ABSTRACT
Human activity recognition through the wearable sensor will enable a next-generation human-oriented ubiquitous computing. However, most of researches on the activity recognition so far are based on small number of subjects, and non-public data. To overcome the situation, we have formed a consortium named HASC and create corpora for the research community. In HASC Challenge2010, we have made HASC2011corpus with 116 subjects and 4896 accelerometer data. In HASC Challenge 2011, we have gathered 7,668 sensor data with 136 subjects and compose them as HASC2012corpus. In the field of pattern recognition, it is very important to evaluate and to improve the recognition methods by using the same dataset as a common ground. We make these corpora into public for the research community to use it as a common ground of the Human Activity Recognition. We also show several facts and results of obtained from the corpus.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Interaction styles

General Terms
Measurement, Experimentation, Human Factors, Standardization.

Keywords
Activity Recognition, Activity Understandings, Accelerometer, Wearable Sensor, Large Scale Corpus, HASC

1. INTRODUCTION
Most of researches on the human activity recognition so far are based on small number of subjects and lab-created private data[1]. So it is difficult to compare the methods/algorithms across the literatures. To overcome the situation, we have started a project named “HASC Challenge[2]” to collect a large scale human activity corpus. In HASC Challenge 2010, by the collaboration of more than 24 teams, we have gathered 4,897 carefully and precisely labeled accelerometer data with 116 subjects. As a result, we have composed them as HASC2011corpus. We make the HASC2011corpus into public for the research community to use it as a common ground of the Human Activity Recognition. We have continued the data collection effort as HASC Challenge 2011. In HASC Challenge 2011, we have expanded the sensor type and collection types. As a result, we have gathered 7,668 sensor data (not only accelerometer but with gyro, GPS and magnetic field sensor) with 136 subjects and compose them as HASC2012corpus.

In the following, we first explain about HASC Challenge. Then we explain HASC activity data format which enables simple and easy data exchange. We also explain about HASC Logger and HASC Tool[7] which is a basic toolkit for activity recognition research. Then we show the basic information of HASC2011corpus and HASC2012corpus. We also explain the current preliminary findings from the HASC2012corpus about route estimation by the sequence of activity recognition.
parameters can be easily decided. However, our purpose of the corpus gathering is to boost the research of the activity recognition. So fixing the application area is not the solution. In HASC Challenge 2010, as a result of long discussion, we have decided to start gathering a single accelerometer sensor data of simple activities with various kinds of sensors, positions and sampling rates. Also, we restrict activities in 6 types such as stay(standing), walk, jogging, skip, stair-up and stair-down. Restriction of activities is not good for various kinds of applications. However, these activities are inherently core activities (except skip), so it is very important to robustly recognize them in the initial stage. From the taking place of HASC Challenge 2010, we have obtained follows important experiences.

- It is important to have a large number of subjects to obtain a higher accuracy on a user-independent recognition [3].
- Labeling for activities is very important. Especially for the transition between the activities.
- Difference of the placement of sensors and sensors itself have severe effects on recognition accuracy.
- Richer sensor data is required for more accurate recognition.

In HASC Challenge 2011, we extend sensor types from single accelerometer to any sensors which are equipped in the smartphone such as gyroscope, magnetic field sensor and GPS. We also add another type of data collection named "real world activity" data. By using "real world activity" data, we might be possible to test the robustness of the future activity recognition methods.

2.1 Basic Rules of HASC Challenge
For each participants of HASC Challenge, we announced the following issues.

- HASC Challenge is not a contest. It is a "Technology challenge."
- Each participant should gather some activity dataset.
- In HASC Challenge 2010, all of participants should submit at least five subjects with the following “lab-controlled activity”.
 - 5 accelerometer data file of 6 activities(length 20 seconds): stay(standing), walk, jogging, skip, stair-up and stair-down.

