Multidimensional Mining of Large-Scale Search Logs: A Topic-Concept Cube Approach

Dongyeop Kang{sup1} Daxin Jiang{sup2} Jian Pei{sup3} Zhen Liao{sup4} Xiaohui Sun{sup2} Ho-Jin Choi{sup1} Hang Li{sup2}

{sup1}Korea Advanced Institute of Science and Technology {sup2}Microsoft Research Asia {sup3}Simon Fraser University {sup4}Nankai University
Email: {sup1}{dykang.hojinc}@kaist.ac.kr {sup2}{djiang, xiaos, hangli}@microsoft.com {sup3}jpei@cs.sfu.ca {sup4}liaozhen@mail.nankai.edu.cn

ABSTRACT
In addition to search queries and the corresponding click-through information, search engine logs record multidimensional information about user search activities, such as search time, location, vertical, and search device. Multidimensional mining of search logs can provide novel insights and useful knowledge for both search engine users and developers. In this paper, we describe our topic-concept cube project, which addresses the business need of supporting multidimensional mining of search logs effectively and efficiently. We answer several challenges. First of all, search queries and click-through data are well recognized sparse, and thus have to be aggregated properly for effective analysis. At the same time, there is often a gap between the topic hierarchies in multidimensional aggregate analysis and queries in search logs. To address those two challenges, we develop a novel topic-concept model which learns a hierarchy of concepts and topics automatically from search logs. Enabled by the topic-concept model, we construct a topic-concept cube which supports online multidimensional mining of search log data. A distinct feature of our approach is that, in addition to the standard dimensions such as time and location, our topic-concept cube has a dimension of topics and concepts, which substantially facilitates the analysis of log data. To handle a huge amount of log data, we develop distributed algorithms for learning model parameters efficiently. We also devise approaches for computing a topic-concept cube. We report an empirical study verifying the effectiveness and efficiency of our approach on a real data set of 1.96 billion queries and 2.73 billion clicks.

1. INTRODUCTION
Search logs in search engines record rich information about user search activities. In addition to search queries and the corresponding click-through information, the related information is also recorded on multiple attributes, such as search time, location, vertical, and search device. Multidimensional mining of such rich search logs can provide novel insights and useful knowledge for both search engine users and developers. As a concrete motivation example, let us consider the following two multidimensional analysis tasks.

A multidimensional lookup (lookup for short) specifies a subset of user queries and clicks using multidimensional constraints such as time, location and general topics, and requests for the aggregation of the user search activities. For example, by looking up "the top-5 electronics that were most popularly searched by the users in the US in December, 2009", a business analyst can know the common interests of search engine users on topic "Electronics". Moreover, search engine developers can use the results from the lookup to improve query suggestion, document ranking, and sponsored search. Multidimensional lookups can be extended in many ways to achieve advanced business intelligence analysis. For example, using multiple lookups with different multidimensional constraints, one may compare the major interests about electronics from users in different regions such as the US, Asia, and Europe.

A multidimensional reverse lookup (reverse lookup for short) is concerned about the multidimensional group-bys where one specific object is intensively queried. For example, using a reverse lookup "What are the group-bys in time and region where Apple iPad was popularly searched for?", an iPad accessory manufacturer can find the regions where the accessories may have a good market. Using the results from the reverse lookup, a search engine can improve its service by, for example, locality-sensitive search. Again, reverse lookups can be used to compose advanced business intelligence analysis. For example, by organizing the results from the reverse lookup about iPad, one may keep track of how iPad becomes popular in time and in region, and also compare the trend of iPad with those of iPod and iPhone. This is interesting to both business parties and users.

As search engines have accumulated rich log data, it becomes more and more important to develop a service which supports multidimensional mining of search logs effectively and efficiently. To answer multidimensional analytical queries online, a data warehousing approach is a natural choice, which pre-computes all multidimensional aggregates offline. However, traditional data warehouse approaches only explore a series of statistical aggregates such as MIN, MAX, and AVG; they cannot summarize the semantic information of user queries and clicks. In particular, multidimensional analysis on search log data presents two special challenges.

Challenge 1: sparseness of queries in log data. Queries in search engine logs are usually very sparse, since users may formulate different queries for the same information need [8]. For example, for search for Apple iPad, users may issue queries such as "ipad", "apple ipad", "ipad 32g", "i pad apple", and so on. Aggregating only on individual queries cannot summarize user information needs recorded...
in logs comprehensively. For example, when a business analyst asks for “the top-5 electronics that were most popularly searched by the users in the US in December, 2009”, a naïve method may simply count the frequency of the queries in the topic of “Electronics” and return the top-5 most frequently asked queries. Due to the sparseness of queries in the logs, the analyst may get an answer with many redundant queries, such as the one shown in Table 1(a). Instead, if we can summarize the various query formulations of the same information need and provide non-duplicate answers (e.g., Table 1(b)), the user experience can be improved greatly.

Similarly, in reverse lookup, when an iPad accessory manufacturer asks the question “What are the group-bys in time and region where Apple iPad was popularly searched for?”, the system should consider not only aggregates of the query “Apple iPad” but also its various formulations. To address the sparseness of log data, we have to aggregate queries and click-through data in logs.

Challenge 2: mismatching between topic hierarchies used in analytics and learned from log data.

More often than not, people use different topic hierarchies in searching detailed information and summarizing analytic information. For example, when users search electronics on the web, often the queries are about specific products, brand names, or features. A query topic hierarchy automatically learned from log data in a data-driven way depends on the distribution and occurrences of such queries. “Apple products” may be a popular topic. When an analyst explores a huge amount of log data, she may bear in her mind a product taxonomy (e.g., a well adopted ontology), such as TV & video, audio, mobile phones, cameras & camcorders, computers, and so on being the first level categories. The analytic topic hierarchy may be very different from the query topic hierarchy learned from log data. For example, the “Apple products” in the query topic hierarchy corresponds to multiple topics in the analytic topic hierarchy. This mismatching in topic hierarchies is partly due to the different information needs in web search and web log data analysis. Web searches often opt for detailed information, while web log analysis usually tries to summarize and characterize popular user behavior patterns. To bridge the gap, we need to map the aggregates from logs to an analytic topic hierarchy.

In this paper, we describe our topic-concept cube project which builds a multidimensional service on search log data. In this project, we answer a few challenges such as the two just mentioned, and make the following contributions.

First, we tackle the sparseness of queries in logs and the gap between concept taxonomy in analytics and queries in logs by a novel concept-topic model. Figure 1 illustrates our ideas. We first mine click-through information in search logs and group similar queries into concepts. Intuitively, users with the same information need tend to click on the same URLs. Therefore, various query formulations, for example, of Apple iPad, such as “iPad”, “apple ipad”, “ipad 32g”, and “ipad apple” can be grouped into the same concept since all of them lead to clicks on the web page www.apple.com/ipad. More interestingly, some misspelled queries, such as “apple ipda” and “apple ipade”, can also be clustered into this concept, since they also lead to clicks on the ipad page. Once we summarize queries and clicks into concepts, we will answer lookups and reverse lookups by concepts instead of individual queries. For each concept, we use the most frequently asked query as the representative of the concept. In this way, we can effectively avoid redundant queries in lookup answers. At the same time, we can effectively cover all relevant queries in reverse lookup answers.

Our concept-topic model further maps concepts to topics in a given taxonomy, which is essentially a query classification problem. For example, suppose a concept consists of queries “apple ipad”, “ipad 32g”, etc. we want to classify them into the topic “Electronics”. Compared with classifying individual queries to topics, mapping concepts has several advantages. For example, for a misspelled query “apple ipda”, the classification problem becomes much easier once we know this query belongs to a concept which also contains other queries such as “apple ipad”. Moreover, through the content of the web pages that are commonly clicked as answers to the queries in the concept, we may further enrich the features to classify “apple ipda”.

Our concept-topic model provides the “semantic” aggregates for search log data. Those concepts and topics not only provide us a meaningful way to answer lookups and reverse lookups, but also serve as an important dimension for multidimensional analysis and exploration.

