Symbolic analysis of EFSM models for test generation using Z3

Marko Kääramees
Tallinn University of Technology
Model-based black-box conformance testing

- System can communicate to its environment according to specification/protocol
- Testing @ interface
- Model represents the correct behaviour of the IUT
 - Non-deterministic models considered
- Embedded systems, services, communication devices
Modelling formalism: I/O-EFSM

- Set of locations \(L \) and initial location \(l_0 \)
- Set of variables \(X = X_s \cup X_i \cup X_o \) consisting of state, input, and output variables
- Domain constraint \(D \) is a predicate on variables \(X \)
- \(I \) and \(O \) are the sets of input and output labels, every label may have associated a tuple of parameters \((x_0 \ldots x_n) \)
- \(E \) is a set of edges with
 - Source location \(l \) and target location \(l' \)
 - Guard \(g \)
 - Input port \(i(x) \) and output port \(o(x) \) with their actual parameters \(x \in X_i \cup X_o \)
- Updates \(U \)
- Background first order theory \(Th \)
Non-deterministic model

- Practical non-determinism
 - Input-nondeterminism
 - Output-observability

```
coin(v)/grind
l
≥
coin(v)/message
sum:=v
l
<

button/coins

coin(v)/grind

/v+sum>=Price
[v>=Price]
```
Testing non-deterministic systems

- A test suite cannot be represented by a finite set of test cases
 - Several different outputs are correct for an input
 - Next input depends on the behaviour of IUT

- Symbolic test strategy
 - The strategy must choose an input for a current state of the IUT to lead it towards some of the test goals. Strategy is a function from state and test goal to input

\[St: S \times G \rightarrow I \]

- State space represented by an I/O-EFSM model is usually very large or infinite. Symbolic representation is needed
- Strategy must be efficient
 - Extensive search and planning is not possible on-line
 - Industrial requirements: 10-100 ms for each step
Expressing test goals

- Several usual coverage criteria
 - All transitions
 - Pairs of transitions
 - Guard border conditions
- Expressing test goals using *traps*
 - A *trap* is a pair of an edge and predicate on state and input variables
- Can express
 - transition coverage
 - every edge has a trap
 - transition sequence
 - trap condition with reference to other traps
 - repeated pass using auxiliary variable
 - trap condition with reference to auxiliary variables
Symbolic state representation

- State $s = (l, \alpha)$ is a pair of a location and assignment to state variables X_s
- Symbolic state $S = (l, C)$ is a pair of a location and a constraint. The constraint is a formula on state variables X_s
 - A constraint represents a set of assignments
 - Locations are represented explicitly
Symbolic representation of reachability

- We can represent the reachability of traps by the following constraints and distances
 - $C^+_{l,tr}$ – there is a run of automaton that starts from state $(l,C^+_{l,tr})$ and ends with a transition that covers the trap tr. $L^+_{l,tr}$ is the length of the longest of such runs.
 - $C^+_{l,tr}$ is a quantifier free formula on state variables X_s.
 - Reachability constraints are calculated by repeated application and combination of pre-image calculation procedure.
Symbolic representation of runs

- Guiding constraints are needed for finding an input and transition that leads to the chosen trap.

- $C_{e,\text{tr}}^g$ – constraint on state and input variables that an edge e is the initial transition of the shortest run that ends with a transition that covers the trap tr.

A guarding constraint for the

- edge $l_0 \rightarrow l \geq$ is $v \geq \text{Price}$
- edge $l_0 \rightarrow l <$ is $v < \text{Price}$
Reachability analysis

