Generalized Second Price (GSP) auctions are widely used by search engines today to sell their ad slots. Most search engines have supported the broad match between queries and bid keywords when executing the GSP auctions, however, it has been revealed that the GSP auction with the standard broad-match mechanism they are currently using (denoted as SBM-GSP) has several theoretical drawbacks (e.g., its theoretical properties are known only for the single-slot case and full-information setting, and even in this simple setting, the corresponding worst-case social welfare can be rather bad). To address this issue, we propose a novel broad-match mechanism, which we call the Probabilistic Broad-Match (PBM) mechanism. Different from SBM that puts together the ads bidding on all the keywords matched to a given query for the GSP auction, the GSP with PBM (denoted as PBM-GSP) randomly samples a keyword according to a predefined probability distribution and only runs the GSP auction for the ads bidding on this sampled keyword. We perform a comprehensive study on the theoretical properties of the PBM-GSP. Specifically, we study its social welfare in the worst equilibrium, in both full-information and Bayesian settings. The results show that PBM-GSP can generate larger welfare than SBM-GSP under mild conditions. Furthermore, we also study the revenue guarantee for PBM-GSP in Bayesian setting. To the best of our knowledge, this is the first work on broad-match mechanisms for GSP that goes beyond the single-slot case and the full-information setting.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sciences—Economics
General Terms: Economics, Theory
Additional Key Words and Phrases: Auction Theory, Mechanism Design, Price of Anarchy, Sponsored Search

1. INTRODUCTION

Online advertising has become a key revenue source for many businesses on the Internet. Sponsored search is a major type of online advertising, which displays paid advertisements (ads) along with organic search results. Generalized Second Price (GSP) auction is one of the most commonly used auction mechanisms in sponsored search, which works as follows. When a query is issued by a web user, the search engine ranks all the ads bidding on this query (or keywords related to the query) according to their bid prices, and charges the owner of a clicked ad by the minimum bid price for him/her to maintain the current rank position.

1This work was conducted when the second and fifth authors are interns in Microsoft Research.

Author addresses: Wei Chen, Tie-Yan Liu and Tao Qin, Microsoft Research; email: {weiche,tyliu,taoqin}@microsoft.com; Di He and Liwei Wang, Department of Machine Intelligence, Peking University; email: {hedi, wanglw}@cis.pku.edu.cn; Yixin Tao, Department of Computer Science, Shanghai Jiao Tong University; email: tomtao26@sjtu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC’14, June 8–12, 2014, Stanford, CA, USA. Copyright © 2014 ACM 978-1-4503-2565-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2600057.2602828
If only the ads that exactly bid on the query are included in the auction, we call the corresponding mechanism an exact-match mechanism. The GSP auction in this specific setting has been well studied in the literature [Aggarwal et al. 2006; Lahaie and Pennock 2007; Varian 2007; Edelman et al. 2007; Goel and Munagala 2009; Babaioff and Roughgarden 2010; Caragiannis et al. 2011], and has been shown to have a number of nice theoretical properties: (1) It possesses an efficient (welfare-maximizing) Nash equilibrium; (2) Its social welfare in equilibrium is fairly good even in the worst case: the pure price of anarchy (PoA) is bounded by 1.282 and the Bayes-Nash PoA is bounded by 2.927; (3) In the Bayesian setting, the GSP auction paired with the Myerson reserve price generates at least a constant fraction (i.e., $1/6$) of the optimal revenue in its Bayes-Nash equilibria for MHR distribution.

Despite the fruitful and positive results, the exact-match mechanism is not sufficient when we are faced with practical requirements in commercial search engines. First, the query space is extremely large (billions of queries are issued by web users every day), so it is practically impossible for advertisers to bid on every query related to their ads. Second, even if advertisers are capable enough to bid on the huge number of related queries, the search engine might not be able to afford it due to the scalability and latency constraints. Due to these reasons, commercial search engines usually use a broad-match mechanism to enhance the GSP auction. A broad-match mechanism requires advertisers to bid on at most k keywords instead of an arbitrary number of queries, and matches the keywords to queries using a query-keyword bipartite graph (in which the number of keywords is significantly smaller than the number of queries). The broad-match mechanism is friendly to advertisers since they only need to consider a relatively small number of keywords in order to reach a large number of related queries. The mechanism is also friendly to the search engine since it restricts the complexity of the bidding language and therefore that of the auction system.

Today, most search engines implement the broad-match mechanism in a straightforward manner. That is, when a query is issued, all the ads bidding on the keywords that can be matched to the query on the query-keyword bipartite graph will be put together for the GSP auction. And for every advertiser, the bids on the matched keywords will be transformed to the bid on the query using some pre-defined heuristics (e.g., the maximum bid on the matched keywords). For ease of reference, we call the broad-match mechanism described above as the Standard Broad-Match GSP mechanism, or SBM-GSP for short.

Although this mechanism effectively addresses the problems with the exact-match mechanism, as far as we know, it has several theoretical drawbacks.

— The social welfare of the SBM-GSP mechanism was studied in [Dhangwatnotai 2011], for the single-slot case and full-information setting only. By using the notion of homogeneity (denoted as c) to measure the diversity of an advertiser’s valuations over different queries that can be matched to a keyword, an almost-tight pure PoA bound was derived, whose order is $\Theta(c^2)$. Considering that c is usually large in practice, it can be concluded that the social welfare of the SBM-GSP mechanism can be rather bad in its worst equilibrium.

— One has not obtained a complete picture about the theoretical properties of the SBM-GSP mechanism: no results are available regarding the multi-slot case (which is, however, more practically important since most search engines sell multiple ad slots per query), and even for the single-slot case, the social welfare and revenue in the Bayesian setting are not clear.

Given the aforementioned limitations of the SBM-GSP mechanism, a natural question to ask is whether we can design a broad-match mechanism with better guarantees on its performance, in terms of both social welfare and revenue, for both single-slot and
multi-slot cases, and in both full-information and Bayesian settings. This is exactly the focus of our work.

In this paper, we propose a new broad-match mechanism, which we call Probabilistic Broad-Match mechanism. Its basic idea is as follows. For each query, our mechanism assigns a matching probability to every keyword that can be matched to this query on the query-keyword bipartite graph. When the query is issued by a user, the mechanism randomly chooses a keyword according to the matching probability distribution and runs the GSP auction only upon those ads that bid on the chosen keyword. For simplicity, we also use PBM-GSP to refer to the above mechanism.

We perform a comprehensive study on the social welfare in equilibrium of the PBM-GSP mechanism, for both single-slot and multi-slot cases, and in both full-information and Bayesian settings. We also derive a revenue bound for the PBM-GSP mechanism for both single-slot and multi-slot cases in the Bayesian setting. To the best of our knowledge, this is the first work on broad-match mechanisms that goes far beyond the single-slot case and the full-information setting.

Our Results. The contributions of our work can be summarized as follows.

— (Section 3) We propose a novel broad-match mechanism (i.e., the PBM mechanism) for multi-slot sponsored search auctions.

— (Section 4) We analyze the social welfare in equilibrium of the PBM-GSP mechanism in both full-information and Bayesian settings. We define a new concept, called keyword-level expressiveness (denoted as β), which can better characterize the expressiveness of the bidding language in the PBM-GSP mechanism than the concept of expressiveness proposed in previous work [Dhangwatnotai 2011].

— (Section 4.1) We extend the concept of homogeneity c defined in [Dhangwatnotai 2011] to the Bayesian setting, and prove that the Bayes-Nash PoA of PBM-GSP is at most $\frac{c\beta(1+\beta)}{(c-1)^2\beta}$ in the multi-slot case. The bound can be further optimized to $\frac{c(1+\beta)}{\beta}$ in the single-slot case.

— (Section 4.2) We prove that in the full-information setting, the pure PoA of PBM-GSP is at most $\frac{c\beta(1+\beta)}{\beta}$ when there are multiple slots to display ads. And the bound can be improved to $\frac{c}{\beta}$ in the single-slot case (which is tight with respect to each factor). Furthermore, we show that the pure PoA bound of PBM-GSP is better than that of SMB-GSP in the same setting under mild conditions.

