Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Solutions to exercises in the book

Decision Forests in Computer Vision and Medical Image Analysis

A. Criminisi and J. Shotton

Springer 2013

 

Chapter 4: Classification Forests

  • Excercise 4.1
sw clas exp1_n2.txt /d 2 /t 8  sw clas exp1_n2.txt /d 2 /t 200 /split linear 

 

Using many trees and linear splits reduces artifacts.

 

  • Excercise 4.2
sw clas exp1_n4.txt /d 3 /t 200 /padx 2 /pady 2 sw clas exp1_n4.txt /d 3 /t 200 /padx 2 /pady 2 /split linear 

 

 

The quality of the uncertainty away from training data is affected by the type of split function (weak learner).

 

  • Excercise 4.3
sw clas exp5_n2.txt /d 6 /t 200  sw clas exp5_n2.txt /d 6 /t 200 /split linear 

 

Using linear splits produces a possibly better separating surfaces.

 

  • Excercise 4.4
sw clas exp5_n4.txt /d 8 /t 200 /split linear  sw clas exp5_n4.txt /d 6 /t 200 /split linear 

 

 

Reducing the tree depth may cause underfitting and lower confidence.

 

  • Excercise 4.5
sw clas exp5_n4.txt /d 8 /t 400 /f 500 /split linear  sw clas exp5_n4.txt /d 8 /t 400 /f 3 /split linear 

 

 

Increasing randomness may reduce overall prediction confidence.

 

Chapter 5: Regression Forests

  • Excercise 5.1
sw regression exp2.txt /d 2 /t 100  sw regression exp2.txt /d 6 /t 100 

 

 

Large tree depth may lead to overfitting. 

 

  • Excercise 5.2
sw regression exp3.txt /d 2 /t 400  sw regression exp4.txt /d 2 /t 400 

 

 

Larger training noise yields larger prediction uncertainty (wider pink region).

 

 

  • Excercise 5.3
sw regression exp7.txt /d 4 /t 200  sw regression exp8.txt /d 4 /t 200 

 

 

sw regression exp9.txt /d 4 /t 200  sw regression exp10.txt /d 4 /t 200 

 

 

Non-linear curve fitting in diverse examples. Note the relatively smooth interpolation and extrapolation behaviour. 

 

  • Excercise 5.4
sw regression exp11.txt /d 4 /t 200  sw regression exp11.txt /d 6 /t 200  

 

 

Single function regression does not capture the inherently ambiguous central region. But at least it returns an associated high uncertainty.

 

Chapter 6: Density Forests

  • Excercise 6.1
sw density exp1.txt /d 2 /t 3  sw density exp1.txt /d 4 /t 3 

 

 

Too deep trees may cause overfitting. 

 

  • Excercise 6.2
sw density exp3.txt /d 4 /t 300  sw density exp3.txt /d 6 /t 300 

 

 

Too deep trees may cause overfitting.  

 

  • Excercise 6.3
sw density exp7.txt /d 3 /t 300  sw density exp7.txt /d 5 /t 300 

 

 

Too deep trees may cause overfitting.  

 

  • Excercise 6.4
sw density exp4.txt /d 3 /t 300  sw density exp4.txt /d 5 /t 300 

 

 

Too deep trees may cause overfitting. Some of the visible streaky artifacts are due to the use of axis-aligned weak learners. 

 

Chapter 8: Semi-supervised Classification Forests

  • Excercise 8.1
sw ssclas exp1.txt /d 5 /t 100  sw ssclas exp1.txt /d 5 /t 1 

 

 

Note the larger uncertainty in the central region (left image). A single tree is always over-confident. 

 

  • Excercise 8.2
sw ssclas exp1.txt /d 5 /t 200 /split linear  sw ssclas exp4.txt /d 5 /t 200 /split linear 

 

 

Adding further supervised data in the central region helps increase the prediction confidence .

 

  • Excercise 8.3
sw ssclas exp3.txt /d 5 /t 200 /split linear  sw ssclas exp3.txt /d 6 /t 200 /split linear 

 

 

Confidence decreases with training noise and increases with tree depth.

 

  • Excercise 8.4
sw ssclas exp5.txt /d 5 /t 200 /split linear  sw ssclas exp5.txt /d 5 /t 1 /split linear  

 

 

Single trees are over-confident. Using many random forests produces smooth uncertainty in the transition regions.

 

  • Excercise 8.5
sw ssclas exp9.txt /d 10 /t 200 /a 2 /split linear  sw ssclas exp10.txt /d 10 /t 200 /a 2 /split linear 

 

 

Adding the amount of supervision in regions of low confidence increases the prediction accuracy and the overall confidence.