Second, to handle large volumes of search log data, which may contain billions of queries and clicks, we develop distributed algorithms to learn the topic-concept models efficiently. In particular, we develop a strategy to initialize the model parameters such that each machine only needs to hold a subset of parameters much smaller than the whole set.

Third, to serve online multidimensional mining of search log data, we build a topic-concept cube. In addition to the standard dimensions such as time and location, a topic-concept cube has a dimension of topics and concepts. We devise effective approaches for computing a topic-concept cube system. In particular, queries are assigned to a hierarchy of concepts and topics in the materialization of the cube.

Finally, we conduct extensive experiments on a real log data set containing 1.96 billion queries and 2.73 billion clicks. We examine the effectiveness of the topic-concept model as well as the efficiency and scalability of our training algorithms. We also demonstrate several concrete examples of lookups and reverse lookups answered by our topic-concept cube system. The experimental results clearly show that our approach is effective and efficient.

The rest of the paper is organized as follows. We review
the related work in Section 2, and present the framework of our system in Section 3. We describe the topic-concept model in Section 4, and develop the distributed algorithms for learning the topic-concept model from large-scale log data in Section 5. Section 6 discusses our approaches to computing the topic-concept cube. We report the experimental results in Section 7, and conclude the paper in section 8.

2. RELATED WORK

Supporting multidimensional analysis of large-scale search log data online is a new problem. To the best of our knowledge, the most related work to our project is a query traffic analysis service provided by a major commercial search engine\(^1\). The service allows users to look up and compare the hottest queries in specified time ranges, regions, verticals, and topics. However, the service organizes the user interests at only two levels: the lower individual query level containing individual queries, and the higher topic level consisting of 27 topics such as “Health” and “Entertainment”.

As will be illustrated in our experiment results, using only 27 topics seems insufficient to summarize user interests from time to time. Instead, a richer hierarchical structure of topics learned from search logs, as implemented in our project, is more effective in multidimensional analysis. For example, after browsing the hottest queries in topic “Entertainment”, a user may want to drill down to a subttopic “Entertainment/Film”. The current two layer structure in the existing project can only provide limited analysis power.

Moreover, using individual queries to represent user interests seems ineffective. It is well recognized that users may formulate various queries for the same information need. Therefore, the search log data at the individual query level may be sparse. For example, the system returns queries “games”, “game”, “games online”, and “free games” as the 1st, 2nd, 7th, and 8th hottest queries, respectively, on topic “Game” in the U.S. Clearly, those queries carry similar information needs. To make the analysis more effective, as achieved by the topic-concept model in our project, we need to summarize similar queries into concepts and represent user interests by concepts instead of individual queries.

To a broader extent, our project is related to the previous studies on search query traffic patterns, user interest summarization, and data cube computation.

Several previous studies explored the patterns of query traffic with respect to various aspects, such as time, locations, and search devices. For example, Beitzel et al. [7] investigated how the web query traffic varied hourly. Backstrom et al. [4] reported a correlation between the locations referred in queries and the geographic focus of the users who issued those queries. Kamvar et al. [16] presented a log-based comparison on the distribution and variability of search tasks that users performed from three platforms, namely computers, iPhones, and conventional mobile phones. However, those studies mainly focused on the general trends of user query traffic without mining user interests from the log data.

Previous approaches to summarizing user search queries can be divided into two categories: the clustering approaches and the categorization approaches. A clustering approach groups similar queries and URLs in an unsupervised way. For example, Zhao et al. [20] identified events in a time-series of click-through bipartites derived from search logs. Each event consists of a set of queries and clicked URLs.

\(^1\)Due to our company policy, we do not reveal the name of the search engine mentioned here.

which evolve synchronously along the time-series. In [5, 6, 8, 18], the authors clustered the click-through bipartites and grouped similar queries into concepts. A categorization approach classifies queries into a set of pre-defined topics in a supervised way. For example, Shen et al. [17] leveraged the search results returned by a search engine and converted the query categorization problem into a text categorization problem. Both the clustering and categorization approaches are effective to summarize user interests into events, concepts, or topics. However, they do not consider how the interests vary with respect to various dimensions such as time and locations. Consequently, those methods cannot be directly used to support lookups and reverse lookups as well as advanced online multidimensional exploration.

Grey et al. [12] developed data cubes as the core of data warehouses and OLAP systems. A data cube contains aggregated numeric measures with respect to group-bys of dimensions. Zhang et al. [19] proposed a topic cube which extends the traditional data cube with an extra hierarchy of topics. Each cell in the cube stores the parameters learned from a topic modeling process. Users can apply the OLAP operations such as roll-up and drill-down along both standard dimensions and the topic dimension. The system was built on a single machine. There are several critical differences between our topic-concept cube and the topic cube. First of all, the topic model pLSA [13] applied in [19] targets at modeling documents, which involves only two types of variables, namely the terms as observed variables and the topics as hidden variables. However, to summarize the common interests in search log data, we have to consider more variables, especially, queries and clicked URLs as observed variables, and concepts and topics as hidden variables. Therefore, the traditional pLSA model cannot be applied in our project. Consequently, the methods to materialize our topic-concept cubes are very different from those to materialize the topic cubes. Finally, we reported an empirical study on a much larger set of real data, containing billions of queries and clicks, and processed in a distributed environment.

3. OUR FRAMEWORK

When a user raises a query to a search engine, a set of URLs are returned by the search engine as the search results. The user may browse the snippets of the top search results and selectively click on some of them. A search log can be regarded as a sequence of query-and-click events by users. For each event, a search engine may record the type and content of the event as well as some other information such as the time stamp, location, and the device associated with the event. Table 2 shows a small segment of a search log.

Some dimensions of the search events have a hierarchical structure. For example, the location dimension can be organized into levels of country → state → city, and the time dimension can be represented at levels of year → month → day → hour. Therefore, the multi-dimensional, hierarchical log data can naturally be organized into a raw log data

<table>
<thead>
<tr>
<th>Uid</th>
<th>Time Stamp</th>
<th>Location</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>100605110843</td>
<td>Seattle, WA, US</td>
<td>Query</td>
<td>wsdm2011</td>
</tr>
<tr>
<td>U2</td>
<td>100605110843</td>
<td>Vancouver, BC, CA</td>
<td>Query</td>
<td>you tube</td>
</tr>
<tr>
<td></td>
<td>100605110846</td>
<td>Seattle, WA, US</td>
<td>Click</td>
<td>wsdm2011.org</td>
</tr>
</tbody>
</table>

Table 2: A search log as a stream of query and click events with multidimensional information.
cube [12], where each cell is a group-by using the dimensions. For example, a cell may contain all query and click events of time “February, 2010” and location “Washington State”.

We can aggregate the query and click events in a cell and derive a click-through bipartite, where each query node corresponds to a unique query in the cell and each URL node corresponds to a unique URL, as demonstrated in Figure 2(a). An edge e_{ij} is created between query node q_i and URL node u_j if u_j is a clicked URL of q_i. The weight w_{ij} of edge e_{ij} is the total number of times when u_j is a clicked result of q_i among all events in the cell.

A click-through bipartite can be represented as a query-URL matrix (QU-matrix for short), where each row corresponds to a query node q_i and each column corresponds to a URL node u_j. The value of entry n_{ij} is simply the weight w_{ij} between q_i and u_j, as shown in Figure 2(b).

The QU-matrix at a cell is often sparse. Moreover, QU-matrix represents information at the level of individual queries and URLs. As discussed before, we need to summarize and aggregate the information in a QU-matrix to facilitate online multidimensional analysis. This will be achieved by the topic-concept model to be developed in Section 4.

Figure 3 shows the framework of our system. In the offline stage, we first form a raw log data cube by partitioning the search log data along various dimensions and at different levels. For each cell of the raw log data cube, we construct a click-through bipartite and derive the QU-matrix. Then, we materialize the cube by learning topic-concept models which summarize the distributions of topics and concepts on the QU-matrix for each cell. The resulting data cube is called the topic-concept cube. In the online stage, we use the learned model parameters to support multidimensional lookups, reverse lookups, as well as advanced analytical explorations.