— (Section 5) We analyze the revenue bound of PBM-GSP in the Bayesian setting. We prove that by using the Myerson reserve price to each keyword, PBM-GSP can achieve a revenue at least $\frac{\beta}{1+\beta} \frac{1}{\eta(c^2)^2}$ of the optimal social welfare with MHR distribution, where η is the maximum derivative of the virtual value function.

2. PRELIMINARIES

In this section, we introduce the basics about broad-match auctions, and some preliminary concepts that will be used in our theoretical analysis.

2.1. Broad-Match Auctions

According to [Feldman et al. 2007; Broder et al. 2009; Even Dar et al. 2009; Dhangwatnotai 2011], a broad-match mechanism can be defined on a query-keyword bipartite graph. Denote Q as the query space, and denote P as a probability distribution over Q, which indicates the probability that query q is issued by users. Denote S as the keyword space. In practice, the size of Q is much larger than the size of S. Denote $G = (Q, S, E)$ as a (undirected) bipartite graph between queries and keywords, in which an edge $(q, s) \in E$ if and only if query q can be matched to keyword s (or equivalently, s
can be matched to \(q \). Denote \(N_G(v) \) as the neighborhood of vertex \(v \in Q \cup S \), i.e., for any query \(q \), \(N_G(q) = \{ s : (q, s) \in E \} \) represents the set of keywords that can be matched to the query, and for any keyword \(s \), \(N_G(s) = \{ q : (q, s) \in E \} \) represents the set of queries that can be matched to the keyword. Without loss of generality, we assume \(N_G(s) \neq \emptyset \), for all \(s \) and \(N_G(q) \neq \emptyset \), for all \(q \).

Assume there are \(n \) advertisers and \(n \) slots. Denote \(w_k \) as the click probability associated with the \(k \)-th ad slot\(^2\), which satisfies \(w_i \geq w_j \) i.f.f \(i < j \). We assume advertiser \(i \) has a private valuation \(v_i^q \) for query \(q \in Q \) if his/her ad is clicked by the users, denote \(v = (v_1, v_2, ..., v_n) \) as the valuation profile of advertisers in which \(v_i \in R^{|Q|}_+ \) is the vector indicating the \(i \)-th advertiser's valuation for all the queries, and \(v_{-i} \) as the valuations of the other advertisers. We assume for any query \(q \), there is at least one advertiser that positively valuates it. Define \(Q_i = \{ q \in Q : v_i^q > 0 \} \) as the query set that advertiser \(i \) has positive values on. For ease of reference, in the rest of the paper, we will call the queries (keywords) that an advertiser positively valuates positive queries (keywords).

Denote \(b = (b_1, b_2, ..., b_n) \) as the advertisers' bid profile, where \(b_i \in R^{|S_i|}_+ \) is a vector indicating the \(i \)-th advertiser's bid prices on all the keywords in \(S_i \) and denote \(b_{-i} \) as the bids of advertisers excluding \(i \). According to the industry practice, we assume that each advertiser can only bid on up to \(\kappa \) keywords. As a result, for each \(b_i \), there are at most \(\kappa \) positive values. Denote \(b_i^s \) as the bid price of advertiser \(i \) on keyword \(s \) and \(b^s \) as all the advertisers' bids on keyword \(s \).

Based on the notations above, SBM-GSP can be described as follows. When a query \(q \) is issued, the SBM-GSP mechanism first finds all the keywords that can be matched to the query. Second, it includes all the ads that bid on these keywords into the auction and uses the following formula to transform the bid prices on keywords of advertiser \(i \) to his/her bid price on the query: \(b_i^q = \max_{v \in N_G(q)} b_i^s \). In the end, the GSP auction is run upon the ads with their query-level bids, i.e., all the ads are ranked by their bids, and the payment of a clicked ad equals the bid of the ad ranked right below it.

2.2. Solution Concepts

In this paper, we consider rational behaviors under various assumptions on the information availability to the advertisers. In general, the advertisers are engaged as players in a game defined by the auction mechanism (in the remaining of the paper, we use “advertiser” and “player” interchangeably). Every advertiser aims at selecting a bidding strategy that maximizes his/her utility. According to the availability of the information, we can categorize the settings into the Bayesian setting (partial information setting) and the full-information setting respectively.

In the Bayesian setting, we assume that the valuation (type) profile \(v \) is drawn from a publicly known distribution \(F \). A strategy for player \(i \) is a (possibly randomized) mapping \(b_i : R^{|Q|}_+ \rightarrow R^{|S_i|}_+ \), mapping his/her type \(v_i \) to a bid vector \(b_i(v_i) \). We use \(b(v) = (b_1(v_1), b_2(v_2), ..., b_n(v_n)) \) to denote the corresponding bid profile when \(b(\cdot) \) is applied to \(v \). Denote \(w_i(b) \) as the utility function of advertiser \(i \). We say a strategy \(b(\cdot) \) is a Bayes-Nash equilibrium for distribution \(F \), if for all \(i \), all \(v_i \), and all alternative strategies \(b'_i(\cdot) \),

\[
E_{v_{-i},b}[w_i(b_i(v_i), b_{-i}(v_{-i}))[v_i]] \geq E_{v_{-i},b}[w_i(b'_i(v_i), b_{-i}(v_{-i}))[v_i]].
\]

In other words, in a Bayes-Nash equilibrium, each player maximizes his/her expected utility using strategy \(b_i(\cdot) \), assuming that the others bid according to strategies \(b_{-i}(\cdot) \).

In the full-information setting, the valuation profile \(v \) is known and fixed. In this setting, a pure strategy of any advertiser corresponds to a bid vector \(b_i \), we say that

\(^2\)In real world, the slot number is usually bounded by a constant \(K \). In this case, we can define \(w_k = 0, k > K \) without loss of any generality.
a bid profile \(b \) is a (pure) Nash equilibrium if there is no deviation from which the players can be better off, i.e., for all advertiser \(i \), for all \(b_i' \),
\[
u_i(b_i, b_{-i}) \geq u_i(b_i', b_{-i}).
\]

3. PROBABILISTIC BROAD-MATCH MECHANISM

In this section, we introduce our proposed probabilistic broad-match mechanism.

As discussed in the introduction, the SBM-GSP mechanism has several drawbacks from a theoretical perspective. In this paper, we develop a new broad-match mechanism with better theoretical guarantee, which we call Probabilistic Broad-Match (PBM-GSP) mechanism. The detail of the PBM-GSP mechanism is described in Algorithm 1, and can be explained as below.

ALGORITHM 1: Probabilistic Broad-Match Mechanism with GSP Auction (PBM-GSP)

Input: Advertiser's bid profile \(b \), matching probability \(\pi_q(s) \) for any query \(q \), keyword \(s \).
Output: The ads to show for each query and the prices to charge from advertisers.

for each query \(q \) submitted to search engine do
- Sample keyword \(s \) according to distribution \(\pi_q(s) \);
- Set \(b_i' \) to be \(b_i^q \);
- Run the GSP auction on \(b_1^q, \ldots, b_n^q \);
end

Given the query-keyword bipartite graph \(G \), for each query \(q \in Q \), we impose a matching probability distribution \(\pi_q(s) \) whose support is \(N_G(q) \), i.e., \(\pi_q(s) > 0 \) if and only if \(s \in N_G(q) \), and \(\sum_{s \in N_G(q)} \pi_q(s) = 1 \). With this matching probability distribution, for any issued query \(q \), the mechanism randomly samples a keyword \(s \in N_G(q) \), and selects the ads bidding on the keyword \(s \) into the auction. For each selected ad, the bid price on keyword \(s \) will be directly used as the bid price on query \(q \) during this round of auction, i.e., \(b_i^q = b_i^q \), where \(s \sim \pi_q \), and then a GSP auction is run to determine the ad allocations and prices.

