Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Algorithms and Theory

Exploring game theory, market equilibriums, efficient algorithms


We are working in emerging fields within theoretical computer science, including privacy in statistical databases and quantum computing. We also investigate algorithms and mathematics for the Internet, including web search, social-network analysis, spam fighting, and web security.

Classical areas of interest include complexity, cryptography, algebraic computation, random structures, and spectral methods for data analysis. We strive to develop scalable algorithms for learning and data mining, cryptographic algorithms, graph algorithms, synchronization algorithms, networking algorithms, and sampling algorithms. We also look at problems at the intersection of systems, networking, and algorithms research: We study the algorithmic foundations of the systems that drive today’s computing—such as cloud computing, data centers, large-scale distributed systems, and mobile computing—and we apply our expertise in practice to advance the state of the art in applied algorithm design and deliver highly efficient, scalable, robust solutions.

We also conduct research in several theoretical areas in mathematics and physics that are beyond the traditional scope of computer science but are closely connected. Researchers actively work on combinatorics, geometry and topology, probability theory, statistical physics, number theory, and functional analysis.

Publications

Yu Zheng, Trajectory Data Mining: An Overview, in ACM Transaction on Intelligent Systems and Technology, ACM – Association for Computing Machinery, September 2015.

Neeraj Kayal and Chandan Saha, Lower bounds for depth three arithmetic circuits with small bottom fanin, in Conference on Computational Complexity (CCC), LIPICS, June 2015.

Ankush Desai, Shaz Qadeer, Sriram Rajamani, and Sanjit Seshia, Iterative cycle detection via delaying explorers, no. MSR-TR-2015-28, 25 March 2015.

Margus Veanes and Nikolaj Bjørner, Symbolic Tree Automata, in Information Processing Letters, vol. 115, no. 3, pp. 418-424, Elsevier, March 2015.

Ying Yan, Jiaxing Zhang, Bojun Huang, Xuzhan Sun, Jiaqi Mu, Zheng Zhang, and Thomas Moscibroda, Distributed Outlier Detection using Compressive Sensing, in SIGMOD 2015 (To Appear), ACM – Association for Computing Machinery, March 2015.

More publications ...