4. Topic-Concept Model

We propose a novel topic-concept model (TC-model for short), a graphical model as shown in Figure 4, to describe the generation process of a QU-matrix. Essentially, we assume that a user bears some search intent in mind when interacting with a search engine. The search intent belongs to certain topics and focuses on several specific concepts. Based on the search intent, the user formulates queries and selectively clicks on search results.

From the search log data, we can observe user queries q and clicks u. Following the convention of graphical models, these two observable variables are represented by black circles in Figure 4. Since user search intents cannot be observed, the topics t and concepts c are latent variables, which are represented by white circles.

Let Q and U be the sets of unique queries and unique URLs in a QU-matrix, respectively. Let C and T be the sets of concepts and topics to model user interests. The training process of the topic-concept model is to learn four groups of model parameters $\Theta = \{\Phi, \Delta, \mathbf{T}, \mathbf{Q}\}$. Here, the prior topic distribution $\Phi = \{P(t_k)\}$, where $t_k \in T$ and $P(t_k)$ is the prior probability that a user’s search intent involves topic t_k. The concept generation distribution $\Delta = \{P(c|t_k)\}$, where $c_l \in C$, $t_k \in T$, and $P(c_l|t_k)$ is the probability that topic t_k generates concept c_l. The query generation distribution $\mathbf{T} = \{P(q_i|c_l)\}$, where $q_i \in Q$, $c_l \in C$, and $P(q_i|c_l)$ is the probability that concept c_l generates query q_i. The URL generation distribution $\mathbf{U} = \{P(u_j|c_l)\}$, where $u_j \in U$, $c_l \in C$, and $P(u_j|c_l)$ is the probability that concept c_l generates a click on URL u_j.

Given that a user bears a search intent on specific concepts c, we assume that (1) the formulation of queries is conditionally independent of the clicks on search results, i.e., $P(q, u|c) = P(q|c) \cdot P(u|c)$; and (2) both the formulation of queries and the clicks on search results are conditionally independent of the topics t of the search intent, i.e., $P(q, u|t, c) = P(q, u|c)$. Then, the likelihood for each entry (q_i, u_j) in the QU-matrix can be factorized as follows.

$$L(q_i, u_j; \Theta) = \left(\sum_{t_k \in T} \sum_{c_l \in C} P(t_k) P(c_l|t_k) P(q_i|c_l) P(u_j|c_l) \right)^{n_{ij}}$$

where n_{ij} is the value of entry (q_i, u_j) in the QU-matrix. The likelihood for the whole QU-matrix D is $L(D; \Theta) = \prod_{q_i, u_j} L(q_i, u_j; \Theta)$.

Since the data likelihood is hard to be maximized analytically, we apply the Expectation Maximization (EM) algorithm [11]. The EM algorithm iterates between the E-step and the M-step. The E-step computes the expectation of the log data likelihood with respect to the distribution of the latent variables derived from the current estimation of the model parameters. In the M-step, the model parameters are estimated to maximize the expected log likelihood.
found in the E-step. We have the following equations for the E-step in the r-th iteration.

\[P^r(c_i|q_t, u_j) \propto \sum_{t_k} (P^{r-1}(t_k) \cdot P^{r-1}(c_i|t_k)) \cdot P^{r-1}(q_t|c_i) \cdot P^{r-1}(u_j|c_i) \] (2)

\[P^r(t_k|q_t, u_j) \propto \sum_{c_i} (P^{r-1}(t_k) \cdot P^{r-1}(c_i|t_k)) \cdot P^{r-1}(q_t|c_i) \] (3)

In the M-step of the r-th iteration, the model parameters are updated by the following equations.

\[P^r(q_t|c_i) = \frac{\sum_{q_t, u_j} n_{ij} P^r(t_k|q_t, u_j)}{\sum_{q_t'} \sum_{q_t, u_j} n_{ij} P^r(t_k'|q_t, u_j)} \] (4)

\[P^r(u_j|c_i) = \frac{\sum_{q_t, u_j} n_{ij} P^r(c_i|q_t, u_j)}{\sum_{q_t'} \sum_{q_t, u_j} n_{ij} P^r(c_i'|q_t, u_j', u_j)} \] (5)

\[P^r(c_i|t_k) = \frac{\sum_{q_t, u_j} n_{ij} P^r(c_i|q_t, u_j) P^r(t_k|q_t, u_j)}{\sum_{c_i'} \sum_{q_t, u_j} n_{ij} P^r(c_i'|q_t, u_j) P^r(t_k'|q_t, u_j)} \] (6)

5. LEARNING LARGE TC-MODELS

Although the EM algorithm can effectively learn the parameters in TC-models, there are still several challenges to apply it on huge search log data. In Section 5.1, we will develop distributed algorithms for learning TC-models from a huge amount of data. In Section 5.2, we will discuss the model initialization steps. Last, in Section 5.3 we will develop effective heuristics to reduce the number of parameters to learn in each machine.

5.1 Distributed Learning of Parameters

Search logs typically contain billions of query-and-click events involving tens of millions of unique queries and URLs. It is impractical to learn a TC-model from a huge amount of data using a single machine. To address this challenge, we developed distributed algorithms for the E-step and M-step.

In our learning process, a QU-matrix is represented by a set of \((q_t, u_j, n_{ij})\) tuples. Since a query usually has a small number of clicked URLs, a QU-matrix is very sparse. We only need to record the tuples where \(n_{ij} > 0\). We first partition the QU-matrix into subsets and distribute each subset to a machine (called a process node). Then we carry out the E-step and the M-step.

In the E-step of the r-th iteration (Algorithm 1), each process node loads the current estimation of the model parameters and scans the assigned subset of training data once. For each tuple \((q_t, u_j, n_{ij})\), the process node enumerates all the concepts \(c_i\) such that \(P^{r-1}(c_i|q_t) > 0\) and \(P^{r-1}(u_j|c_i) > 0\). For each enumerated concept \(c_i\), the process node further enumerates each topic \(t_k\) such that \(P^{r-1}(c_i|t_k) > 0\) and evaluates the value \(v = P^{r-1}(t_k) P^{r-1}(c_i|t_k) P^{r-1}(q_t|c_i) P^{r-1}(u_j|c_i)\). The values of \(v\) are summed up to estimate \(P^r(c_i|q_t, u_j)\) and \(P^r(t_k|q_t, u_j)\) according to Equations 2 and 3, respectively.

Finally, we output the probabilities for the hidden variables. Those results will serve as the input of the M-step.

In the M-step, we estimate the model parameters based on the probabilities of the hidden variables. According to Equations 4-6, the estimation for each parameter involves a sum over all the queries and/or URLs. Since the matrix is distributed on multiple machines, the summation involves aggregating the intermediate results across machines, which is particularly suitable for a Map-Reduce system [10].

In the map stage of the M-step, each process node receives a subset of tuples \((q_t, u_j, c_i, t_k, n_{ij}, \sigma_{ijl}/\sigma_{ij}, \sigma_{ijk}/\sigma_{ij})\). For each tuple, the process node emits four key-value pairs as shown in Table 3. In the reduce stage, the process nodes simply sum up all the values with the same key and update the model parameters using Equations 4-6.

5.2 Model Initialization

The Topic-Concept model consists of four sets of parameters, \(\Phi, \Delta, \Upsilon_Q\) and \(\Upsilon_U\). We first initialize the query-and-click generation probabilities \(\Upsilon_Q\) and \(\Upsilon_U\) by mining the concepts from the click-through bipartite. We then initialize the prior topic probabilities \(\Phi\) and the concept generation probabilities \(\Delta\) by assigning concepts to topics.