For ease of description, we define \(\sigma_{s,b}(k) \) as the advertiser who is ranked at position \(k \) and \(\sigma_{s,b}^{-1}(i) \) as the ranking position of advertiser \(i \), for any keyword \(s \) and bid profile \(b \). For sake of rigorousness, we define \(\sigma_{s,b}(k) = \infty \) if there are fewer than \(k \) positive bids on keyword \(s \), and define \(b_{\infty}^q = v_{\infty}^q = 0 \), for any query \(q \) and keyword \(s \). We also define \(\sigma_{s,b}^{-1}(i) = \infty \) if advertiser \(i \) does not bid on keyword \(s \), and define \(w_{\infty} = 0 \). Define \(p_{s,b}(i) \) as the price charged to player \(i \) when keyword \(s \) is sampled and a user clicks on the ads, i.e., for PBM-GSP, if advertiser \(j \) is ranked right below advertiser \(i \), then \(p_{s,b}(i) = b_j^q \). With the aforementioned notations, the expected utility of advertiser \(i \) can be defined as
\[
u_i(b) = \int_{q \in Q} \sum_{s \in N_G(q)} \pi_q(s) w_{s,b}^{-1}(i) (v_i^q - p_{s,b}(i)) dP
\]

\(^3\)One may have noticed that due to the probabilistic sampling, an advertiser can only get access to a fraction of the whole query volume if he remains bidding on the same set of keywords as he/she does with SBM-GSP. Therefore, some advertisers may have to bid on more keywords so as to maintain the same visibility of their ads to the users. Fortunately, since the number of keywords is always significantly smaller than the number of queries, the situation will not be as serious as in exact-match mechanism.
As a common way to rule out unnatural equilibria [Caragiannis et al. 2011; Dhangwatnotai 2011; Caragiannis et al. 2012b; Lucier et al. 2012], we only consider conservative bidders in the theoretical analysis. It is easy to show that for any advertiser \(i\) on any keyword \(s\), a bidding price \(b_i^s > v_i^s\) is always weakly dominated by the bid \(b_i^s = v_i^s\) (see Lemma 3.1), in which \(v_i^s\) is the expected value of keyword \(s\) for advertiser \(i\) and defined as \(v_i^s \triangleq \mathbb{E}[v_i^q|s] = \frac{\int_{q \in N_G(s)} \pi_q(s) v_i^q dP}{\int_{q \in N_G(s)} \pi_q(s) dP}\).

Lemma 3.1. (Conservative bidder) For any advertiser \(i\), a bid price \(b_i^s \neq v_i^s\) for keyword \(s\) is always weakly dominated by \(b_i^s = v_i^s\), where \(v_i^s \triangleq \mathbb{E}[v_i^q|s] = \frac{\int_{q \in N_G(s)} \pi_q(s) v_i^q dP}{\int_{q \in N_G(s)} \pi_q(s) dP}\).

In PBM mechanism, bids for different keywords will not be mixed up in the same auction, thus it is easier for advertisers to evaluate their payoffs on each keyword independently. As a result, they could develop more accurate bidding strategies to reflect their valuations on each keyword. For example, it can be easily shown that in single-slot setting, for each advertiser, truthfully reporting the valuation on the keywords he/she bids is a weakly dominant strategy.

Corollary 3.2. When there is only one slot to display ads, for any advertiser \(i\), setting \(b_i^s = v_i^s\) on the keyword \(s\) he/she bids is a weakly dominant strategy.

In the next sections, we will show that this probabilistic matching can eventually improve the performances of the auction system.

4. Social Welfare Analysis

In this section, we present our theoretical results on the social welfare (efficiency) of the proposed PBM-GSP mechanism. Specifically, we study the ratio between the optimal social welfare and the worst-case welfare in equilibrium, which is also known as the Price of Anarchy (PoA) [Koutsoupias and Papadimitriou 1999; Giotis and Karlin 2008; Christoudoulou et al. 2008; Bhawalkar and Roughgarden 2011]:

— Bayes-Nash PoA : In the Bayesian setting, we assume every advertiser \(i\) privately knows his/her own valuation vector \(v_i\) for the queries, and only knows a prior distribution of other advertisers’ valuation vectors. Assume the valuation profile \(v\) is drawn from a public distribution \(F\) and the Bayes-Nash PoA is defined as

\[
\text{Bayes-Nash PoA} = \frac{\max_{F, b(\cdot):\text{a Bayes-Nash equilibrium}} \mathbb{E}_v[SW(OPT(v))] }{\mathbb{E}_{v, b(\cdot)}[SW(b(v))]},
\]

where \(SW(OPT(v))\) refers to the social welfare of the optimal allocation that allocates slot \(k\) of any query \(q\) to the player with the \(k\)-th largest value, i.e.,

\[
SW(OPT(v)) = \int_{q \in Q} \sum_{k=1}^n w_k v_{k|q}^q dP, \quad (1)
\]

where \(v_{k|q}^q\) is the \(k\)-th largest value among the valuations of query \(q\). Similarly, \(SW(b)\) refers to the social welfare of the PBM-GSP mechanism with bidding profile \(b\), i.e.,

\[
SW(b) = \int_{q \in Q} \sum_{s \in N_G(q)} \pi_q(s) \sum_{k=1}^n w_k v_{s, b(k)}^q dP. \quad (2)
\]

— Pure PoA : In the full-information setting, the valuation of each advertiser on each query is fixed and the pure PoA can be mathematically defined as follows:

\[
\text{pure PoA} = \frac{\max_{v, b: \text{a pure Nash equilibrium}} SW(OPT(v))}{SW(b)}.
\]
In order to characterize the influence of the maximum number of bid keywords, i.e., \(\kappa \), we use expressiveness to measure the capacity of the bidding language. The concept of expressiveness has been widely used in the literature of auction theory [Cramton et al. 2006; Sandholm 2007; Lahaie et al. 2008; Boutilier et al. 2008], and its theoretical foundation has been established in [Benisch et al. 2008]. In this paper, we use a new notion of expressiveness, which we call the keyword-level (KL) expressiveness. As will be seen in later sections, the KL-expressiveness will affect both the social welfare and search engine revenue for the PBM-GSP mechanism. The formal definition of KL-expressiveness is given as below.

Definition 4.1. (Keyword-Level Expressiveness) Given a valuation profile \(v \), we call the auction system \(\beta \)-KL-expressive, if for any advertiser \(i \), \(\kappa \) keywords can cover at least \(\beta \) fraction of his/her positive keywords, i.e., \(\kappa \geq \beta |\{s : N_G(s) \cap Q_i \neq \emptyset\}| \). We call an auction system \(\beta \)-KL-expressive (in the Bayesian setting), if for any valuation profile sampled from \(F \), the auction system is \(\beta \)-KL-expressive. When \(\beta = 1 \), we say the auction system is fully KL-expressive.

4.1. Bayes-Nash Price of Anarchy

In this subsection, we analyze the Bayes-Nash PoA for the PBM-GSP mechanism. We first extend the concept of homogeneity proposed in [Dhangwatnotai 2011] to the Bayesian setting. We call the extended concept expected homogeneity, which measures the diversity of advertisers’ valuations on the queries matched to the same keyword in an expectation sense. For the sake of completeness, we list the definitions for both homogeneity and expected homogeneity as follows (in the full-information setting, expected homogeneity will trivially reduce to homogeneity).

Definition 4.2. (Homogeneity) [Dhangwatnotai 2011] A keyword \(s \) is \(c \)-homogeneous if for every advertiser \(i \) and two arbitrary queries \(q_1, q_2 \in N_G(s) \), \(v_i(q_1) \leq cv_i(q_2) \). The auction system is \(c \)-homogeneous if every keyword \(s \in S \) is \(c \)-homogeneous.

Definition 4.3. (Expected Homogeneity) A keyword \(s \) is \(c \)-expected-homogeneous if for any advertiser \(i \), two arbitrary queries \(q_1, q_2 \in N_G(s), P(v_i^{q_1} \leq cE[v_i^{q_2}]) = 1 \). The auction system is \(c \)-expected-homogeneous if every keyword \(s \in S \) is \(c \)-expected-homogeneous.

