EXPLORING CHINESE CALLIGRAPHY AND PAINTING WITH A DRAWING ROBOT

Y. Yam

Presentation at
Microsoft Research Asia Workshop on E-Heritage 2008
July 1-2, Beijing, China

Intelligent Control Systems Laboratory
Department of Mechanical and Automation Engineering
The Chinese University of Hong Kong
Acknowledgments

Dr. Ka Wah Lo
Mr. Ka Wai Kwok
Mr. Josh Hiu Man Lam
Technology and Art

- Technology and art go hands in hands
- New horizon/medium to explore and develop new art forms
- Robot art powered by the great advances in computer/electronics/robotics technologies
- Robot art “inspired” by sound, light and more
- Artbot - Yearly event for art-producing robots since 2003
Examples of Robot Drawing

- AARON (by Harold Cohen)
 - Evolving, rule-based/AI program since 1974
 - From few rules/simple shapes to specific knowledge-based rules/complex figures
 - Works exhibited in various museums
- Humanoid Robot producing human portraits by S.Calinon
The ICSL Drawing Robot

- Focus on studying Chinese calligraphy/painting
- 5 DOF pen movement (x, y, z, z-rotation, pitching angle)
- Robot gripper pen holder
- DOFs independently commanded
- High repeatability and accuracy
- Drawing size: 0.8 m x 0.7m (A1 size)
- Camera system for visual feedback
Replicating Line Drawings

- Automated process with (x,y) DOF:
 Original → Skeletonized version → Replication
• Example: A work by Su Renshan “穉仁山”
Original

Replication
Acquisition of Human Hand Motion

- Writing Tablet and Pen system
 - Intuos©2 12” by 12”
 - Record pen tip motion (x, y, some z and pen orientation)
 - Capture hand drawing motions
- Robot retraces positions in recording order

... on Writing Tablet

... produced on paper
• Example of capturing human handwriting

• Enhanced setup to capture hand calligraphic motions
Iterative Corrective Drawing

- Errors in executed drawing due to misinterpretations
- Improvement by overlapping drawing with original to yield corrective actions for next execution
- Video camera (Sony EVI-D30/D31 Pan/Tilt/Zoom) captures executed drawing at angle
- Homography transformation needed to convert angled image to planar view for comparison
• Homography transformation
 – Determined by minimum 4 correspondence pairs
 – Overlapping error reduced by more correspondences via, e.g., SVD technique
 – Process highly sensitive to exact correspondence
 – Manual selection tedious and difficult
 – Genetic Algorithm (GA)-based selection yields high overlapping performance
 – Applicable to image mosaics
• Homography transformation results

Executed work captured

Original

Overlapping performance: Manual selection

Overlapping performance: GA-based
• Iterative Corrective Drawing
 - Comparison of executed drawing and original yields corrective actions to improve next drawing
 - Identification/correction of branch point errors:

Branch point pixels showing no error

Branch point pixels showing error

Identified branch point errors in 1st executed drawing

Next executed drawing
- Tuning of stroke thickness via varying z-depth:

Original image

First execution

Second execution
Full stroke Calligraphy

- Require more than x and y DOFs
- Brush stroke generation -- commands for x, y, z DOFs
- GA-based algorithm with Bézier curve representation and brush footprints
- Case study with tear drop brush footprint assuming size proportional to z-depth

Target stroke

GA-results

Gen=1
Gen=11
Gen=21
Gen=81
Gen=151
• Application to actual character

Chinese character “天” from Lan ting xu “蘭亭序” by Wang Xizhi “王羲之

Manual decomposition into 4 strokes
- GA-Based stroke generation

Animation result
- Overall results of GA-based stroke generation for “天”

Original

GA-generated with tear-shaped footprint
Experimental Acquisition of Brush Footprint

• Special setup with glass container and camera looking upwards
• Camera captures movement of brush footprint under command
• Video segmentation yields time-tagged footprints
• Enable preliminary correlation of footprint to input commands
• Union of footprints yields resultant line stroke

- Footprint size varying with z-depth

<table>
<thead>
<tr>
<th>t=0</th>
<th>t=376</th>
<th>t=817</th>
<th>t=1254</th>
<th>t=1690</th>
<th>t=2129</th>
<th>t=2626 (ms)</th>
</tr>
</thead>
</table>

- z=-8
- z=-6.8
- z=-5.8
- z=-4.8
- z=-3.8
- z=-2.8 (mm)
• Character “威” by Gan Shinkei (顔真卿) from the poem of General Hai (裴將軍詩)
• GA-based stroke generation using preliminary footprint correlation results
Automated Character Decomposition

- Skeletonization technique built upon Delaunay Triangulation

Original Modified Delaunay Triangulation Internal Edge Refinement Resulting Skeletonization

- Preparation to decomposing “simple” painting

- Demonstration on writing of Bada Shanren
Other Possibilities

• Henri Matisse’s “Woman’s profile-left”

• Contour surface painting

Original
Simulated coordinates on semi-sphere
Picture drawn on half-sphere

Replicating Matisse
• Imitating Chuck Close

Photo of Chuck Close

Portrait of composer Philip Glass in 1977 by Chuck Close

Style of Chuck Close

Works from our machine
• Rendition by randomization
Conclusions

• Drawing platform to study Chinese calligraphy and painting
• Preliminary capabilities and demonstrations
• Future works: hardware upgrades, footprint modeling, full stroke execution, automated decomposition, skill acquisition/characterization/rendition, execution ordering, and more
• Cultural Engineering in CUHK
• Science and engineering methods to art
 - Artworks co-produced by human and robot
 - Preservation of artistic “skills”
 - Characterization and rendition of artistic style(s)
 - An “near” 齊白石 original in every home?
 - Characterization of the artistic process
 - How far can we go?