To mine concepts from a click-through bipartite, we first apply an existing clustering algorithm [8] and derive a collection of query clusters. The clustering algorithm regards queries sharing many clicked URLs similar to each other, and thus groups them to the same cluster. However, the clustering method assigns each query to only one cluster, which may not be suitable for ambiguous queries that involve multiple concepts. To address this challenge, we follow the method in [9] and conduct two steps of propagation along the edges in the click-through bipartite. That is, for each query cluster \(Q_l\), we find the set of URLs that each query is connected with at least one URL in \(Q_l\). In the first step of propagation, \(Q_l\) is expanded to \(Q_l'\) such that each query \(q'_l\) in \(Q_l'\) is connected with at least one URL in \(Q_l\). In the second step of propagation, \(Q_l'\) is expanded to \(Q_l''\) such that each URL \(u'_l\) in \(Q_l''\) is connected with at least one query \(q'_l\) in \(Q_l'\). Finally, we represent each concept \(c_i\) by the pair of query and URL sets \(\{Q'_l, U'_l\}\), and initialize the query and URL generation probabilities by

\[P^0(q_t|c_i) \propto \sum_{q_t \in Q_l'} n_{ij}; \quad P^0(u_j|c_i) \propto \sum_{q_t \in Q_l'} n_{ij}, \]
where \(n_{ij} \) is the value of entry \((q_i, u_j)\) in the QU-matrix.

After deriving the set of concepts \(C \), we consider the set of topics \(T \). Although we may automatically mine topics by clustering concepts, in practice, there are several well-accepted topic taxonomies, such as Yahoo! Directory [3], Wikipedia [2], and ODP [1]. We use the ODP topic taxonomy in this paper, though others can be adopted as well.

The ODP taxonomy is a hierarchical structure where each parent topic subsumes several sub-topics, and each leaf topic is manually associated with a list of URLs by the ODP editors. Given a set of topics at some level in the taxonomy, we can initialize the concept generation probabilities \(P(c_i|t_k) \) as follows.

According to Bayes Theorem, \(P(c_i|t_k) \propto P(c_i)P(t_k|c_i) \). The prior probability \(P(c_i) \) indicates the popularity of concept \(c_i \) and the probability \(P(t_k|c_i) \) indicates how likely \(c_i \) involves topic \(t_k \). Suppose \(c_i \) is represented by the query-and-URL sets \((Q_i', U_i')\). The popularity of \(c_i \) can be estimated by \(P(c_i) \propto \sum_{q_i', u_i' \in Q_i', U_i'} n_{ij} \), where \(n_{ij} \) is the value of entry \((q_i, u_j)\) in the QU-matrix. To tell how likely \(c_i \) involves topic \(t_k \), we merge the text content of the URLs \(u \in U_i' \) into a pseudo-document \(d_i \). Then, the problem of estimating \(P(t_k|c_i) \) is converted to a text categorization problem, and \(P(t_k|c_i) \) can be estimated by applying any text categorization techniques (e.g., [14, 15]) on the pseudo-document \(d_i \). Based on the estimated \(P(c_i) \) and \(P(t_k|c_i) \), we initialize the parameters by

\[
P^0(c_i|t_k) \propto P(c_i)P(t_k|c_i); \quad P^0(t_k) \propto \sum_{c_i} P(c_i)P(t_k|c_i).
\]

Why do we still need the EM iterations given that we can estimate all the model parameters in the initialization stage? The EM iterations can improve the quality of concepts and topics by a mutual reinforcement process. In the TC-model, the probabilities \(P(q|c) \) and \(P(u|c) \) assign queries and URLs to concepts, while the probabilities \(P(c|l) \) assign concepts to topics. In the initialization stage, those two types of probabilities are estimated independently. If two queries/URLs belong to the same concept, it is more likely that they belong to the same topic, and vice versa. Therefore, if we jointly consider those two types of probabilities, we may derive more accurate assignments of concepts and topics. In the EM iterations, the relationships between the concepts and topics is embedded in the latent variables \(P(q|u) \) and \(P(l|q, u) \), which contributes to the increase of the data likelihood. In our experiments on a real data set, the data likelihood increased by 11% after the EM iterations.

5.3 Reducing Re-estimated Parameters

As described in Section 5.1, in the E-step, each process node estimates the latent variables \(P(c_i|q, u_j) \) and \(P(t_k|q, u_j) \) on the basis of the last round estimation of parameters \(\Phi, \Delta, T_Q, \) and \(T_U \). Let \(N_i, N_c, N_q, N_u \) be the numbers of topics, concepts, unique queries, and unique URLs, respectively. The sizes of the parameter sets are \(|\Phi| = N_i \cdot N_c \), \(|\Delta| = N_i \cdot N_c \cdot |T_Q| = N_q \cdot N_c \), and \(|T_U| = N_u \cdot N_c \). In practice, we usually have tens of millions of unique queries and URLs in the search log data, which may form millions of concepts. For example, in the real data set in our experiments, we have 11.76 million unique queries, 9.5 million unique URLs, 4.71 million concepts, and several hundred topics. The total size of the parameter space reaches \(10^{14} \). Consequently, it is infeasible to hold the full parameter space into the main memory of a process node.

To reduce the number of parameters to be re-estimated, we analyze the cases when the model parameters remain zero during the EM iterations. Suppose a process node receives a subset \(S \) of training data in the E-step, we give a tight superset \(\Theta(S) \) of the nonzero model parameters which need to be accessed by the process node in the E-step. In our experiments, \(|\Theta(S)| \) for each process node is several orders of magnitudes smaller than the size of full parameters space. Each process node only needs to process a subset of \(\Theta(S) \).

Lemma 1. The query generation probability at the r-th iteration \(P^r(q_i|c_i) = 0 \) if \(P^0(q_i|c_i) = 0 \).

Proof. Let \(U \) be the whole set of unique URLs. From Equation 2, if \(P^r(q_i|c_i) = 0 \), then \(P^r(q_i|u_j, c_i) = 0 \), and \(P^r(u_j|c_i) = 0 \). According to Equation 5, if \(P^r(q_i|u_j, c_i) = 0 \), then \(P^r(q_i|c_i) = 0 \). Therefore, we have \(P^r(q_i|c_i) = 0 \Rightarrow P^r(q_i|c_i) = 0 \). Using simple induction, we can prove \(P^r(q_i|c_i) = 0 \Rightarrow P^r(q_i|c_i) = 0 \) if \(P^0(q_i|c_i) = 0 \).

Similarly, we can prove the following lemma.

Lemma 2. The URL generation probability at the r-th iteration \(P^r(u_j|c_i) = 0 \) if \(P^0(u_j|c_i) = 0 \).

Proof. Let us consider the concept generation probabilities \(P(c_i|t_k) \). We call a pair \((q_i, u_j)\) belongs to concept \(c_i \), denoted by \((q_i, u_j) \in c_i \), if \(n_{ij} > 0 \), \(P^0(q_i|c_i) > 0 \), and \(P^0(u_j|c_i) > 0 \). Two concepts \(c_i \) and \(c_i' \) are associated if there exists a pair \((q_i, u_j)\) belonging to both concepts. Trivially, a concept is associated with itself. Let \(A(c_i) \) be the set of concepts associated with \(c_i \), and \(QU(c_i) \) be the set of pairs \((q_i, u_j)\) which belong to at least one concept associated with \(c_i \), i.e., \(QU(c_i) = \{(q_i, u_j) | \exists c_i \in A(c_i) \} \). We have the following.

Lemma 3. The concept generation probability at the r-th iteration \(P^r(c_i|t_k) = 0 \) if \(\forall c_i' \in A(c_i) \), \(P^r(c_i'|t_k) = 0 \).