We leverage the technique developed in [Caragiannis et al. 2012b], which is used to analyze the PoA bound for the GSP auction.

Lemma 4.4. [Caragiannis et al. 2012b] We say that a game is \((\lambda, \mu)\)-semi-smooth if for each player \(i \) there exists some (possibly randomized) strategy \(b_i(\cdot) \) (depending only on the type of the player) such that \(\sum_i E_{b_i(v_i)}[u_i(b_i(v_i), b_{-i})] \geq \lambda \cdot SW(OPT(v)) - \mu \cdot SW(b) \) holds for every pure strategy profile \(b \) and every (fixed) type vector \(v \) (The expectation is taken over the random bits of \(b_i(v_i) \)). If a game is \((\lambda, \mu)\)-semi-smooth and its social welfare is at least the sum of the players’ utilities, then the price of anarchy with uncertainty is at most \((\mu + 1)/\lambda \).

With the above definitions and lemmas, we give an upper bound for the Bayes-Nash PoA of the PBM-GSP mechanism.

4In real sponsored search systems, the number of keywords that an advertiser can bid on is usually large enough to satisfy most of his/her needs. For example, in Google Adwords, advertisers are allowed to bid up to 3 million keywords, which can be regarded as quite a large number. In this case, we can consider the system as fully KL-expressive.
THEOREM 4.5. If the auction system is β-KL-expressive and c-expected-homogeneous, and the GSP auction is a (λ, μ)-semi-smooth game, the Bayes-Nash PoA for the PBM-GSP mechanism is at most $c(\frac{\beta n + 1}{\beta \lambda})$.

To prove the theorem, we use the welfare generated from a truthful bidding profile v to connect the optimal welfare and the welfare in any Bayes-Nash equilibrium. Here the truthfull bidding profile v denotes the situation when all advertisers bid their expected values on any keyword and there is no κ constraint, i.e., $v^*_i = v^*_q$. In this situation, $SW(v)$ equals $\int_{q \in \mathcal{Q}} \sum_{s \in \mathcal{N}_G(q)} \pi_q(s) \sum_{k=1}^n w_k v^*_{[k]} dP$, where $v^*_{[k]}$ is the k-th largest value among all the expected valuations on keyword s.

PROOF. We prove the theorem in two steps. First, we bound the ratio between $E_v[SW(b(v))]$ and $E_v[SW(v)]$, and then bound the ratio between $E_v[SW(v)]$ and $E_v[SW(OPT(v))]$. The proof details of the two steps are given below.

For the first step, we show if the GSP auction is a (λ, μ)-semi-smooth game, for any Bayes-Nash equilibrium $b(\cdot)$ of the PBM-GSP mechanism, the following bound holds,

$$\frac{E_v[SW(v)]}{E_v[b(v)]} < \frac{\beta \mu + 1}{\beta \lambda}. \tag{3}$$

Note that with the PBM-GSP mechanism, advertisers will not compete across keywords. For each advertiser i, define the utility on any positive keyword s as $u^*_i(b^*) = \int_{q \in \mathcal{Q}} \pi_q(s) w_{\sigma_{-h(i)}^*(q)}(v_q^* - p_{x,b}(i)) dP$. By the definition of $v^*_{[k]}$, this utility function can be rewritten as $u^*_i(b) = \int_{q \in \mathcal{Q}} \pi_q(s) w_{\sigma_{-h(i)}^*(q)}(v_q^* - p_{x,b}(i)) dP$. Thus for this particular advertiser's utility is exactly that for the GSP auction with true value defined as $v^*_i \int_{q \in \mathcal{Q}} \pi_q(s) dP$. Denote S_i as the set of positive keywords for advertiser i. Considering that the game within a given keyword is (λ, μ)-semi-smooth, there must exist a (randomized) strategy $h^*_i(\cdot)$ on keyword s satisfying, for every pure strategy b,

$$\sum_{i \in S_i} E_{h^*_i((s))}[u_i^*(h^*_i(v^*_i), b^*_i)] \geq \lambda SW(v, s) - \mu SW(b, s), \tag{4}$$

where $SW(b, s)$ is the welfare generated from keyword s, i.e., $SW(b, s) = \int_{q \in \mathcal{Q}} \pi_q(s) \sum_{k=1}^n w_k v^*_{[k]} dP$, and $SW(b) = \sum_{s \in S} SW(b, s)$.

On this basis, we design a randomized strategy $b^*_i(\cdot)$ for advertiser i as follows. The randomized strategy $b^*_i(\cdot)$ first randomly samples κ keywords from S_i, and plays the strategy $h^*_i(\cdot)$ if keyword s is sampled. Considering that the auction system is β-KL-expressive, the probability of any keyword $s \in S_i$ sampled by the strategy $b^*_i(\cdot)$ is larger than β.

Then it is straightforward to attain

$$\beta \sum_{s \in S} \sum_{i \in S_i} E_{h^*_i((s))}[u_i^*(h^*_i(v^*_i), b^*_i(v^*_i))] \geq \beta \sum_{s \in S} \sum_{i \in S_i} E_{h^*_i((s))}[u_i^*(h^*_i(v^*_i), b^*_i(v^*_i))] \geq \beta \sum_{s \in S} (\lambda SW(v, s) - \mu SW(b, s)) = \beta \lambda SW(v) - \beta \mu SW(b).$$

Given the fact that the social welfare is at least the total utility of all the players, for any Bayes-Nash equilibrium $b(\cdot)$, we have

$$E_v[SW(b(v))] \geq E_v[SW(v)] \geq \beta \lambda E_v[SW(v)] - \beta \mu E_v[SW(b(v))].$$

Then inequality (3) follows.
For the second step, we show that \(\frac{\mathbb{E}_v[SW(OPT(v))] - \mathbb{E}_v[SW(v)]}{\mathbb{E}_v[SW(v)]} \leq c \). Considering
\[
\mathbb{E}_v[SW(OPT(v))] - \mathbb{E}_v[SW(v)] = \int_{q \in Q} \sum_{s \in N_G(q)} \pi_v(s)(\sum_{k=1}^n \mathbb{E}_v[w_k v_{sk}] - c \sum_{k=1}^n \mathbb{E}_v[w_k v_{sk}]) dP,
\]
(c) it suffices to prove for any keyword \(s \) and any query \(q \in N_G(s) \),
\[\sum_{k=1}^n \mathbb{E}_v[w_k v_{sk}] - c \sum_{k=1}^n \mathbb{E}_v[w_k v_{sk}] \leq 0.\]
Since the auction system is \(c \)-expected-homogeneous, the following result holds with probability one,
\[
c\mathbb{E}_v[v_i^s] = \frac{\int_{q' \in N_G(s)} v_i^{q'} \pi_v(q') dP}{\int_{q' \in N_G(s)} \pi_v(q') dP} = \frac{\int_{q' \in N_G(s)} c\mathbb{E}_v[v_i^{q'}] \pi_v(q') dP}{\int_{q' \in N_G(s)} \pi_v(q') dP} = v_i^s.
\]
Without loss of generality, we assume that \(\mathbb{E}_v[v_1^s] \geq \mathbb{E}_v[v_2^s] \geq \cdots \mathbb{E}_v[v_n^s] \) for keyword \(s \). Then we have
\[
\sum_{k=1}^n \mathbb{E}_v[w_k v_{sk}] - c \sum_{k=1}^n \mathbb{E}_v[w_k v_{sk}] \leq c \sum_{k=1}^n \mathbb{E}_v[w_k \mathbb{E}_v[v_i^s]] - c \sum_{k=1}^n \mathbb{E}_v[w_k v_{sk}]
= c \mathbb{E}_v[\sum_{k=1}^n w_k v_k^s - \sum_{k=1}^n w_k v_{sk}] \leq 0.
\]
Applying (7) to (5), we can prove \(\frac{\mathbb{E}_v[SW(OPT(v))] - \mathbb{E}_v[SW(v)]}{\mathbb{E}_v[SW(v)]} \leq c \). Then the theorem follows by combining the two steps.

