Streaming Verification of Outsourced Computation

Graham Cormode
G.Cormode@warwick.ac.uk

Amit Chakrabarti (Dartmouth)
Andrew McGregor (U Mass Amherst)
Michael Mitzenmacher (Harvard)
Justin Thaler (Harvard)
Ke Yi (HKUST)
Big Data Streams

- The data stream model requires computation in small space with a single pass over input data
 - Models large network data, database transactions
- Fundamental challenge of data stream analysis: Too much information to store or transmit
- So process data as it arrives: one pass, small space: the data stream approach.
- Approximate answers to many questions are OK, if there are guarantees of result quality
 - Parameters: space needed, time per update as function of approximation accuracy, probability of error
Data Stream Algorithms

- Many problems solved efficiently in streaming model
 - F_0: How many distinct items (out of 10^{18} possible)?
 - HH: Which items occur most frequently?
 - H: What is the (empirical) entropy of the observed dbn?

- But many other natural problems are “hard” in this model
 - Hardness means large amount of space is needed
 - E.g. Was a particular item in the stream?
 - E.g. What is inner product of two vectors?

- **Lower bounds** proved via communication complexity
 - Independent of any assumptions on computational power
Streaming Interactive Proofs

- “Practical” solution: outsource to a more powerful “prover”
 - Fundamental problem: how to be sure that the prover is being honest?
- Prover provides “proof” of the correct answer
 - Ensure that “verifier” has very low probability of being fooled
 - Related to communication complexity Arthur-Merlin model, and Algebrization, with additional streaming constraints
Motivating Applications

- **Cloud Computing**
 - To save money, and energy, outsource data to a 3rd party
 - But want to know they are honest, without duplicating!
 - Use a streaming interactive proof to verify computation

- **Trusted Hardware**
 - Hardware components within a (distributed) system (e.g. video card, additional computing cores)
 - Use streaming interactive proofs for (mutual) trust
One Round Model

- One-round model [Chakrabarti, C, McGregor 09]
 - Define protocol with help function h over input length N
 - Maximum length of h over all inputs defines help cost, H
 - Verifier has V bits of memory to work in
 - Verifier uses randomness so that:
 - For all help strings, $\Pr[\text{output} \neq f(x)] \leq \delta$
 - Exists a help string so that $\Pr[\text{output} = f(x)] \geq 1-\delta$
 - $H = 0$, $V = N$ is trivial; but $H = N$, $V = \text{polylog } N$ is not
Frequency Moments

- Given a sequence of \(m \) items, let \(w_i \) denote frequency of item \(i \)
- Define \(F_k = \sum_i |w_i|^k \)
 - Core computation in data streams
 - Requires \(\Omega(N) \) space to compute exactly
 - Need polynomial space to approximate for \(k>2 \)

Results: for \(h,v \) s.t. \((hv) > N \), exists a protocol with
\(H = k^2 h \log m, V = O(k v \log m) \) to compute \(F_k \)
 - Lower bounds: \(HV = \Omega(N) \) necessary for exact,
 and \(HV = \Omega(N^{1-5/k}) \) for approximate \(F_k \) computation
Frequency Moments

- Map $[N]$ to $h \times v$ array
- Interpolate entries in array as a polynomial $f(x,y)$
- Verifier picks random r, evaluates $f(r, j)$ for $j \in [v]$
 - Low-degree extension (LDE) of the input
- Prover sends $s(x) = \sum_{j \in [v]} f(x, j)^k$ (degree kh)
 - Verifier checks $s(r) = \sum_{j \in [v]} f(r,j)^k$
 - Output $F_k = \sum_{i \in [h]} s(i)$ if test passed
- Probability of failure small if evaluated over large enough field
Streaming LDE Computation

- Must evaluate $f(r,i)$ incrementally as $f()$ is defined by stream
- Structure of polynomial means updates to (a,b) cause

$$f(r,i) \leftarrow f(r,i) + p_{a,b}(r,i)$$

where $p_{a,b}(x,y) = \prod_{i \in [h]\{a\}} (x-i)(a-i)^{-1} \cdot \prod_{j \in [v]\{b\}} (y-j)(b-j)^{-1}$
- Lagrange polynomial, can be evaluated in small space

- Can be computed quickly, using appropriate precomputed look-up tables
Applications of Frequency Moments

- Inner products: \(x \cdot y = \frac{1}{2} (F_2(x+y) - (F_2(x) + F_2(y))) \)
 - Adapt previous protocol to verify directly

- Approximate \(F_2 \):
 - Methods known to \((1 \pm \varepsilon)\) approximate \(F_2 \) by computing \(F_2 \) of a random projection
 - Random projection computable in small space
 - Gives \(HV = \Theta(1/\varepsilon^2) \) tradeoff

- Approximate \(F_\infty = \max_i m_i \):
 - Observe that \(F_\infty^t \leq F_t \leq N F_\infty^t \)
 - Pick \(t = \log N / \log (1+\varepsilon) \) to get \((1+\varepsilon)\) approx to \(F_\infty \)
 - Gives \(HV = \Theta(1/\varepsilon^3 \text{ poly-log } N) \) tradeoff
Multi-Round Protocol

- **Advantage of one-round protocols**: Prover can provide proof without direct interaction (e.g. publish + go offline)
- **Disadvantage**: Resources still polynomial in input size
- Multi-round protocol improves exponentially \([C, \text{Thaler, Yi 12}]\):
 - Prover and Verifier follow communication protocol
 - \(H\) now denotes upper bound on total communication
 - \(V\) is verifier’s space, study tradeoff between \(H\) and \(V\) as before

![Diagram of streaming verification of outsourced computation]