- In HASC Challenge 2011, participants can select to gather the above “lab-controlled activity” data or “real-world activity” data.
 - For lab-controlled dataset, we have slightly modified the condition for sequence data. We asked participants to collect more than 300 seconds of sequence data and each activity should be longer than 10 seconds. This is because of difficulty in the recognition of small length activities.
 - For real-world data, we asked participants to collect a data of movement between landmarks such as stations, stores, offices or etc. The activity data should be labeled with activity tags and event tags. Typical length of real-world data is around 300 to 600 seconds.
 - Each participant can use any kind of sensor but it should be available in the market.
 - Activity data must be described in the HASC data format with meta-information.
 - After the submission deadline, each participant will get all the activity data from other participants without label data of the sequence data. They can submit the result of the recognition in the label data format or submit the recognition algorithm.
 - HASC steering member will evaluate the recognition rate.

3. HASC ACTIVITY DATA FORMAT
To share the activity data or processing functions among the researchers and developers, activity data format must be standardized. We have defined the following data format as HASC data format for activity understandings. All of HASC Challenge data are in this format.

3.1 Sensor data (.csv)
We defined sensor data file format as a simple csv format with time stamp and sensor values. For the accelerometer data, it may contain: time stamp, x, y and z axis-acceleration values for each row. Time stamp is in the second time scale with floating point. So any sampling rate data can be stored with this format. Accelerations are in the gravitational acceleration unit (1G = 9.80665m/s2). To indicate the sensor type, we simply add the extension to the file name. For accelerometer, gyroscope, magnetic field sensor, and GPS, we add “-acc”, “-gyro”, “-mag” and “-loc” respectively.

3.2 Meta information format (.meta)
For each sensor data, related information of the subject and the data acquisition condition are important. We defined a meta information file format to record subject’s gender, weight and height, and sensor’s type, sampling rate and position. The style of the format is simple “attribute:value” pair. We add several attributes in HASC Challenge 2011.

3.3 Label data format (.label)
For each continuous activity data, “tag/label” is required to put on the activity time period. We defined a .label data format as a csv format with start-time, end-time and label-name. By using this format, one can easily add any kind of label onto the time-series data. In HASC Challenge 2011, we have employed hierarchical label type. We also introduce the “event” tag which has no duration like “pushing elevator button”, “opening-door”, etc.

4. HASC Logger and HASC Tool
To simplify the data collection using several sensors, we have developed and deployed “HASC Logger” for both iPhone AppStore and Android Market(Fig1, Fig2). HASC Logger has a feature to record several sensor data and send it to PC. It also has a feature to send sensor data using UDP over WiFi in real-time. iPhone version of HASC Logger can record audio with sensor data. This helps labeling the data. We have also developed a PC
tool named “HASC Tool (Fig 3)” By using HASC Tool, one can easily handle the huge number of activity data. HASC Tool has several visualization features such as raw-signal, labeled signal, and spectrogram. It is fully conformed to HASC Activity Data Format, one can easily view the activity sensing data using graph tool.

5. HASC2011corpus and HASC2012corpus

As a result of HASC Challenge 2010, we have composed HASC2011corpus[6] (Table 1). We have already made the HASC2011corpus public through our web site[8]. For the benefit of participants in HASC Challenge, we do not make the corpus into public just after the challenge. Only participants can obtain the corpus just after the challenge. However, if you want to obtain the corpus, at any time, you can commit the same portion of dataset, and then you will get the latest corpus. As a result of HASC Challenge 2011, we have constructed a corpus named HASC2012corpus. HASC2012corpus consists of 136 subjects data with 7,668 sensor data(Table 2). HASC2012corpus also include various types of sensor devices. Maker of sensors are shown in Table 3.