In [Caragiannis et al. 2012b], it is shown that the GSP auction is \((1 - \frac{1}{c}, 1)\)-semi-smooth. Furthermore, it is trivial to obtain that the GSP auction in the single-slot case is a \((1, 1)\)-semi-smooth game. Therefore, we can obtain the following two corollaries.

COROLLARY 4.6. If the auction system is \(\beta \)-KL-expressive and \(c \)-expected-homogeneous, the Bayes-Nash PoA for the PBM-GSP mechanism is at most \(\frac{c(\beta + 1)}{c - 1} \).

COROLLARY 4.7. If the auction system is \(\beta \)-KL-expressive and \(c \)-expected-homogeneous and there is only one slot to display ads, the Bayes-Nash PoA for the PBM-GSP mechanism is at most \(\frac{c(\beta + 1)}{c - 1} \).

4.2. Pure Price of Anarchy in Full-Information Setting

In this subsection, we analyze the pure PoA for the PBM-GSP mechanism. In particular, based on the notions of KL-expressiveness and homogeneity, we derive the following pure PoA bound.

THEOREM 4.8. If the auction system is \(\beta \)-KL-expressive and \(c \)-homogeneous, the pure PoA of PBM-GSP mechanism for the multi-slot case is at most \(\frac{c(\beta + 1)}{c - 1} \).

PROOF. Similar to Theorem 4.5, the proof of Theorem 4.8 contains two steps. For the first step, we prove \(\max_{v, b, a} \) pure Nash equilibrium \(\frac{SW(v)}{SW(b)} < \frac{1}{c} + 1 \).

Denote \(O_i \) as the set of (keyword, position) pair that advertiser \(i \) wins when all advertisers truthfully bid, i.e., \(O_i = \{(s, k) : \sigma_{t, k}(k) = i, w_k > 0\} \), denote \(S_i \) as the keyword set in \(O_i \). Given any bid profile \(b \), denote \(O'_i \) as the (keyword, position) set that advertiser \(i \) actually bids and wins, i.e., \(O'_i = \{(s, k) : \sigma_{i, b}(k) = i, w_k > 0\} \), denote \(S'_i \) as the set of keywords in \(O'_i \), whose size is no larger than \(k \).
We divide advertisers into three categories, I_1, I_2, I_3: (1) advertisers in I_1 bid on κ keywords and $S_i \setminus S_i' \neq \emptyset$; (2) advertisers in I_2 bid on κ keywords and $S_i \setminus S_i' = \emptyset$; (3) advertisers in I_3 bid on fewer than κ keywords. We apply the equilibrium conditions to the three categories respectively.

1. For any advertiser i in category I_1, by definition, advertiser i wins a position in any keyword in S_i'.

Under the equilibrium condition, first, advertiser i will not increase his/her payoff by changing his/her strategy from bidding a keyword with position s to bidding the same keyword with position s' with position k, where $(s, k) \in O_i$. Considering all advertisers are conservative, we have

$$
\int_{q \in NG(s')} \pi_q(s') w_k v_i^q dP \geq \int_{q \in NG(s')} \pi_q(s) w_k v_i^q dP - \int_{q \in NG(s)} \pi_q(s) w_k b_{s, h(i)} v_i^q dP
$$

Summing up both sides over all advertisers $i \in I_1$, $(s, k) \in O_i$ where $s \in S_i \setminus S_i'$ and $(s', k') \in O_i'$, we have

$$
\kappa \sum_{i \in I_1} \sum_{(s, k) \in S_i \setminus S_i'} \int_{q \in NG(s)} \pi_q(s) w_k v_i^q dP \\
\leq \sum_{i \in I_1} \sum_{(s, k) \in S_i \setminus S_i'} \sum_{(s', k') \in O_i'} \int_{q \in NG(s)} \pi_q(s') w_k v_i^q dP + \sum_{i \in I_1} \sum_{(s, k) \in S_i \setminus S_i'} \int_{q \in NG(s)} \pi_q(s) w_k v_i^q dP.
$$

Second, advertiser i will not increase his/her payoff by changing his/her strategy from bidding on keyword s with position k' to bidding the same keyword with position k, where $(s, k') \in O_i$, $(s, k) \in O_i$, and $s \in S_i \cap S_i'$. Similar to (8), we have

$$
\int_{q \in NG(s)} \pi_q(s) w_k v_i^q dP \leq \int_{q \in NG(s')} \pi_q(s') w_k v_i^q dP + \int_{q \in NG(s)} \pi_q(s) w_k v_i^q dP.
$$

Summing up both sides over all advertisers $i \in I_1$, $(s, k) \in O_i$ and $(s', k') \in O_i'$, we have

$$
\sum_{i \in I_1} \sum_{(s, k) \in S_i \cap S_i'} \int_{q \in NG(s)} \pi_q(s) w_k v_i^q dP \leq \sum_{i \in I_1} \sum_{(s', k') \in S_i \cap S_i'} \int_{q \in NG(s')} \pi_q(s') w_k v_i^q dP + \sum_{i \in I_1} \sum_{(s, k) \in S_i \cap S_i'} \int_{q \in NG(s)} \pi_q(s) w_k v_i^q dP.
$$

Summing up (9) and κ times the inequality above, we have

$$
\kappa \sum_{i \in I_1} \sum_{(s, k) \in O_i} \int_{q \in NG(s)} \pi_q(s) w_k v_i^q dP \leq \kappa \sum_{i \in I_1} \sum_{(s', k') \in O_i'} \int_{q \in NG(s')} \pi_q(s') w_k v_i^q dP + \sum_{i \in I_1} \sum_{(s, k) \in S_i \cap S_i'} \sum_{(s', k') \in O_i} \int_{q \in NG(s')} \pi_q(s') w_k v_i^q dP + \sum_{i \in I_1} \sum_{(s, k) \in S_i \cap S_i'} \int_{q \in NG(s)} \pi_q(s) w_k v_i^q dP.
$$
Considering that \(|S_1 \setminus S'_1| \leq \frac{\sigma}{\beta} - \kappa \), and \(\{(s', k') : s' \in S_1 \cap S'_1, (s', k') \in O'_j \} \subset \{(s', k') : (s', k') \in O'_j \} \), we obtain
\[
\kappa \sum_{i \in I_2 \cup I_3} \sum_{(s, k) \in O_i} \int_{q \in N_G(s)} \pi_q(s) w_{k} v^q_i dP \leq \frac{\kappa}{\beta} \sum_{i \in I_2 \cup I_3} \sum_{(s', k') \in O'_j} \int_{q \in N_G(s')} \pi_q(s') w_{k'} v^q_i dP + \kappa \sum_{i \in I_2 \cup I_3} \sum_{(s, k) \in O_i} \int_{q \in N_G(s)} \pi_q(s) w_{k} v^q_i dP. \tag{12}
\]

2. For advertiser \(i \) in category \(I_2 \) and \(I_3 \), since \(b \) is a Nash equilibrium, it is clear that \(S_i \subset S'_i \), and for \(\forall s \in S_i, (s, k) \in O_i, (s, k') \in O'_j \), the following holds,
\[
\int_{q \in N_G(s)} \pi_q(s) w_{k} v^q_i dP \leq \int_{q \in N_G(s)} \pi_q(s) w_{k'} v^q_i dP + \int_{q \in N_G(s)} \pi_q(s) w_k v^q_i dP. \tag{13}
\]

By summing over all advertisers \(i \in I_2 \cup I_3 \), \((s, k) \in O_i \) and \((s, k') \in O'_j \), we have
\[
\kappa \sum_{i \in I_2 \cup I_3} \sum_{(s, k) \in O_i} \int_{q \in N_G(s)} \pi_q(s) w_{k} v^q_i dP \leq \frac{\kappa}{\beta} \sum_{(s', k') \in O'_j} \int_{q \in N_G(s')} \pi_q(s') w_{k'} v^q_i dP + \sum_{i \in I_2 \cup I_3} \sum_{(s, k) \in O_i} \int_{q \in N_G(s)} \pi_q(s) w_{k} v^q_i dP + \kappa \sum_{(s, k) \in O_i} \int_{q \in N_G(s)} \pi_q(s) w_k v^q_i dP. \tag{14}
\]

Since \(SW(v) = \sum_{i \in I_2 \cup I_3} \sum_{(s, k) \in O_i} \int_{q \in N_G(s)} \pi_q(s) w_{k} v^q_i dP \), by summing (12) and (14) together, we obtain the following inequality and thus complete the first step.
\[
\kappa SW(v) \leq \frac{\kappa}{\beta} SW(b) + \kappa SW(b). \tag{15}
\]

For the second step, it is easy to show \(\frac{SW(OPT(v))}{SW(v)} \leq c \) still holds in the full-information setting. Then by combining the two steps, we prove the theorem.