Proof. According to the definitions, for any \((q_i, u_j) \notin c_i \), one of the following three predicates holds (1) \(n_{ij} = 0 \); (2) \(P^0(q_i|c_i) = 0 \); or (3) \(P^0(u_j|c_i) = 0 \). If \(n_{ij} > 0 \), from Equation 7, \((q_i, u_j)\) does not contribute to \(P^r(c_i|t_k) \). Otherwise, if \(P^0(q_i|c_i) = 0 \) or \(P^0(u_j|c_i) = 0 \), according to Lemmas 1 and 2, we have either \(P^{r-1}(q_i|c_i) = 0 \) or \(P^{r-1}(u_j|c_i) = 0 \). From Equation 2, if either \(P^{r-1}(q_i|c_i) = 0 \) or \(P^{r-1}(u_j|c_i) = 0 \), then \(P^r(c_i|q_i, u_j) = 0 \). Therefore, Equation 7 can be re-written as

\[
P^r(c_i|t_k) \propto \sum_{(q_i, u_j) \in c_i} n_{ij} P^r(q_i|u_j)P^r(t_k|q_i, u_j).
\]

Now we only need to focus on \(P^r(t_k|q_i, u_j) \) for pairs \((q_i, u_j) \in c_i \). According to the definition of \(A(c_i) \), for any pair \((q_i, u_j) \in c_i \) and concept \(c_i' \notin A(c_i) \), either \(P^0(q_i|c_i') = 0 \) or \(P^0(u_j|c_i') = 0 \). Using Lemmas 1 and 2, we can rewrite Equation 3 for every pair \((q_i, u_j) \in c_i \) as

\[
P^r(t_k|q_i, u_j) \propto \sum_{c_i' \in A(c_i)} P^{r-1}(t_k|c_i') \cdot P^{r-1}(c_i'|t_k) \cdot P^{r-1}(q_i|c_i') \cdot P^{r-1}(u_j|c_i').
\]

According to Equation 9, if \(\forall c_i' \in A(c_i) \), \(P^{r-1}(c_i'|t_k) = 0 \), then \(P^r(t_k|q_i, u_j) = 0 \) holds for every \((q_i, u_j) \in c_i \). Further according to Equation 8, if \(P^r(t_k|q_i, u_j) = 0 \) holds for every \((q_i, u_j) \in c_i \), then \(P^r(c_i|t_k) = 0 \). Therefore, if \(\forall c_i' \in A(c_i) \), \(P^{r-1}(c_i'|t_k) = 0 \), then \(P^r(c_i|t_k) = 0 \). \(\square \)
Lemma 3 suggests that at each round of iteration, a concept c_l propagates its nonzero topics t_k (i.e., topics such that $P(c_l|t_k) > 0$) one step further to all its associated concepts.

To further explore the conditions for $P^r(c_l|t_k) = 0$, we build a concept association graph $G(V, E)$, where each vertex v in V corresponds to a concept c, and two concepts c_a and c_b are directly connected by an edge $c_{ab} \in E$ if they are associated. In the association graph, two concepts c_a and c_b are connected if there exists a path between c_a and c_b. The connected component $N^m(c_l)$ of concept c_l consists of all concepts c_m which are connected with c_l. The distance between two concepts c_a and c_b is the shortest path between c_a and c_b in the graph. If c_a and c_b are not connected, the distance is set to ∞. The set of m-step neighbors $N^m(c_l)$ (1 $\leq m < \infty$) of concept c_l consists of the concepts whose distance from c_l is smaller than or equal to m. We can easily prove the following lemma by recursively applying Lemma 3.

Lemma 4. The concept generation probability at the r-th iteration $P^r(c_l|t_k) = 0$ if $\forall \Delta(c_l) \in N^m(c_l)$ (1 $\leq m \leq r$), $P^{r-1}(c_l|t_k) = 0$. Moreover, $P^r(c_l|t_k) = 0$ if $\forall \Delta(c_l)$, $P^0(c_l|t_k) = 0$.

Using Lemmas 1-4, we can give a tight superset of the parameters needed in the E-step for any subset S of training data. Let (q, u_j, n_{ij}) be a training tuple in S. In the E-step, we enumerate the concepts c_l such that $P^{r-1}(q|c_l) > 0$ and $P^{r-1}(u_j|c_l) > 0$. According to Lemmas 1 and 2, to process (q, u_j, n_{ij}), we can safely enumerate only those concepts $C_{ij} = \{c_l(q, u_j) \subset c_l\}$. We consider the nonzero parameters for each concept c_l. Using Lemmas 1 and 2, the nonzero query and URL generation probabilities are simply $T^r_{ij}(q_l) = \{P(q_l|c_l)P^0(q_l|c_l) > 0\}$ and $T^r_{ij}(u_l) = \{P(u_l|c_l)P^0(u_l|c_l) > 0\}$, respectively. Furthermore, let $T(c_l) = \{P(c_l|t_k)P^0(c_l|t_k) > 0\}$ and $T^r(c_l) = \bigcup_{c_l \in N^r(c_l)} T(c_l)$. Using Lemma 4, the nonzero concept generation probabilities are $\Delta^r(c_l) = \{P(c_l|t_k) | t_k \in T^r(c_l)\}$.

Let C^r be the set of concepts that are enumerated for the training tuples in S, i.e., $C^r = \bigcup_{c_l \in C} C_{ij}$. We summarize the above discussion as follows.

Theorem 1. Let S be a subset of training data, the set of nonzero parameters need to be accessed in the E-step for S is a subset of $\Theta(S)$, where

$$\Theta(S) = \left(\{P(t_k)\}, \bigcup_{c_l \in C_S^r} T^0_{ij}(c_l), \bigcup_{c_l \in C_S^r} T^r_{ij}(c_l), \bigcup_{c_l \in C_S^r} \Delta^r(c_l) \right).$$

In practice, a concept association graph can be highly connected. That is, for any two concepts c_a and c_b, there likely exists a path $c_a, c_1, \ldots, c_m, c_b$. In some cases, although each pair of adjacent concepts on the path are related to each other, the two end concepts c_a and c_b of the path may be about dramatically different topics. As discussed before, in the EM iterations, each concept propagates its nonzero topics to its neighbors. Consequently, after several rounds of iterations, two totally irrelevant concepts c_a and c_b may exchange their nonzero topics through the path $c_a, c_1, \ldots, c_m, c_b$. To avoid over propagation of the nonzero topics, we may constrain the propagation up to ζ steps. Specifically, for each concept c_l, let $T(c_l) = \{P(c_l|t_k) | P^0(c_l|t_k) > 0\}$ and $T^r(c_l) = \bigcup_{c_l \in N^r(c_l)} T(c_l)$, we constrain the concept generation probability $P(c_l|t_k) = 0$ if $t_k \notin T^r(c_l)$. In our experiments, we find that the nonzero topics propagated from the neighbors of more than one step away are often noisy. Therefore, we set ζ to 1.

Theorem 1 greatly reduces the number of parameters to be re-estimated in process nodes in practice. For example, when we use 50 process nodes in our experiments, each process node only needs to re-estimate 62 million parameters, which is about 10^{-7} of the size of the total parameter space. In practice, 62 million parameters may still be expensive for a machine with small memory, e.g., less than 2G. In this case, the process node can recursively split the assigned training data S_a into smaller blocks $S_{ab} \subset S_a$ until the necessary nonzero parameters $\Theta(S_{ab})$ for each block can be loaded into the main memory. Then, the process node can carry out the E-step block by block. We report the details of the experiment in Section 7.1.

6. CUBE CONSTRUCTION AND REQUEST ANSWERING

Similar to a traditional data cube, a topic-concept cube (TC-cube for short) contains some standard dimensions such as time and locations. However, a TC-cube differs from a traditional data cube in several critical aspects. First, for each cell in a TC-cube, we learn the TC-models from the training data in the cell and use the model parameters as the measures of the cell. Those parameters allow us to answer lookups and reverse lookups introduced in Section 1. Second, a TC-cube contains a special topic-concept dimension (TC-dimension for short) as shown in Figure 1. Therefore, to materialize a TC-cube, we need to address three questions. First, how to materialize the standard dimensions? Second, how to materialize the TC-dimension? Finally, how to materialize a TC-cube which consists of both standard dimensions and the TC-dimension? In the following, we will briefly address these three questions. The full technical details can be found in Appendices A and B.

