Deep Neural SVM for Speech Recognition

Shi-Xiong Zhang, Chaojun Liu, Kaisheng Yao and Yifan Gong

Microsoft, Redmond

April 21, 2015, ICASSP
Outline

Motivation
- Neural Networks vs Support Vector Machines

Deep Neural SVM
- Max-Margin Training (Frame-level & Sequence-level)
- Decoding

Experiments
Motivation
Support Vector Machines (binary / multiclass / sequence)

SVMs generate linear boundaries in a feature space $x \mapsto \phi(x)$

$$y = w^T \phi(x)$$
Support Vector Machines (binary / multiclass / sequence)

SVMs generate linear boundaries in a feature space $x \mapsto \phi(x)$

$$y = w^T \phi(x) = \sum_i \alpha_i k(x, x_i)$$
Neural Networks

- Too many local minima
- Tend to overfit
- Fixed model size
- Deep?

Support Vector Machines

- Convex
- Max Margin
- Automatic model size (support vectors)

\[h(x) = \sum \alpha_i k(x, x_i) \]
Deep Neural SVM
Softmax layer of DNN

Output of softmax

\[P(s_t|o_t) = \frac{\exp (\mathbf{w}_{s_t}^T \mathbf{h}_t)}{\sum_{s_t=1}^{N} \exp (\mathbf{w}_{s_t}^T \mathbf{h}_t)} \]

Normalization term is independent of states

\[\text{arg max } \log P(s|o_t) = \text{arg max } \mathbf{w}_s^T \mathbf{h}_t \]
Softmax in DNN

$$\text{arg max}_s \log P(s|o_t) = \text{arg max}_s \mathbf{w}_s^T h_t$$

Classification in SVM

$$\text{arg max}_s \mathbf{w}_s^T \phi(o_t)$$
The architecture of Deep Neural SVMs

DNN → Multiclass SVM → Sequence SVM → time sequence
Frame-level Max-Margin Training
1st Step: training last layer

Maximize the Margin

S.T. score of ground true $s_t \geq$ all competing \bar{s}_t
1st Step: training last layer \equiv Multiclass SVM

Maximize the Margin

S.T. \(\text{score of ground true } s_t \geq \text{ all competing } \bar{s}_t \)

\[
\min_{w_s, \xi_t} \frac{1}{2} \sum_{s=1}^{N} \|w_s\|_2^2 + C \sum_{t=1}^{T} \xi_t^2 \\
s.t. \text{ for every training frame } t = 1, \ldots, T, \text{ for every competing states } \bar{s}_t \in \{1, \ldots, N\} : \quad w_{s_t}^T h_t - w_{\bar{s}_t}^T h_t \geq 1 - \xi_t, \quad \bar{s}_t \neq s_t
\]
2nd Step: training previous layers

\[\frac{\partial F}{\partial n} \]

\[
\begin{align*}
\min_{w_s, \xi_t} & \quad \frac{1}{2} \sum_{s=1}^{N} \|w_s\|^2_2 + C \sum_{t=1}^{T} \xi_t^2 \\
\text{s.t.} & \quad \text{for every training frame } t = 1, \ldots, T, \\
& \quad \text{for every competing states } \bar{s}_t \in \{1, \ldots, N\} : \\
& \quad w_{s_t}^T h_t - w_{\bar{s}_t}^T h_t \geq 1 - \xi_t, \quad \bar{s}_t \neq s_t
\end{align*}
\]
2nd Step: training previous layers

\[
\frac{\partial F}{\partial n} = \left(\frac{\partial F}{\partial h_t} \right)^T \left(\frac{\partial h_t}{\partial n} \right)
\]

Important! Same as DNN 😊
2nd Step: training previous layers

Important!

Only the support vectors have gradient! 😊
Sequence-level Max-Margin Training

DNN

Sequence SVM

time sequence
1st Step: training last layer

\[\log P(S_{1:T} | O_{1:T}) \]

reference state sequence \(S \)

Margin

competing state sequence \(\overline{S} \)
1st Step: training last layer

\[\mathcal{F} = \min_S \left\{ \log \frac{P(S|O)}{P(S)} \right\} = \min_S \left\{ \log \frac{P(O|S)P(S)}{P(O|\bar{S})P(S)} \right\} \]

- **reference state sequence** \(S \)
- **competing state sequence** \(\bar{S} \)