Note that the pure PoA bound given by the above theorem is for the general multi-slot case. The result can be further improved if we are only interested in the single-slot case (see the following theorem). Please see the proof in the long version of our paper [Chen et al. 2014].

Theorem 4.9. If the auction system is \(\beta \)-KL-expressive and \(c \)-homogeneous, and there is only one slot to display ad, the pure PoA for the PBM-GSP mechanism is at most \(\frac{\sigma}{\beta} \), and the bound is tight with respect to the factors.

4.3. Comparison between PBM-GSP and SBM-GSP

In this subsection, we make comparisons between PBM-GSP and SBM-GSP. The overall conclusion is that the PBM-GSP mechanism has a better social welfare in equilibrium than the SBM-GSP mechanism. The detailed analysis is given as follows.

To the best of our knowledge, the theoretical analysis on SBM-GSP [Dhangwattnotai 2011] only covers the welfare in the full-information setting and the single-slot case. Therefore, we will compare PBM-GSP with SBM-GSP in this setting. Furthermore, in [Dhangwattnotai 2011], the same definition of homogeneity but a different definition of expressiveness is used. To avoid confusions, we refer to the expressiveness defined in [Dhangwattnotai 2011] as Query-Level (QL) Expressiveness, whose definition is copied as follows.

Definition 4.10. [Dhangwattnotai 2011] (QL-Expressiveness) We call an auction system \(\alpha \)-QL-expressive, if for any advertiser \(i \), and any query set \(Q \) satisfying \(Q \subset Q_i \), \(|Q| \leq \alpha |Q_i| \), there always exist \(\kappa \) keywords that can cover \(Q \) through the query-keyword bipartite graph \(G \). When \(\alpha = 1 \), we say the auction system is fully QL-expressive.
Based on the above concepts, an almost-tight pure PoA bound for the SBM-GSP mechanism in the single-slot case is derived in [Dhangwatnotai 2011], as shown below.

THEOREM 4.11. [Dhangwatnotai 2011] If the auction system is \(\alpha\)-QL-expressive and \(c\)-homogeneous, the pure PoA of the SBM-GSP mechanism is at most \(\frac{c^2 + c}{\alpha}\).

If we compare this PoA bound with the corresponding PoA bound of the PBM-GSP mechanism, we will have the following discussions.

First, since different notions of expressiveness are used, if we want to compare the bounds, we need to characterize the relationship between KL-expressiveness and QL-expressiveness. Actually, a natural question is why not also using the QL-expressiveness to analyze the theoretical properties of PBM-GSP. The following example, which shows that the pure PoA of the PBM-GSP mechanism could be irrelevant to QL-expressiveness, justifies the necessity to introduce the concept of KL-expressiveness.

Example 4.12. Suppose there is only one advertiser who is allowed to bid on at most one keyword. Consider there is a fixed set of positive queries, and each query is matched to a shared keyword and other \(N\) different keywords. We consider a PBM-GSP mechanism that matches a query to keywords with uniform probability. In this case, the auction system is always fully QL-expressive since the advertiser can use the shared keyword to reach all queries, but the welfare in equilibrium can be arbitrarily bad in PBM-GSP as \(N\) approaches infinity.

Furthermore, according to our theoretical and empirical studies (see [Chen et al. 2014]), given the query-keyword bipartite graph, the QL-expressiveness \(\alpha\) and KL-expressiveness \(\beta\) are actually comparable in their values (i.e., they only differ by a small constant). Therefore the difference in these two notions of expressiveness should not affect the comparison between the two PoA bounds by much.

Second, the two PoA bounds have different orders with respect to the homogeneity \(c\). As aforementioned, homogeneity describes the diversity of advertiser’s valuations on different queries matched to the same keyword. Take the keyword “spider” as an example. It can be matched to multiple queries, such as “spider movie”, “get rid of spider”, and “crystal spider”, which have quite different semantic meanings. If each advertiser is only interested in one type of these semantic meanings, the homogeneity quantity \(c\) will be very large due to the high valuations on some queries and the low valuations on the other queries. In this case, different orders of \(c\) will lead to significant difference in the overall PoA bounds. In particular, the pure PoA bound of PBM-GSP is much better than that of SBM-GSP, since the former is linear to \(c\) but the latter is quadratic.

5. REVENUE ANALYSIS

In this section, we study the Bayes-Nash revenue with reserve price [Myerson 1981; Dhangwatnotai et al. 2010; Hartline and Lucier 2010] for the PBM-GSP mechanism. We show that with a naturally-defined reserve price \(r_s\) on each keyword \(s\), the worst-case ratio between the optimal social welfare and the revenue of PBM-GSP, defined as below, can be upper bounded.

\[
\max_{v, b(\cdot)} \frac{\mathbb{E}_v[SW(OPT(v))]}{\mathbb{E}_v,b(v)[R_r(b(v))]},
\]

where \(R_r(b)\) presents the revenue with bid \(b\) and reserve price vector \(r\), i.e.,

\[
R_r(b) = \int_{q \in Q} \sum_{s \in N_G(q)} \pi_q(s) \sum_{k=1}^{n} w_k \max\{r_s, b_s, b_{s, b(k+1)}\} \mathbb{1}[b_{s, b(k)} \geq r_s] dP.
\]
In this paper, we assume that the auctioneer (search engine) has a public prior distribution F on any advertiser’s valuation vector, and any advertiser’s valuation vector v_i is i.i.d. sampled from this distribution, i.e., $F = F^n$. Considering that for any advertiser, the valuations on keywords are the weighted averages of the valuations on the queries that the keyword can be matched to, it could be easily proved that an advertiser’s expected valuation vector on keywords can also be considered as i.i.d. sampled. Thus we define, for any advertiser, the keyword valuation vector is i.i.d sampled from a distribution T (induced from F and the mechanism), and define the (marginal) cumulative distribution function of valuation on keyword s as T_s and the probability density function on keyword s as t_s. As in common practice, we consider a particular class of distributions for T, which is called monotone hazard rate (MHR) distribution [Dhangwatnotai et al. 2010; Hartline and Roughgarden 2009; Lucier et al. 2012].

For the reserve price, we employ a naturally-defined reserve price vector r, which is a direct extension of the Myerson reserve price [Lucier et al. 2012; Chawla et al. 2007; Myerson 1981]: For any keyword s, the reserve price r_s is the Myerson reserve price, which satisfies $\phi_s(r_s) = 0$, where $\phi_s(v)$ is defined as the virtual value of any type v on keyword s, i.e., $\phi_s(v) \triangleq v - \frac{1 - T_s(v)}{t_s(v)}$.

Different from the GSP auction with the Myerson reserve price, it is easy to construct an example (please see Example 5.1 in [Chen et al. 2014]) to show that, even in a single-slot case, when there is a constraint on the total number of bid keywords (i.e., κ), the ratio between the revenue of PBM-GSP with the Myerson reserve price and optimal social welfare can become arbitrarily bad. To obtain meaningful results, we consider $\phi_s(v)$ with Lipschitz condition, which is defined as below.