As illustrated in Figure 5(a), in a standard dimension, the training data in a upper level cell C_1 is split into its child cells C_{21}, \ldots, C_{2M}. For example, C_1 may contain the set of training tuples D_1 from the US, while each child cell C_{2m} (1 $\leq m \leq M$) may contain the set of training tuples D_{2m} from one state of the US. In general, D_{21}, \ldots, D_{2M} form a partition of D_1. A naive method to materialize the standard dimension is to follow the initialization steps in Section 5.2 for each cell and learn the TC-models from scratch. However, since the training data D_{2m} in a child cell is a subset of D_1, the topics and concepts may not differ dramatically between a child cell and a parent cell. Hence, we may develop two approaches. In the top-down approach, we may inherit the trained parameters Θ_1 for the parent cell C_1 to
initialize the parameters for a child cell C_{2n}. Alternatively, in the bottom-up approach, we may aggregate the trained parameters $\Theta_{21}, \ldots, \Theta_{2M}$ of the child cells to initialize the parameters for the parent cell C_1.

Next, we materialize the TC-dimension. Recall that the topic-concept model assigns the concepts to a set of topics. Given a taxonomy of topics, such as ODP [1], the TC-dimension organizes the queries and clicks into a hierarchy of topics and concepts (see Figure 1). To materialize the TC-dimension, we need to learn the model parameters with respect to each level of topics in the hierarchy.

Different from the standard dimensions, the TC-dimension has the same set of training data at different levels (Figure 5(b)). Without loss of generality, let $T_1 = \{t_{1k}\}$ be the set of topics at some level of a given topic taxonomy, and $T_2 = \{t_{2k}\}$ be the set of topics one level lower than T_1. In particular, $t_{2k,n}$ is a sub topic of t_{1k}, where $1 \leq n \leq N_{1k}$ and N_{1k} is the number of sub topics of t_{1k}. Again, we have three alternative options to materialize the TC-dimension. First, a naïve method materializes different levels of topics separately. Second, the top-down approach inherits the model parameters Θ_1 with respect to T_1 for the materialization of parameters Θ_2 with respect to the sub topics T_2. Finally, the bottom-up approach initializes the model parameters for a higher level topic t_{1k} by aggregating those of its sub topics $t_{2k,1} \ldots t_{2k,N_{1k}}$.

We have two alternative approaches to materialize the whole TC-cube which consists of both standard dimensions and the TC-dimension. The standard-dimension-first approach materializes a raw log data cube using the standard dimensions, and then materializes along the TC-dimension for each cell in the raw log data cube. The TC-dimension-first approach processes the topic hierarchy level by level. For each level, it materializes the cells formed by the standard dimensions.

After materializing the whole TC-cube, we answer the lookups and reverse lookups using the model parameters in the TC-cube. Since the number of model parameters can be large, we store the parameters distributively on a cluster of process nodes, where each node contains the parameters for a set of cells. When the system receives a lookup request, for example, “(time=Dec., 2009; location=US; topic=Games)”, it will delegate the query to the process node where the model parameters of the corresponding cell are stored. Then the process node will select the top k concepts c with the largest concept generation probabilities $P(c | q \in \text{Games})$. For each top concept, the process node will use the query q with the largest $P(q | c)$ as the representative query. Finally, the system returns a list of representative queries of the top concepts as the answer to the lookup request.

To answer the reverse lookups, we build inverted lists which map key words to concepts. The inverted list can be stored distributively on a cluster of process nodes, where each node takes charge of a range of key words. Suppose a user requests a reverse lookup about “hurricane Bill”. The system will delegate the key words to the corresponding node which stores the inverted list for “hurricane Bill”. The node retrieves from the inverted list the concepts $C = \{c\}$ which consist of “hurricane Bill”. The system then broadcasts the concepts C to all the nodes which store the model parameters. Each node checks the measures of all its cells and reports $(\text{Deal}, \text{Count})$ for each cell, where Deal consists of the corresponding values of the standard dimensions of the cell, and Count is the frequency of the concepts C in the cell, i.e., $\text{Count} = \sum_{c \in C} \sum_{q_i, u_j} n_{ij}$, where n_{ij} is the value of entry (q_i, u_j) in the QU-matrix of the cell. If the user has specified the levels of the standard dimensions, for example, $\text{time}@\text{day}; \text{location}@\text{country}$, the system returns the Deals of the top k cells which match the specified levels of the standard dimension. If the user does not specify the levels, the system will answer the request at the default levels. The user can further drill-down or roll-up to different levels.

7. EXPERIMENTS

In this section, we report the results from a systematic empirical study using a large search log from a major commercial search engine. The extracted log data set spans for four months and contains 1.96 billion queries and 2.73 billion clicks from five markets, i.e., the United States, Canada, United Kingdom, Malaysia, and New Zealand. In the following, we first examine the efficiency and scalability of our distributed training algorithms for the TC-model. We briefly report our findings about the alternative approaches for the materialization of the TC-cube. Finally, we demonstrate the effectiveness of our approach by several examples of the lookup and reverse lookup requests.

7.1 Training TC-models

The TC-model was initialized as described in Section 5.2. We derived 4.71 million concepts, which involve 11.76 million unique queries and 9.5 million unique URLs. On average, a concept consists of 4.68 unique queries and 6.77 unique URLs. We further chose the second level of the ODP [1] taxonomy and applied the text classifier in [14] to categorize the concepts into the 483 topics. For each concept, we kept the top five topics returned by the classifier.

From the raw log data, we derived 23 million training tuples where each training tuple is in the form (q_i, u_j, n_{ij}) and n_{ij} is the number of times URL u_j was clicked on as answers to query q_i.

Figures 6(a) and (b) show the data likelihood and the average percentage of parameter changes during EM iterations.

![Figure 6: The data likelihood and the average percentage of parameter changes during EM iterations.](image-url)
process node has a four-core 2.67GHz CPU and 4G main memory. We observe the following in Figure 7(a). First, the more process nodes used, the shorter runtime for the E-step. The runtime needed for the E-step on the full data by 50, 100, and 200 process nodes is approximately in ratio 4:2:1. This suggests that our algorithm scales well with respect to the number of process nodes. Second, the more process nodes are used, the more scalable is the E-step. For example, when 50 process nodes were used, the runtime increases dramatically when 40%, 70%, and 100% of the data was loaded. As explained in Section 5.3, if the training data for a process node involves too many parameters to be held in the main memory, the algorithm recursively splits the training data into blocks until the parameters needed by a block can be held in the main memory. Therefore, the runtime of the E-step mainly depends on the number of disk scans of the parameter file, i.e., the number of blocks to be processed. When we used 50 process nodes, each node split the assigned training data into 2, 3, and 4 blocks when 40%, 70%, and 100% of the full data set was used for training, respectively. This explains why the runtime increases dramatically at those points. When we used 200 nodes, each node can process the assigned data without splitting even for the full data set. Consequently, the runtime increases linearly and mildly from 30% to 100% of the data.

In Figure 7(b), the runtime of M-step increases almost linearly with respect to the data set size, indicating the good scalability of our algorithm. Interestingly, the runtime of the M-step does not change much with respect to the number process nodes. This is because the major cost of the map-reduce process of the M-step is the merging of parameters, which is done on a single machine. This bottleneck costs the M-step much longer time than that of the E-step.

Table 4 evaluates the effectiveness of Theorem 1. We executed the E-step on the full data set with 50, 100, and 200 process nodes, respectively. For each setting, e.g., using 50 nodes, we recorded the average number of training tuples \(S \) assigned to each process, the average number of the estimated nonzero parameters \(\Theta(S) \) by Theorem 1, the average number of nonzero parameters after ten iterations, the ratio of the average size of \(\Theta(S) \) over the size of the whole parameter space, and the number of blocks processed by each process node. Table 4 suggests the following. First, the average size of \(\Theta(S) \) over the size of the whole parameter space is very small, in the order of \(10^{-7} \). This means Theorem 1 can greatly reduce the number of parameters to be held by each process node. Moreover, the size of the estimated nonzero parameters is close to that of nonzero parameters during the iterations. This indicates that the superset of nonzero parameters given by Theorem 1 is tight.