\(\log P(S_{1:T}|O_{1:T}) \)
1st Step: training last layer

\[\mathcal{F} = \min_{\mathcal{S}} \left\{ \log \frac{P(\mathcal{S}|\mathcal{O})}{P(\mathcal{O}|\mathcal{S})} \right\} = \min_{\mathcal{S}} \left\{ \log \frac{P(\mathcal{O}|\mathcal{S})P(\mathcal{S})}{P(\mathcal{O}|\mathcal{S})P(\mathcal{S})} \right\} \]

\[\sum_{t=1}^{T} w_{st}^T h_t - \log P(s_t) + \log P(s_t | s_{t-1}) \]
1st Step: training last layer

\[F = \min_{\mathbf{s}} \left\{ \log \frac{P(\mathbf{s}|\mathbf{O})}{P(\mathbf{O}|\mathbf{s})} \right\} = \min_{\mathbf{s}} \left\{ \log \frac{P(\mathbf{O}|\mathbf{S})P(\mathbf{S})}{P(\mathbf{O}|\mathbf{S})P(\mathbf{S})} \right\} \]

\[\sum_{t=1}^{T} \mathbf{w}_{st}^T \mathbf{h}_t - \log P(s_t) + \log P(s_t|s_{t-1}) \]
1st Step: training last layer \(\equiv \) Struct SVM

\[
\begin{align*}
\mathbf{w}_j^T \mathbf{h}_t \\
\mathbf{w}_1^T \mathbf{h}_t
\end{align*}
\]

Each path defines a feature space \(\phi(O, S) \)

\[
\begin{align*}
\mathbf{w}_{ij} \log P(s_t | s_{t-1})
\end{align*}
\]
2nd Step: training previous layers

\[
F = \min_S \left\{ \log \frac{P(S|O)}{P(S|\bar{O})} \right\} = \min_S \left\{ \log \frac{P(O|S)P(S)}{P(O|\bar{S})P(\bar{S})} \right\}
\]
2nd Step: training previous layers

\[
\frac{\partial F}{\partial n} = \left(\frac{\partial F}{\partial h_t} \right)^T \left(\frac{\partial h_t}{\partial n} \right)
\]

Important! Only the support vectors have gradient! 😊
Decoding
Decoding of Deep Neural SVMs

\[\mathbf{w}_j^T \mathbf{h}_t \]

\[\mathbf{w}_2^T \mathbf{h}_t \]

\[\mathbf{w}_1^T \mathbf{h}_t \]

states

\[w_{ij} \log a_{ij} \]

time
Experiments
Experiments

TIMIT: Continuous Phone Recognition (3 states for each 61 monophones)

<table>
<thead>
<tr>
<th>GMM</th>
<th>DNN</th>
<th>DNSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>CE</td>
<td>Frame Max Margin</td>
</tr>
<tr>
<td>31.0%</td>
<td>22.9%</td>
<td>22.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sequence Max Margin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8% improvement over DNN
<table>
<thead>
<tr>
<th>DNSVM (frame-level)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Last layer only</td>
<td>22.03%</td>
<td></td>
</tr>
<tr>
<td>+previous layers</td>
<td>21.95%</td>
<td></td>
</tr>
</tbody>
</table>

- Most of gains come from last layer

<table>
<thead>
<tr>
<th>DNSVM (Sequence-level)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>acoustic only</td>
<td>21.38%</td>
<td></td>
</tr>
<tr>
<td>joint learn with LM</td>
<td>21.04%</td>
<td></td>
</tr>
</tbody>
</table>

- Joint learn with LM yields 1.6% improvement
Conclusion

Deep Neural SVM

NN \Rightarrow Deep NN
\downarrow \downarrow
SVM \Rightarrow Deep SVM

Deep Neural SVMs for ASR
Conclusion

Deep Neural SVM

NN \rightarrow Deep NN

\downarrow \downarrow

SVM \rightarrow Deep SVM

Deep Neural SVMs for ASR

Future work: Deep Neural SVM

Q&A
Complementary
Support Vector Machines (binary / multiclass / sequence)

Kernel function

\[w^T \phi(x) = \sum_i \alpha_i k(x, x_i) \]
The architecture of Deep Neural SVM
Frame-level max-margin training (previous layers)

\[
\frac{\partial F}{\partial n} = \frac{\partial}{\partial h_t} F = \frac{1}{2} \left[\sum_{t=1}^{T} \left(1 + \max_{s_t} w_{s_t}^T h_t - w_{s_t}^T h_t \right)^2 \right] + C
\]

\[
F = \frac{1}{2} \left\| w \right\|_2^2 + C \sum_{t=1}^{T} \left[1 + \max_{s_t} w_{s_t}^T h_t - w_{s_t}^T h_t \right]^2
\]
Frame-level max-margin training (previous layers)

\[
\frac{\partial F}{\partial n} = \left(\frac{\partial F}{\partial h_t} \right)^T \left(\frac{\partial h_t}{\partial n} \right)
\]