Definition 5.1. (MHR distribution with bounded derivative) We say a distribution T is an MHR distribution with bounded derivative η, if for any keyword s, the following conditions hold: (1) $\phi_s'(v) \geq 1$, for all $v \geq 0$, (2) $\phi_s'(v) \leq \eta$, for all $v \geq r_s$.

The following theorem shows that when the distribution is MHR with bounded derivative, we can obtain a bound for the ratio between optimal social welfare and worst-case revenue.

Theorem 5.2. If any advertiser’s keyword valuation vector is i.i.d. drawn from an MHR distribution T with bounded derivative η, the auction system is β-KL-expressive and c-expected-homogeneous, then the revenue obtained by the PBM-GSP mechanism with the Myerson reserve price is at least $\frac{\beta}{1 + \beta} \frac{1}{2\eta(c\epsilon)}$ of the optimal social welfare.

The theorem can be proved in three steps. First, we use Lemma 5.3 to bound the ratio between the revenue and the welfare of PBM-GSP with the Myerson reserve price. Second, we use Lemma 5.4 to bound the ratio between the welfare of PBM-GSP and the revenue of PBM-VCG with the Myerson reserve price. Here PBM-VCG is defined as the VCG mechanism in which bidding the expected value on any keyword is the dominant strategy and there is has no constraint on the total number of bid keywords. Finally, we bound the ratio between the revenue of PBM-VCG with the Myerson reserve price and the optimal welfare. For ease of reference, we use $SW_r(b)$ to denote the social welfare of PBM-GSP, and use $R^{\text{PBM-VCG}}_r(v)$ to denote the revenue of PBM-VCG, when reserve price vector r is associated with these mechanisms.

The basic idea of the proof can be explained as follows.

$$E_{v,b(v)}[R_r(b(v))] \to E_{v,b(v)}[SW_r(b(v))] \to E_v[R^{\text{PBM-VCG}}_r(v)] \to E_v[SW(\text{OPT}(v))]$$

Lemma 5.3. If any advertiser’s keyword valuation vector is i.i.d. drawn from an MHR distribution T with bounded derivative η, the auction system is β-KL-expressive
and c-expected-homogeneous, then for any Bayes-Nash equilibrium of PBM-GSP with the Myerson reserve price, the expected revenue is at least \(\frac{1}{ce} \) of the expected welfare.

Proof. For any Bayes-Nash equilibrium \(b(\cdot) \), the expected social welfare of PBM-GSP with reserve price \(r \) can be reformulated as follows:

\[
E_{v,b(\cdot)}[SW_r(b(\cdot))] = E_{v,b(\cdot)}\left(\sum_s \int_{q \in N_G(s)} \pi_q(s) dP \sum_{k=1}^n w_k b^s_{\sigma,s,b(\cdot)(k)} I[b^s_{\sigma,s,b(\cdot)(k)}(k) \geq r_s] \right).
\]

(16)

Since the auction system is c-expected-homogeneous, the following inequality holds with probability one,

\[
cE_v[u^*_i] = E_v\left[\int_{q \in N_G(s)} c \pi_q(s) dP \right] = \frac{\int_{q \in N_G(s)} c \pi_q(s) dP}{\int_{q \in N_G(s)} \pi_q(s) dP} \geq \frac{\int_{q \in N_G(s)} \pi_q(s) dP}{\int_{q \in N_G(s)} \pi_q(s) dP} = v^*_i.
\]

(17)

Applying (17) to (16), we have

\[
E_{v,b(\cdot)}[SW_r(b(\cdot))] \leq cE_{v,b(\cdot)}\left(\sum_s \int_{q \in N_G(s)} \pi_q(s) dP \sum_{k=1}^n w_k r_s I[b^s_{\sigma,s,b(\cdot)(k)}(k) \geq r_s] \right) \leq cE_{v,b(\cdot)}[R_v(b(\cdot))].
\]

Then the lemma follows. \(\square \)

Lemma 5.4. If any advertiser’s keyword valuation vector is i.i.d. drawn from an MHR distribution \(T \) with bounded derivative \(\eta \), the auction system is \(\beta \)-KL-expressive and c-expected-homogeneous, then the expected welfare in any Bayes-Nash equilibrium of PBM-GSP with the Myerson reserve price is at least \(\frac{\beta}{1+\beta} \frac{1}{2\eta} \) of the expected revenue of PBM-VCG with the Myerson reserve price.

Proof. The proof technique we use here can be regarded as a variation of that in [Leme and Tardos 2010; Roughgarden 2009]. Without loss of generality, we assume that if any advertiser bids on any keyword \(s \), his/her bid price is larger than \(r_s \).

Given the Myerson reserve prices on any keyword, denote \(S_i \) as the set of keywords that advertiser \(i \) can win a slot when all advertisers truthfully bid. We consider advertiser \(i \) with a specific randomized strategy \(b^*_i(\cdot) \) that randomly chooses \(k \) keywords from \(S_i \) and bid \(b^*_i(v_i) = \frac{v^*_i + r_s}{2} \) if keyword \(s \) is sampled by the strategy.

Given any pure bid profile \(b \), any value profile \(v \) and any position \(k \), given any sampled keyword \(s \) by the strategy \(b^i(v_i) \), if advertiser \(i \) changes his/her bid to \(b^*_i(v_i) \) and the position he/she gets is not lower than position \(k \), his/her per-click utility must be larger than \(v^*_i - b^*_i(v_i) \); otherwise, the value of the advertiser ranked at the position \(k \) must be larger than \(b^*_i(v_i) \). Then we have

\[
u^*_i(b^*_i(v_i), b^s_{\sigma,s,b(\cdot)}) \geq \int_{q \in N_G(s)} \pi_q(s)(v^*_i - b^*_i(v_i)) dP
\]

\[- \int_{q \in N_G(s)} \pi_q(s)(v^*_i - b^*_i(v_i)) dP - w_k \int_{q \in N_G(s)} \pi_q(s) v^s_{\sigma,s,b(\cdot)}(k) dP \geq w_k \int_{q \in N_G(s)} \pi_q(s)(v^*_i - b^*_i(v_i)) dP - w_k \int_{q \in N_G(s)} \pi_q(s) v^s_{\sigma,s,b(\cdot)}(k) dP.
\]

(18)

Since distribution \(T \) is an MHR distribution with bounded derivative \(\eta \), we have \(v^*_i - b^*_i(v_i) = \frac{v^*_i - r_s}{2} \geq \frac{\phi_s(v^*_i)}{2\eta} \), which yields,

\[
u^*_i(b^*_i(v_i), b^s_{\sigma,s}) \geq w_k \int_{q \in N_G(s)} \pi_q(s) \frac{\phi_s(v^*_i)}{2\eta} dP - w_k \int_{q \in N_G(s)} \pi_q(s) v^s_{\sigma,s}(k) dP.
\]

(19)
Let k be the position of advertiser i on keyword s when all advertiser truthfully bid, i.e., $k = \sigma_{s,b}(i)$. By summing over all advertisers and all keywords, and taking expectation over the valuation profile v, bidding strategy $b(v)$ and $b'(-)$, we have

$$E_{\nu,b(v),b'(v)}\left[\sum_{i=1}^{n} u_i(b_i(v), b_{-i}(v_{-i})) \right] \geq \beta E_{\nu,b(v)}\left[\sum_{i=1}^{n} \sum_{s \in S_i} w_{\sigma_{s,b}}(i) \int_{q \in N_G(s)} \pi_q(s) \left(\frac{\phi_s(v^r_i)}{2\eta} - v^\ast_{\sigma_{s,b}(\sigma_{s,b}(i))} \right) dP \right]$$

$$\geq \beta E_{\nu,b(v)}\left[\sum_{i=1}^{n} \sum_{s \in S_i} w_{\sigma_{s,b}}(i) \int_{q \in N_G(s)} \pi_q(s) \phi_s(v^r_i) \frac{1}{2\eta} \right] dP - \beta E_{\nu,b(v)}\left[\sum_{k=1}^{n} w_k \int_{q \in N_G(s)} \pi_q(s) v^\ast_{\sigma_{s,b}(k)} dP \right]$$

$$\geq \frac{\beta}{2\eta} E_{\nu}[R^PBM-VCG(v)] - \beta E_{\nu,b(v)}[SW_i(b(v))]$$

Similar to the proof of Theorem 4.5, we have for any Bayes-Nash equilibrium $b(-)$, $E_{\nu,b(v)}[SW_i(b(v))] \geq E_{\nu,b(v)}[w(v)] \geq E_{\nu,b(v),b'(v)}\left[\sum_{i} u_i(b_i(v), b_{-i}(v_{-i})) \right] \geq \frac{\beta}{2\eta} E_{\nu}[R^PBM-VCG(v)] - \beta E_{\nu,b(v)}[SW_i(b(v))]$.