Streaming Verification of Outsourced Computation
Multi-Round Frequency Moments

Now index data using \(\{0,1\}^d \) in \(d = \log N \) dimensional space

- Verifier picks one \((r_1 \ldots r_d) \in [p]^d \), and evaluates \(f^k(r_1, r_2, \ldots r_d) \)
- Round 1: Prover sends \(g_1(x_1) = \sum_{x_2 \ldots x_d} f^k(x_1, x_2 \ldots x_d) \), V sends \(r_1 \)
- Round i: Prover sends \(g_i(x_i) = \sum_{x_{i+1} \ldots x_d} f^k(r_1, r_2 \ldots r_{i-1}, x_i, x_{i+1} \ldots x_d) \)
 Verifier checks \(g_{i-1}(r_{i-1}) = g_i(0) + g_i(1) \), sends \(r_i \)
- Round d: Prover sends \(g_d(x_d) = f^k(r_1, \ldots r_{d-1}, x_d) \)
 Verifier checks \(g_d(r_d) = f^k(r_1, r_2, \ldots r_d) \)
Multi-Round Frequency Moments

- **Correctness**: prover can’t cheat last round without knowing r_d
- Then can’t cheat round i without knowing r_i...
 - Similar to protocols from “traditional” Interactive Proofs
- Inductive proof, conditioned on each later round succeeding
- **Bounds**: $O(k^2 \log N)$ total communication, $O(k \log N)$ space
- V’s incremental computation possible in small space, via
 $$\prod_{j=1}^{d} (r_j + \text{bit}(j,i)(1-2r_j))$$
- Intermediate polynomials relatively cheap for helper to find
General Computations

- Want to be able to solve more general computations
- **Framework**: “Interactive Proofs for Muggles”, STOC’08
 Goldwasser, Kalai, Rothblum [GKR08]
- **Idea**: computations modeled by arithmetic circuits
 - Arranged into layers of addition and multiplication gates
- (Super)Round i: Prover claims value of LDE of layer i at r_i
 Run multiround IP to reduce to a claim about layer $i-1$ at r_{i-1}
- Start with claimed output, end with LDE of input
 - Verifier can check against own calculated LDE
Putting GKR08 into practice

- Verifier needs an LDE of the “wiring polynomial” of the circuit
 - E.g. $\text{add}(a, b, c) = 1$ iff gate a at layer i has inputs b, c from layer $i-1$
 - Looks costly to evaluate directly, need to sum LDE over n^3 values?
 - Use the multilinear extension of the add() and mult() polynomials
 - Each gate contributes one term to the sum, so linear in circuit size

- Linear in circuit size is still slow – same as evaluating the circuit!
 - Take advantage of regularity in common wiring patterns
 - E.g. binary tree: compute contribution of all gates at once
 - Also holds for circuits for FFT, Matrix multiplication etc.
Engineering GKR08

- Include some “shortcut” gates in addition to add, mult
 - Wide-sum \oplus: add up a large number of inputs
 - Only needs a single sum-check protocol
 - Exponentiation: raise to a constant power (x^8, x^{16})
 - More efficient than repeated self-multiplication

- Choose the right field size for computations
 - Work modulo a large Mersenne prime allows efficient arithmetic
Experimental Results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Gates</th>
<th>Size (gates)</th>
<th>P time</th>
<th>V time</th>
<th>Rounds</th>
<th>Comm</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_2</td>
<td>$+, \times$</td>
<td>0.4M</td>
<td>8.5 s</td>
<td>.01 s</td>
<td>986</td>
<td>11.5 KB</td>
</tr>
<tr>
<td>F_2</td>
<td>$+, \times, \oplus$</td>
<td>0.2M</td>
<td>6.5 s</td>
<td>.01 s</td>
<td>118</td>
<td>2.5 KB</td>
</tr>
<tr>
<td>F_0</td>
<td>$+, \times$</td>
<td>16M</td>
<td>552.6 s</td>
<td>.01 s</td>
<td>3730</td>
<td>87.4 KB</td>
</tr>
<tr>
<td>F_0</td>
<td>$+, \times, x^8, \oplus$</td>
<td>8.2M</td>
<td>432.6 s</td>
<td>.01 s</td>
<td>1310</td>
<td>51.0 KB</td>
</tr>
<tr>
<td>F_0</td>
<td>$+, \times, x^{16}, \oplus$</td>
<td>6.2M</td>
<td>441.2 s</td>
<td>.01 s</td>
<td>1024</td>
<td>56.8 KB</td>
</tr>
<tr>
<td>PMwW</td>
<td>$+, \times, x^8, \oplus$</td>
<td>9.6M</td>
<td>482.2 s</td>
<td>.01 s</td>
<td>1513</td>
<td>56.1 KB</td>
</tr>
</tbody>
</table>

- (Relatively) efficient results for frequency moments, pattern matching with wildcards (PMwW)
Further Recent Enhancements

- Prover’s work is data parallel: can take use of GPU for acceleration [Thaler et al. HotCloud 2012]
- Further tricks shave log factors off prover’s effort [Thaler, Crypto 2013]
- Reduce dependency on domain size when data is sparse [Chakrabarti et al., 2013]
- Use crypto tools to handle three party model (data owner, server, clients) [Cormode et al., SIGMOD 2013]
Open Questions

- **Lower bounds** for multi-round versions of the protocols
 - May need new communication complexity models

- **Characterize problems** that can be solved in this model
 - NP is known to be solvable with $H = \text{poly}(N)$, $V = \log N$ [Lipton 90]
 - But we want $H=O(N)$, and ideally $H=o(N)$

- **Use** these protocols
 - Protocols seem practical, but are they compelling?
 - For what problems are protocols most needed?