- Breath-first backwards symbolic traversal of the automaton starting from the trap edge and condition

initialise C to false, L to 0

$C_{tr, tr}^+ = \text{guard}_{tr} \land \text{condition}_{tr}$

while fixpoint, initial state or search depth is reached

for each state s on the depth level do

$C_{l, tr}^+ := \exists I: \forall C_{e, tr}^+$ // e - edge leaving from l; I - input

if weaker($C_{l, tr}^+$, $C_{l, tr}^+$) // C^*_s changed

$C_{l, tr}^+ := \text{compact}(C_{l, tr}^+ \lor C_{l, tr}^+)'$

$L_{l, tr}^+ := \text{depth}$

for each transition e coming to l

$C_{e, tr}^+ := \text{guard}_e \land \text{wp}(\text{update}_e, C_{l, tr}^+)$

$C_{e, tr}^g := \text{compact}(C_{e, tr}^g \lor (C_{e, tr}^+ \land \neg C_{\text{source}(e), tr}^+))$
Compacting symbolic representation

- Compat representation of the symbolic states is crucial to the efficiency of the application
- > 90 % of the time of the algorithm spent in \textit{compact()}
- Uses a combination of Z3 simplification functions

 \begin{verbatim}
 ELIM_QUANTIFIERS = true
 STRONG_CONTEXT_SIMPLIFIER = false
 CONTEXT_SIMPLIFIER = false
 simplify()
 STRONG_CONTEXT_SIMPLIFIER = true
 simplify() // double strong simplification
 simplify()
 STRONG_CONTEXT_SIMPLIFIER = false
 CONTEXT_SIMPLIFIER = true
 simplify()
 \end{verbatim}
Simplification parameter tuning

- Have tried to play with different tuning parameters:
 - ARITH_PROCESS_ALL_EQS = true
 - ARITH_EQ_BOUNDS = true
 - ARITH_ADAPTIVE = true
 - ARITH_PROP_STRATEGY = #
 - ELIM_BOUNDS = TRUE
 - FWD_SR = true
 - PROPAGATE_BOOLEANS = true

- No additional reduction

- Or a little reduction in expense of much longer computation time on some examples
Convergence checking

- Check if the newly generated symbolic state weakens the previous symbolic state (constraint) for the location
 - Checked using satisfiability check of the implication

\[
\text{weaker}(C^{+}_{l, tr}, C^{+}_{l, tr}) \equiv \text{SAT}(\neg (C^+_{l, tr} \Rightarrow C^{+}_{l, tr}))
\]

- Easier than compacting
 - but regular compacting of relevant components makes it feasible
 - Done on un-compacted constraints and only weakening constraints are compacted
On-line test generation

\[l = l_0 \] //start from the initial location

while exist uncovered traps

select nearest reachable trap \(tr \)

with \(C^+_{l, tr}[X_s/\alpha] \) satisfiable and minimal \(L^+_{l, tr} \)

\textit{input} := select input for moving towards trap \(tr \)

by finding a satisfying model for \(C_{\text{source}(l), tr}[X_s/\alpha] \)

or doing constraint solving

\textit{output} := communicate_SUT(\textit{input})

simulate \textit{input/output} on model and determine next location \(l \)

\textbf{if} the output of does not conform to the model

\textbf{stop}(test_failed)

end while

\textbf{stop}(test_passed)
Telecom Billing Case-Study

- Model: 13 locations, 47 transitions
- Path length to trap from initial state: 189
- Size of ASCII representation of the strategy: 34MB
- Time for test generation (symbolic analysis + input) [1 GHz Opteron]
 - 66 minutes for constraint generation to initial state
 - < 2 minutes with constraint generation to depth 10 and heuristic on-line test generation
- Average time for a *compact()* operation ~1.3 sec
- Average time for a *SAT()* operation ~0.09 sec
Past/Ongoing/Future work

- Alternatives considered
 - RedLog for compacting, quantifier ellimination
 - CVC3 for SAT solving
- Invariant discovery
- Extend modelling frameworks
 - Hierarchical automaton (subset of Statecharts)
 - Distributed systems
 - Timed systems
- Wider background theory and modelling language
 - Arrays
 - Recursive data-types
Conclusions

Thanks to all developers and supporters of Z3

Issues
- Some encountered
- None at the moment

Feature requests
- Better documentation for tuning parameters
 Would be nice to know (reference) what is behind each parameter to be able to suitability for the application
- Interface for custom rewriting/simplification rules

Conclusions
- Z3 does a good job and has a quite reasonable set of defaults for the parameters and heuristics