Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Auto Collage


AutoCollage is now available as a product from Microsoft Research Cambridge. Click here to get a free trial version.

Automatic collage of a photo collection

AutoCollage is an automatic procedure for constructing a visually appealing collage from a collection of input images. The aim is that the resulting collage should be representative of the collection, summarising its main themes. It is also assembled largely seamlessly, using graph-cut, Poisson blending of alpha-masks, to hide the joins between input images. This work makes several new contributions. Firstly, we show how energy terms can be included that: encourage the selection of a representative set of images; that are sensitive to particular object classes; that encourage a spatially efficient and seamless layout. Secondly the resulting optimization poses a search problem that, on the face of it, is computationally infeasible. Rather than attempt an expensive, integrated optimization procedure, we have developed a sequence of optimization steps, from static ranking of images, through region of interest optimization, optimal packing by constraint satisfaction, and lastly graph-cut alpha-expansion. To illustrate the power of AutoCollage, we have used it to create collages of many home photo sets; we also conducted a user study in which AutoCollage outperformed competitive methods.

Please download: Video, User StudySiggraph talk (ppt) 



    • Carsten Rother, Lucas Bordeaux, Youssef Hamadi, and Andrew Blake, AutoCollage, in ACM Transactions on Graphics (SIGGRAPH), August 2006.


    • Carsten Rother, Sanjiv Kumar, Vladimir Kolmogorov, and Andrew Blake, Digital Tapestry, in Proc. IEEE Computer Vision and Pattern Recognition (CVPR), January 2005.