6. APPLICATION OF THE CORPUS

In HASC Challenge 2011, we have collected “real-world activity” data for the commuting task between landmarks. In HASC2012corpus, we have 40 traces of commuting activity. In this section, we will propose a new area of research using this kind of sensor data of moving human.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Number of Subjects</th>
<th>Number of Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>102</td>
<td>4464</td>
</tr>
<tr>
<td>Female</td>
<td>14</td>
<td>434</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>4898</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of Subjects</th>
<th>Sensor Types</th>
<th>Number of Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab controlled 6 type</td>
<td>96 (Male 85, Female 11)</td>
<td>ACC</td>
<td>4495</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GYRO</td>
<td>2521</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAG</td>
<td>310</td>
</tr>
<tr>
<td>RealWorld</td>
<td>40 (Male 34, Female 6)</td>
<td>ACC</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GYRO</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAG</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>136</td>
<td>7668</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensor Maker</th>
<th>Number of Files</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR / WAA-00X</td>
<td>1854</td>
<td>40.9</td>
</tr>
<tr>
<td>Apple / iPhone, iPodTouch</td>
<td>1759</td>
<td>38.8</td>
</tr>
<tr>
<td>Samsung</td>
<td>662</td>
<td>14.6</td>
</tr>
<tr>
<td>HTC</td>
<td>118</td>
<td>2.6</td>
</tr>
<tr>
<td>Sharp</td>
<td>95</td>
<td>2.1</td>
</tr>
<tr>
<td>Sony</td>
<td>32</td>
<td>0.7</td>
</tr>
<tr>
<td>LG</td>
<td>15</td>
<td>0.3</td>
</tr>
</tbody>
</table>
6.1 Similarity of the Activity Sequence

By using “commuting activity data”, we think it might be possible to estimate the user’s route, location or direction just using activity sensor data. Figure 4 shows a different subject’s activity sequence of the same route. We ordered subjects A and B to move through the same commuting route between the exit of subway to the office at the 5th floor. The activity sequences of them are labeled by hand. You can see, there are similarities between two activity sequences. If it is possible to recognize these activity sequences using activity recognition technology, we can calculate “similarity” between different activity sequences. Especially, if a sequence contains elevator, escalator or stairs, these activities make the sequence more unique. By using some kind of matching technology, we can match activity records of unknown route with route-known activity sequences. The matching is like a “video clip search”. If we can find out the similar route, that means we can estimate the current user’s route or location only from the sensing data.

If we can successfully develop this “route estimation technology from sensing data”, we can improve “life logging”, “context aware services”, or “location aware services”.

6.2 DP Matching of Activity Sequence

In this section, we just show the current status of our progress on this area. To estimate the similarity between the activity sequences, we employ DP-Matching. We also utilize the cost function which is related with recognition accuracy. By using DP-matching with the cost function, we can define the similarity between the sequences.

First, we compare the recognition result of the sequences with the hand-defined label. However, recognition rate of the current system[4] only performs around 60% in this real world activity data. In Figure 5, we show the recognition result of Subject B’s activities of Figure 4. In Figure 4, escalator and elevator are labeled collect. However, current our recognizer cannot robustly recognize them. Also in Figure 4, not of all sensor signals are labeled with activities. Because there is transition between the activities, it is not clear that how to label these transitions. So, the matching between hand-defined labels with machine recognized labels does not work well.

Second, we change our mind from using hand-labeled activity sequences to machine recognized label. We collect another activity dataset which contains activity sequences of 5 subjects (A-E) with 3 routes. All of the sequences are labeled with recognition engine and then calculate the similarity between each of them.

Figure 7 shows a table of similarity (smaller is more similar) between different sequences. From this table, you can read that in most of the routes, we can find other sequence of same route by other subjects. This result suggests that if we have large scale data of activity sequences with route information, we can estimate the user’s route.

7. CONCLUSION

We have made a basic step for improving human activity recognition technology. Currently, we mostly have a dataset for simple activities. However, we believe even these simple activity data can improve the recognition technology. By exploring the corpus, there will be more rich results.

We also show a sample application of HASC2012 corpus. By using real world activity data, we start a new research about “estimation of user’s route by sensing data”. This is a new application of activity recognition technology. We think there will be more spaces of research in this area.

Additionally, we have obtained a grant for gathering large scale activity dataset, so we can continue to gather human activity corpus to make and improve the common ground.
8. ACKNOWLEDGMENTS
This work is partly supported by KAKENHI(23240014), Grant-in-Aid for Scientific Research(A) and JST CREST Kashin-Free project. We all have great thanks to HASC Challenge participants.

9. REFERENCES