7.2 TC-Cube Materialization

We conducted an empirical study on the alternative methods to materialize the standard dimensions, the TC-dimension, and the whole TC-cube, and obtained the following observations. First, in standard dimensions, both the bottom-up and top-down approaches achieved higher initial likelihoods than that by the naïve method after initialization. However, all the three methods needed about five iterations to converge, and thus took similar runtime. Moreover, all of them converged to comparable likelihoods. Therefore, we may choose any of them to materialize the standard dimensions. Second, in the TC-dimension, the top-down method was much slower than the other two methods. The reason is that when we inherit the model parameters from the upper level topics, most of the concept generation probabilities \(P(c|t) \) for the lower level topics are nonzero. In this case, the superset of nonzero parameters estimated by Theorem 1 can still be very large. Consequently, each process node needs to partition the assigned training tuples into many blocks and scan the large parameter file many times. Therefore, in the TC-dimension, we may consider either the bottom-up method or the naïve method. Finally, it does not make much difference to materialize the standard dimensions first or the TC-dimension first. The detailed experiment report can be found in Appendix C.

7.3 Examples of lookups and reverse lookups

In this subsection, we show some real examples for the lookups and reverse lookups answered by our system. We use the query traffic analysis service by a major commercial search engine as the baseline. Please refer to Section 2 for a more detailed description of the baseline.

Table 5 compares the results for the lookup request “(time = ALL; location = US; topic = Games)” returned by our system and the baseline. Since the baseline does not group similar queries into concepts, the top 10 results are quite redundant. For example, the 1st, 2nd, 7th, and 8th queries are similar. Our system summarizes similar queries into concepts and selects only one query as the representative for each concept. Consequently, the top 10 queries returned by our system are more informative. We further request the top results for four sub topics of “Games”, namely “card games”, “gambling”, “party games”, and “puzzles”. The queries returned by our system are informative (Table 6). However, the baseline only organizes the user queries by a flat set of 27 topics; it does not support drilling down to sub topics.

As an example for reverse lookup, we asked for the group-bys where the search for Hurricane Bill was popular by a request “(time = @day; location = US; keyword = “hurricane bill”). Purposely we misspelled the keyword “hurricane” to “hurrican” to test the summarization capability of our TC-model. Our system can infer that the keyword “hurrican bill” belongs to the concept which consists of queries “hurricane bill”, “hurricane bill”, “hurricane bill”, “projected path of hurricane bill”, “hurricane bill 2009” and some other variants. Therefore, the system sums up the frequencies of all
the queries in the concept and answers the top five states during the days in August, 2009 (Figure 8). Figure 9 visualizes the trend of the popularity of the whole concept according to the output of the reverse lookup. The dates in the figure indicate when the concept was most intensively searched in different states in the US. Interestingly, the trend shown in Figure 9 reflects well the trajectory and the influence of the hurricane geographically and temporally, which indicates that the real world events can be reflected by the popular queries issued to search engines. However, when we sent the same request to the baseline, it answered that the search volume was not enough to show trend. The reason is that the baseline may only consider the query that exactly matches the misspelled keyword “hurrican bill”, which may not be searched often.

8. CONCLUSION

In this paper, we described our topic-concept cube project which supports online multidimensional mining of search logs. We proposed a novel topic-concept model to summarize user interests and developed distributed algorithms to automatically learn the topics and concepts from large-scale log data. We also explored various approaches for efficient materialization of TC-cubes. Finally, we conducted an empirical study on a large log data set and demonstrated the effectiveness and efficiency of our approach. A prototype system which can provide public online services is under development.

9. REFERENCES

APPENDIX

A. MATERIALIZATION ON STANDARD DIMENSIONS

A.1 A Top-down approach

As illustrated in Figure 5(a), in the top-down approach, high level cells are materialized before the low level ones. Without loss of generality, suppose we already compute the model parameters Θl for a cell C1 and want to materialize the parameters Θ2 for a cell C2 which is a child cell of C1. Let D1 and D2 be the sets of query-and-click events in C1 and C2, respectively. Obviously, D2 ⊆ D1.

One way to materialize C2 is to follow the initialization steps in Section 5.2 and learn the TC-model from scratch. Can we find a better initialization method such that the number of EM iterations can be reduced? Since D2 ⊆ D1, the topics and concepts in D2 only partially differ from those in D1. Therefore, we may consider using the trained parameters for C1 to initialize the parameters for C2. In the following, we first describe how to project the concepts in C1 to C2, and then discuss how to initialize the parameters for C2 using those in C1.

Let c1l be a concept in C1, which is represented by a pair of query and URL sets (Ql, Ul). Let Q2 and U2 be the sets of queries and URLs in D2, respectively. We can project c1l on C2 by calculating Q2 = Ql ∩ Q2 and U2 = Ul ∩ U2. Then, the concept c2l can be represented by the projected pair (Q2, U2). Correspondingly, the initial query and URL generation probabilities in cell C2, denoted by $P_{2}^{q}(q_{i}|c_{2l})$ and $P_{2}^{u}(u_{j}|c_{2l})$, respectively, can be estimated by $P_{2}^{q}(q_{i}|c_{2l}) = \sum_{n_{2l} \subseteq Q_{2}} n_{2l,i}$ and $P_{2}^{u}(u_{j}|c_{2l}) = \sum_{n_{2l} \subseteq Q_{2}} n_{2l,i}$, where $n_{2l,i}$ is the count of (q_{i}, u_{j}) pairs in D2.

Let us consider how to initialize the concept generation probability $P_{2}^{c}(c_{2l}|t_{k})$ and the topic priority $P_{2}^{t}(t_{k})$ in cell C2. We assume the projection of concepts from C1 to C2 does not change the meaning of the concepts. In other words, if a concept c1l in C1 involves a topic t_k, so does its projected image c2l in C2. Based on this assumption, the probability $P_{2}(t_{k}|c_{2l})$ of concept c2l belonging to topic t_k can be inherited from $P_{1}(t_{k}|c_{1l}) \propto P_{1}(t_{k})P_{1}(c_{1l})$. Then the initial concept generation probability in cell C2, denoted by $P_{2}^{c}(c_{2l}|t_{k})$, can be estimated by $P_{2}^{c}(c_{2l}|t_{k}) \propto P_{2}(t_{k}|c_{2l})P_{2}(t_{k}|c_{2l})$, and the initial topic priority in cell C2, denoted by $P_{2}^{t}(t_{k})$, can be estimated by $P_{2}^{t}(t_{k}) \propto \sum_{c_{2l} \subseteq \Theta_{2}} P_{2}(c_{2l})P_{2}(t_{k}|c_{2l})$, where the concept priority $P_{2}(c_{2l})$ can be estimated by the count of (q_{i}, u_{j}) pairs in D2, i.e., $P_{2}(c_{2l}) \propto \sum_{q_{i} \subseteq Q_{2}, u_{j} \subseteq U_{2}} n_{2l,i}$. After initializing the parameters, we carry out the EM algorithm for C2 as described in Section 5.

A.2 A Bottom-up approach

In the bottom-up approach, we want to estimate the parameters Θ_{l} for a higher level cell C1 (Figure 5(a)). In the similar spirit of the top-down approach, we initialize Θ_{l} based on the trained parameters $\Theta_{2l}, \ldots, \Theta_{2M}$ for C1’s child cells C21, …, C2M.

Let the concepts c21, …, c2M be the projected images of cell C1 in child cells C1, …, C2M of parent C1, respectively. The query generation probability of concept c1l, denoted by $P_{1}(q_{i}|c_{1l})$, can be initialized by aggregating those of its projected images, i.e., $P_{2}^{q}(q_{i}|c_{1l}) \propto \sum_{n_{2l} \subseteq Q_{2}} n_{2l,i}P_{1}(q_{i}|c_{2l})$, where $n_{2l}\subseteq Q_{2}$, $n_{2l,i}$ is the count of (q_{i}, u_{j}) pairs in cell C2m ($1 \leq m \leq M$). Similarly, we can initialize the URL generation probabilities.