Then the lemma follows. \(\square\)

Now we give the overall proof of Theorem 5.2.

PROOF OF THEOREM 5.2. Combining Lemma 5.3 and Lemma 5.4, we have for any Bayes-Nash equilibrium $b(-)$ of PBM-GSP with the Myerson reserve price, we have

$$E_{\nu,b(v)}[R_r(b(v))] \geq \frac{\beta}{2\eta} E_{\nu}[R^PBM-VCG(v)].$$

Denote $R^PBM-VCG(v,s)$ as the revenue obtained from keyword s of the VCG mechanism with reserve price vector r, and denote $SW(v,s)$ as the welfare obtained from keyword s of with the VCG mechanism. For any given keyword s, denote $z^\ast_s(x) = E_{\nu}[w_{\sigma_{s,b}(i)}^r | v^r_i = x]$. Then it is easy to see that $z^\ast_s(x)$ is an increasing function since advertiser will obtain a better position in a welfare-maximizing allocation with a larger valuation. Denote $\phi^\ast_s(x) = \phi_s(x)|\phi_s(x) > 0$. According to Lemma 5.1 in [Kleinberg and Yuan 2013], we have

$$\frac{E_{\nu}[\phi^+_s(v^r_i) w_{\sigma_{s,b}(i)}]}{E_{\nu}[v^r_i w_{\sigma_{s,b}(i)}]} = \frac{E_{\nu}[\phi^+_s(v^r_i) E_{\nu}[w_{\sigma_{s,b}(i)}^r | v^r_i]]}{E_{\nu}[v^r_i E_{\nu}[w_{\sigma_{s,b}(i)}^r | v^r_i]]} = \frac{E_{\nu}[\phi^+_s(v^r_i) z^\ast_s(v^r_i)]}{E_{\nu}[v^r_i z^\ast_s(v^r_i)]} \geq \frac{E_{\nu}[\phi^+_s(v^r_i)]}{E_{\nu}[v^r_i]} \geq \frac{1}{e}$$

That is, $E_{\nu}[\phi^+_s(v^r_i) w_{\sigma_{s,b}(i)}] \geq \frac{1}{e} E_{\nu}[v^r_i w_{\sigma_{s,b}(i)}].$ By summing over all advertisers and summing over all keywords, we have $E_{\nu}[R^PBM-VCG(v)] \geq \frac{1}{e} E_{\nu}[SW(v)].$ According to the second step of the proof for Theorem 4.5, we have $E_{\nu}[SW(v)] \geq \frac{1}{e} E_{\nu}[SW(\text{OPT}(v))].$ By combining with (21), we prove the theorem. \(\square\)

Theorem 5.2 can be further improved if we are only interested in the single-slot case as shown in the following theorem. (Please refer the proof in [Chen et al. 2014].)

THEOREM 5.5. If any advertiser’s keyword valuation profile is i.i.d. drawn from an MHR distribution T with bounded derivative η, the auction system is β-KL-expressive.
and \(c \)-homogeneous, and there is only one ad slot to sell, then the revenue obtained by the PBM-GSP mechanism with the Myerson reserve price is at least \(\frac{\beta}{1+\beta} \frac{1}{(1-c)^2} \) of the optimal social welfare.

6. RELATED WORKS

In this section, for the sake of completeness, we give an overview of the related works to the paper. Overall, the related works can be categorized into three groups.

First, there have been a rich literature of theoretical analysis on GSP auctions. For example, [Leme and Tardos 2010; Lucier and Paes Leme 2011; Caragiannis et al. 2011] analyze the PoA when bidders are conservative, they show that the pure PoA is at most 1.282, mixed-strategy PoA is at most 2.310 and Bayes-Nash PoA is at most 2.927 in GSP auction. Some other works analyze the revenue of GSP. In [Edelman and Ostrovsky 2007; Varian 2007], it is shown that GSP’s revenue is at least as good as VCG in envy-free equilibrium. In [Lucier et al. 2012; Caragiannis et al. 2012a], the revenue of GSP over all Bayes-Nash equilibrium is studied and a ratio bound (4.72 for regular distribution and 3.46 for MHR distribution) is given between the optimal auction and GSP with a proper reserve price in the Bayesian setting.

Second, there are a few works that pay attention to the broad-match mechanism, and in particular the SBM mechanism. There have been several pieces of work that study the optimization problems regarding SBM. For example, in [Feldman et al. 2007], the budget optimization problem is considered and a \((1 - 1/e)\)-approximation algorithm is developed. In [Even Dar et al. 2009], it is shown that the bid optimization problem regarding SBM is NP-Hard and is inapproximable with any reasonable approximation factor unless \(P = NP \). Some other works perform PoA analysis on the SBM-GSP mechanism. In [Dhangwatnotai 2011], by assuming advertisers to play undominated strategies, the authors develop an almost-tight bound for the pure PoA of SBM-GSP in the single-slot case.

Third, the design principle of our proposed PBM-GSP mechanism is also related to the probabilistic single-item auctions with mixed signals [Bro Miltersen and Sheffet 2012; Emek et al. 2012; Dughmi et al. 2013]. A probabilistic single-item auction is defined as follows. The auctioneer wishes to sell the items drawn from an item set \(Q \) according to a known distribution \(P \) to \(n \) bidders. Each bidder \(i \) has a valuation of \(v^q_i \) on item \(q \), but he/she cannot directly observe the item before he/she bids. At each time, the auctioneer draws an item and broadcasts a signal to the bidders according to a signaling scheme defined at the very beginning of the auction. The signaling scheme can be probabilistic, and can be strategically designed by the auctioneer. After receiving the signals, the bidders submit their bids on the signals, and the item will be allocated and charged to one of the bidders by using the second price auction. If we define the item set as the query space, define the signals as the keywords, and define the signaling scheme based on the query-keyword bipartite graph and the matching probability distribution \(\pi_q \), then the above problem will become very similar to our PBM-GSP problem. However, the focus of these works is the revenue-optimal scheme of truthful mechanism for single-item auctions. In contrast, our problem is different because there are multiple ad slots to sell and thus truth-telling is not a dominant strategy for GSP auctions.

7. CONCLUSION

In this paper, we propose a probabilistic broad-match mechanism for sponsored search. We show that this new mechanism has better theoretical guarantees than the currently used broad-match mechanism in terms of both social welfare and search engine revenue. We have summarized our key results in Table I, Table II for ease of reference.
For future work, we plan to work on the following topics. First, we will work on the optimization of the matching probability in the proposed mechanism so as to maximize the social welfare or revenue. Second, we will investigate if there is a tighter bound for our results. Third, we will perform more theoretical analysis on the currently used broad-match mechanism, which is far from complete in the literature.

8. ACKNOWLEDGEMENT

This work was partially supported by NSFC(61222307) and a grant from MOE-Microsoft joint Laboratory of Statistics of Peking University. We would like to thank Prof. Pingzhong Tang for helpful discussions, and the anonymous reviewers for their valuable comments to our paper.

REFERENCES