Important! Same as DNN 😊

\[
F = \frac{1}{2} \|w\|^2 + C \sum_{t=1}^{T} \left[1 + \max_{\bar{s}_t} w_{\bar{s}_t}^T h_t - w_{\bar{s}_t}^T h_t \right]^2
\]
Frame-level max-margin training (previous layers)

\[
\begin{align*}
\frac{\partial \mathcal{F}}{\partial n} &= \left(\frac{\partial \mathcal{F}}{\partial h_t} \right)^T \begin{pmatrix} \frac{\partial h_t}{\partial n} \end{pmatrix} \\
\mathcal{F} &= \frac{1}{2} \| \mathbf{w} \|_2^2 + C \sum_{t=1}^T \left[1 + \max_{\tilde{s}_t} \mathbf{w}_{\tilde{s}_t}^T h_t - \mathbf{w}_{\tilde{s}_t}^T h_t \right]^2
\end{align*}
\]

Important! Same as DNN 😎
Frame-level max-margin training (previous layers)

\[
\frac{\partial F}{\partial n} = \left(\frac{\partial F}{\partial h_t} \right)^T \left(\frac{\partial h_t}{\partial n} \right)
\]

Important! Same as DNN 😊

\[
F = \frac{1}{2} \|w\|^2_2 + C \sum_{t=1}^{T} \left[1 + \max_{\tilde{s}_t} w_{\tilde{s}_t}^T h_t - w_{\tilde{s}_t}^T h_t \right]^2
\]

Only the support vectors have gradient! 😊
Frame-level max-margin training (previous layers)

\[F = \frac{1}{2} \|w\|_2^2 + C \sum_{t=1}^{T} \left[1 + \max_{s_t} w_{s_t}^T h_t - w_{s_t}^T h_t \right]^2 \]

\[\frac{\partial F}{\partial n} = \left(\frac{\partial F}{\partial h_t} \right)^T \left(\frac{\partial h_t}{\partial n} \right) \]

Important! Same as DNN
Frame-level max-margin training (previous layers)

\[
F = \frac{1}{2} \|w\|_2^2 + C \sum_{t=1}^{T} \left[1 + \max_{s_t} w_{s_t}^T h_t - w_{s_t}^T h_t \right]_+^2
\]

\[
\frac{\partial F}{\partial n} = \left(\frac{\partial F}{\partial h_t} \right)^T \left(\frac{\partial h_t}{\partial n} \right)
\]

Key: Same as DNN

\[
\frac{\partial F_{IMM}}{\partial h_t} = 2C \left[1 + w_{s_t}^T h_t - w_{s_t}^T h_t \right]_+ (w_{s_t} - w_{s_t})
\]
2nd Step: training previous layers

\[
\frac{\partial F}{\partial h_t} = \left(\frac{\partial F}{\partial h_t} \right)^T \left(\frac{\partial h_t}{\partial n} \right)
\]

Important!

Same as DNN 😊

\[
\frac{\partial F}{\partial n} = 2C \sum_{t=1}^{T} [1 + \mathbf{w}^T_{st} h_t - \mathbf{w}^T_{st} h_t]_+ (\mathbf{w}_{\bar{s}t} - \mathbf{w}_{st})
\]

Only the support vectors have gradient! 😊
Sequence-level max-margin training (last layer)

Maximize the Margin

S.T. score of reference $S_{1:T} \geq$ all competing $\tilde{S}_{1:T}$
2nd Step: training previous layers

$$\frac{\partial F}{\partial n} = \left(\frac{\partial F}{\partial h_t} \right)^T \left(\frac{\partial h_t}{\partial n} \right)$$

Important! Same as DNN 😊

$$\frac{\partial F}{\partial h_t} = 2C \sum_{t=1}^{T} [\mathcal{L} + \text{PathScore}_\bar{s} - \text{PathScore}_s]_+ (w_{\bar{s}_t} - w_{s_t})$$

Only the support vectors have gradient! 😊
Sequence-level max-margin training (last layer) \equiv Struct SVM

$$\mathcal{F} = \min_{S \neq \bar{S}} \left\{ \log \frac{P(S|O)}{P(\bar{S}|O)} \right\} = \min_{S \neq \bar{S}} \left\{ \log \frac{P(O|S)P(S)}{P(O|\bar{S})P(\bar{S})} \right\}$$

$$\sum_{t=1}^{T} w_{st}^T h_t - \log P(s_t) + \log P(s_t|s_{t-1})$$

$$w^T \phi(O, S) = \sum_{t=1}^{T} \begin{bmatrix} w_1 & \vdots & w_N \end{bmatrix}^T \begin{bmatrix} \delta(s_t = 1) h_t \\ \vdots \\ \delta(s_t = N) h_t \end{bmatrix} + \begin{bmatrix} \log P(s_t) \\ \log P(s_t|s_{t-1}) \end{bmatrix}$$