For concept generation probabilities $P_{1}(c_{1l}|t_{k})$, we again assume that the meaning of concepts does not change across different level of cells. We initialize $P_{1}(c_{1l}|t_{k})$ in three steps. First, we estimate the probability $P_{2}(c_{2l}|t_{k})$ for concept c2l in cell C2m to involve topic t_k by $P_{2}(c_{2l}|t_{k}|c_{2l}) \propto P_{2}(c_{2l}|t_{k})P_{2}(c_{2l}|t_{k})$. In the second step, we estimate the probability $P_{2}(c_{1l}|t_{k})$ for concept c1l to involve topic t_k by aggregating those probabilities from c1l’s projected images, i.e., $P_{2}(c_{1l}|t_{k}) \propto \sum_{n_{2l} \subseteq Q_{2}} n_{2l,i}P_{2}(c_{2l}|t_{k})$. Finally, the concept generation probability can be initialized by $P_{2}^{c}(c_{1l}|t_{k}) \propto P_{1}(c_{1l})P_{2}(t_{k}|c_{2l})$, where $P_{1}(c_{1l}) \propto \sum_{n_{2l} \subseteq Q_{2}} n_{2l,i}$ is the count of (q_{i}, u_{j}) pairs in c1l. The topic prior probability can be initialized by $P_{2}^{t}(t_{k}) \propto \sum_{c_{1l} \subseteq \Theta_{1}} P_{1}(c_{1l})P_{2}(t_{k}|c_{1l})$.

B. MATERIALIZATION ON TC DIMENSION

The topic-concept model assigns the concepts to a set of topics. Given a taxonomy of topics, such as ODP [1], the TC dimension organizes the queries and clicks into a hierarchy of topics and concepts (see Figure 1). To materialize the cube on the TC dimension, we can first learn a topic-concept model with respect to any level of topics in the hierarchy. Then, we can materialize the model parameters with respect to other levels of topics by either a top-down approach or a bottom-up approach.

Different from the standard dimensions, the topic-concept dimension has the same set of training data at different levels. As a result, the initial concepts derived from the clustering results on the training data are the same for all the levels. Therefore, when we roll up or drill down along the TC dimension, it is reasonable to assume that only the topic prior probabilities $P(t_{k})$ and the concept generation probabilities $P(c_{1l}|t_{k})$ change substantially with respect to the different sets of topics at different level, while the query and URL generation probabilities, i.e., $P(q_{i}|c_{1l})$ and $P(u_{j}|c_{1l})$ do not change much at different levels. In the following, we only focus on the initialization of $P(t_{k})$ and $P(c_{1l}|t_{k})$.

Without loss of generality, let $T_{1} = \{t_{1k}\}$ be the set of topics at some level of a given topic taxonomy, and $T_{2} = \{t_{2kn}\}$ be the set of topics one level lower than T_{1}. In particular, t_{2kn} is a sub topic of t_{1k}, where $1 \leq l \leq N_{1k}$ and N_{1k} is the number of sub topics of t_{1k}.

As illustrated in Figure 5(b), the top-down approach along the TC dimension materialize the model parameters Θ_{l} with respect to T_{1} before the materialization of parameters Θ_{2} with respect to T_{2}. Given the parameters $P_{1}(t_{1k})$ and $P_{2}(t_{1k}|t_{1k})$ with respect to T_{1}, the initialization of $P_{2}^{c}(c_{1l}|t_{2kn})$ is straightforward as follows. First, we can distribute the mass of prior probability $P_{1}(t_{1k})$ evenly to its children t_{2kn} ($1 \leq n \leq N_{1k}$), i.e., the initial topic prior probability $P_{2}^{t}(t_{2kn}) = P_{1}(t_{1k})/N_{1k}$.

In the bottom-up approach, we initialize the parameters for a higher level topic t_{1k} by aggregating those of its sub topics t_{2kn} (Figure 5(b)). To be specific, the topic prior probability can be initialized by $P_{2}^{t}(t_{1k}) = \sum_{n} P_{2}(t_{2kn})$ and the concept generalization probability can be initialized by $P_{2}^{c}(c_{1l}|t_{1k}) \propto \sum_{n} P_{2}(c_{1l}|t_{2kn})$.

C. EMPIRICAL STUDY ON CUBE CONSTRUCTION

In this subsection, we report the results of an empirical study on different options to materialize the standard di-
dimensions, the TC-dimension, and the whole TC-cube. In this study, we used the time and location as two standard dimensions. The top cell C_1 consists of the full data set D_1. Along the standard time dimension, the full data set splits into four subsets D_{21}, \ldots, D_{24}, where each subset consists of one month data and constitutes one child cell C_{2n_1} ($1 \leq n_1 \leq 4$). Along the standard location dimension, each child cell C_{2n_2} ($1 \leq n_2 \leq 5$) corresponds to one of the five countries, i.e., the United States, Canada, United Kingdom, Malaysia, and New Zealand, and contains the corresponding subset D_{2n_2} of training data. We adopted the top two levels of topics of ODP [1] in the TC-dimension, which consists of 16 and 483 topics, respectively.

Figure 10 compares the top-down method and the naive method on the standard dimensions. As described in Appendix A.1, in the top-down method, we inherit the model parameters from the parent cell, while in the naive method, we initialize the model parameters from scratch (i.e., using the initialization method in Section 5.2). Figure 10(a) shows the log data likelihood with respect to the number of EM iterations summed over the four month cells C_{21}, \ldots, C_{24}. We can see the top-down method achieves higher initial likelihoods than that by the naive method after initialization. However, both methods needed about five iterations to converge, and thus took similar runtime. Moreover, both methods converged to comparable likelihoods. Therefore, we may choose any of them to materialize the standard time dimension. Figure 10(b) shows the log data likelihood summed over the five country cells C_{21}, \ldots, C_{25} with respect to the number of EM iterations. This figure illustrates similar trends with those in Figure 10.

Figure 11 compares the bottom-up method and the naive method on the standard dimensions: (a) date and (b) location.

Figure 12: The bottom-up method vs. the naive method on the TC-dimension in (a) full data cell, (b) month cells, and (c) country cells.

Finally, we compare the two options to materialize the whole TC-cube, i.e., the standard-dimension-first method and the TC-dimension-first method. In our study, the parent cell C_1 consists of the full data set D_1. There are two types of child cells: the four month child cells C_{2n_1} ($1 \leq n_1 \leq 4$) and the five country child cells C_{2n_2} ($1 \leq n_2 \leq 5$). For each cell, there are two topic levels T_1 and T_2, which are the top two topic levels in the ODP taxonomy [1]. According to the above experimental results, we may choose any of the three options, i.e., the bottom-up, top-down, or naive method, to materialize along the standard dimensions. Moreover, we may choose either the bottom-up or the naive method to materialize along the TC-dimension. Therefore, to materialize the whole TC-cube, a possible standard-dimension-first approach consists of four
steps: (1) materialize the second topic level T_2 of the parent cell C_1 from scratch (i.e., using the initialization method in Section 5.2); (2) materialize the second topic level T_2 of the child cells C_2 by the top-down method along the standard dimensions; (3) materialize the first topic level T_1 of the parent cell C_1 by the bottom-up method along the TC-dimension; and (4) materialize the first topic level T_1 of the child cells C_2 by the bottom-up method along the TC-dimension. Analogously, a possible TC-dimension-first approach consists of the following four steps: (1) materialize the second topic level T_2 of the parent cell C_1 from scratch; (2) materialize the first topic level T_1 of the parent cell C_1 by the bottom-up method along the TC-dimension; (3) materialize the second topic level T_2 of the child cells C_2 by the top-down method along the standard dimensions; and (4) materialize the first topic level T_1 of the child cells C_2 by the top-down method along the standard dimensions. The only difference between the two approaches is in step (4). Therefore, we only focus on the fourth step of the two approaches.

Figures 13(a) and (b) show the log data likelihoods with respect to the number of EM iterations by the standard-dimension-first approach and the TC-dimension-first approach in month cells and country cells, where the log data likelihoods are the sums over those of the four month cells and the five country cells, respectively. Both figures show similar trend. First, the standard-dimension-first approach has higher initial log data likelihood than that of the TC-dimension-first approach. This suggests the aggregation of the model parameters learned from the same data set is more accurate than those directly inherited from the larger parent data set. Second, both approaches need the same number of iterations to converge, and they converge to comparable likelihoods. Therefore, it does not make much difference to materialize the standard dimensions first or the TC-dimension first.