be used
to combine different language modeling components
in a principled way. In this section, we describe how
to use the LME principle to combine the tri-gram
Markov model with probabilistic latent semantic anal-
ysis (PLSA) [12] to obtain a richer language model.

Currently almost all maximum entropy language mod-
els use the conditional form first proposed by Brown
et al. [4] for statistical machine translation. The main

reason for using the conditional model is to avoid enu-
merating all possible histories to perform inference.
Here we use the joint probability model, but point out
that once the set of features are selected, the problem
of calculating the needed feature expectations and nor-
malization terms becomes tractable by using proper
factorization methods and exploiting the sparseness of
tri-grams.

4.1 Combining N-gram and PLSA Models

Define the complete data as
z = (W, Wy, Wy, D, T5,T1,To), where Wy, W1, Wy are
the current and two previous words, 15, T1, Ty are the
hidden ‘topic’ values associated with these words, D is
a document identifier, and y = (W5, Wy, Wy, D) is the
observed data. Typically the number of documents,
words in the vocabulary, and latent class variables are
on the order of 100,000, 10,000 and 100, respectively.
A graphical representation of a semantic node inter-
acting with a tri-gram is illustrated in Figure 3.

For the tri-gram portion of the model, all features are
explicitly observed in the training data, and the cor-
responding constraints can be modeled directly as fol-
lows.

> p(@)d(Wo=ws, Wi =w;, Wo=ws) = Y p(d)p(wiw;wk|d)
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These specify the tri-gram, bi-gram and uni-gram con-
straints the model should respect, respectively.

For the semantic (PLSA) portion of the model, the
constraints involve the hidden topic variables T and
can be encoded by the more complex constraints
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where §(.) is 1 if the event is active and zero otherwise.
The first equality (7) imposes the constraints between
the document node and the topic node, and the second



Figure 3: A graphical representation of the seman-
tic tri-gram model, where the curve that connects the
three word nodes together denotes the tri-gram fea-
ture. In this graphical representation, many arcs share
the same parameters.

equality (8) imposes the constraints between the topic
node and words.

We can now learn a probability model that simultane-
ously takes the two information sources into account,
by employing the LME principle to find the log-linear
model py (z) that maximizes entropy subject to satisfy-
ing all of the constraints. This model will encapsulate
the n-gram and semantic models as special cases. Fig-
ure 3 gives a graphical representation of the structure
resulting from satisfying all of the imposed constraints.
Note that many of the components share the same
parameters; namely, (T3, D), (T1, D), and (To, D) are
identical; (Ty, W), (T1, W1), and (To, Wo) are identi-
cal; (Wa, Wh) and (Wi, W) are identical; and (W),
(W1) and (W) are identical.

4.2 Efficient Feature Expectation and
Inference

The computational bottleneck is calculating the fea-
ture expectations and normalization constants needed
to perform inference. Note that the full joint distri-
bution is in the form of a product over exponential
functions of features. The key idea for efficient calcu-
lation is to “push” the sums in as far as possible when
summing (marginalizing) out irrelevant terms. Since
calculating feature expectations has the same compu-
tational cost as normalization [14], we only show how
to do normalization efficiently here. The normalization
factor can be calculated efficiently by sum-product al-
gorithm, that is, summing over all the links at each
time slice and passing through the trellis nodes with
the product of the weight to the ongoing nodes we

Figure 4: Trellis to calculate the normalization factor
and feature expectation. The weight of each link is an
exponentiated version of the corresponding Lagrange
multiplier.
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Simultaneously to obtaining the normalization con-
stant, we can also calculate all of the feature expecta-
tions. For example, the expectation of a given tri-gram
feature w;w;wy can be calculated as
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Figure 4 illustrates a normalization procedure that
LSA with a 3-gram model. The
above the bar are the word vocabulary

incorporates
nodes



{W1,Ws,..Wy} and the nodes below the bar are
the the possible topic set {t1,...tx}. The documents
{d1,...dp} are connected to topic nodes and are rep-
resented horizontally below the bar. Links represent
active features, and the horizontal axis above the bar
is the time axis.

4.3 Computation in Testing

To evaluate the perplexity of our semantic tri-gram
model on the observable portion of the test data, note
that

p(wr,...w1)
L

= Hp(wz|wL...wZ+1)
£=1

L
I > plw,D BTy, o)
{=1D,T5,T1,To

L
= [I >. plw,D T, Ty, Tolwess, wesr)
¢=1D,T3,T,,To

Since our model provides the probability of com-
plete data p(Wy, Wy, Wy, D, T2, T1,Tp) , the condi-
tional probability p(Wo, D, Ty, Th, To|W2, W1) can be
easily obtained by marginalization (and division).

5 Experimental Results and
Discussions

The corpus used to train our model was taken from the
WSJ portion of the NAB corpus and was composed
of about 87,000 documents spanning the years 1987
to 1989, comprising approximately 38 millions words.
The vocabulary was constructed by taking the 20,000
most frequent words of the training data. Another
separate set of data consisting of 325,000 words was
taken from the year 1989 and used for testing.

We perform EM-IS to train our models where we set
the internal IIS loop iterations to be 20, and the outer
EM loop iterations to be 5.

We chose |T| = 125 as number of possible topics.
The baseline tri-gram model with Good-Turing back-
off smoothing has perplexity of 105. In our model, we
fixed the variance of the Gaussian prior o; to be 1.
When only the tri-gram constraints are considered, we
obtain a perplexity of 107. After the PLSA constraints
are added, the perplexity is reduced to 91; comprising
a 13.3% reduction in perplexity from the baseline tri-
gram model.

In [2], Bellegarda built a language model that com-
bined a tri-gram model and an LSA model using an

ad hoc approach. The formula he used to calculate
the perplexity was

pwe|wr...wey1)
p(we|wepowry1)prsal(delwe)

11
> w, P(wi|werawer1)prsalde|we) (11)

where prsa(de|w,) is the probability of current docu-
ment history given current word w,, obtained by the
latent semantic analysis. We calculated the perplex-
ity of his model using the same training data and test
data considered above. The perplexity obtained by
Bellegarda’s model is 97, which is only an 8% reduc-
tion in perplexity compared to the baseline tri-gram
model above. However, if we intentionally emphasize
the LSA portion of Bellegarda’s model by taking its
Tth power, and renormalizing

p(we|wr...we—1)

_ p(welweg2wegr)(prsaldelwe))? (12)
> w; P(Wilweyawetn) (Prsaldelwe))”

we obtain a drastic perplexity reduction. The perplex-
ity achieved in this case is reduced to 82, which is a
remarkable reduction (21% compared to the baseline
tri-gram model).

We are investigating principles for adopting an analo-
gous technique in our LME approach.

6 Conclusion

We have presented a latent maximum entropy prin-
ciple for statistical language modeling. Our LME
method provides a general statistical framework for in-
corporating arbitrary aspects of natural language into
a parametric model. The parameters can be estimated
by combining standard iterative procedures, interac-
tions among various aspects of language can be taken
into account automatically and simultaneously, and
the general model is reduced to a familiar model when
aiming at a specific linguistic phenomenon. We can
demonstrate efficient algorithms for feature expecta-
tion, normalization and inference.

We believe that our preliminary results on the WSJ
corpus are very promising because we have not sig-
nificantly tuned the parameters. We are investigating
techniques for finding the optimal number of clusters
to use in smoothing. Also, we are currently only com-
bining an n-gram model with document semantic in-
formation, and we are now investigating how to effi-
ciently add syntactic information (such as context free
grammatical structure) to this framework and expect
to obtain further improvement.
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