
Speaker Michael Freedman, Krysta Svore, Matthias Troyer, and Markus Reiher Affiliation Microsoft Research, ETH Zurich Host Michael Freedman, Krysta Svore Duration 01:26:47 Date recorded 12 November 2012 9:00 – 9:15 AM Welcome and Introduction Speaker: Michael Freedman, Microsoft Station Q Bio: Michael Freedman is Director of Station Q, Microsoft’s Project on quantum physics and quantum computation located on the UCSB campus. The project is a collaborative effort between Microsoft and academia directed towards exploring the mathematical theory and physical foundations for quantum computing. Freedman joined Microsoft in 1997 as a Fields Medalwinning mathematician whose accomplishments included a proof of the 4dimensional Poincare conjecture, the discovery (with Donaldson and Kirby) of exotic smooth structures on Euclidian 4space, applications of minimal surfaces to topology, and estimates for the stored energy in magnetic fields. Freedman has received numerous awards and honors: The Fields Medal, election to the National Academy of Science and the American Academy of Arts and Sciences, the Veblen prize, a MacArthur Fellowship and the National Medal of Science. His work since joining Microsoft has been primarily on the interface of quantum computation, solid state physics, and quantum topology. 9:15 – 9:30 AM Quantum Computing: A Short Tutorial Speaker: Krysta Svore, Microsoft Research QuArC Bio: Krysta Svore is a Researcher in the Quantum Architectures and Computation Group (QuArC) at Microsoft Research in Redmond, WA. She is passionate about quantum computation and determining what problems can be better solved on a quantum computer. Her research focuses on quantum algorithms and how to implement them on a quantum device, from how to code them in a highlevel programming language, to how to optimize the resources they require, to how to implement them on quantum hardware. Her team works on designing a scalable, faulttolerant software architecture for translating a highlevel quantum program into a lowlevel, devicespecific quantum implementation. Dr. Svore received her Ph.D. with Honors in Computer Science from Columbia University in 2006 under Dr. Alfred Aho and Dr. Joseph Traub. She was a visiting researcher at MIT under Dr. Isaac Chuang, at Caltech under Dr. John Preskill, and at IBM Research under Dr. David DiVincenzo and Dr. Barbara Terhal. 9:30 – 9:45 AM Motivation for the meeting Speaker: Matthias Troyer, ETH Zurich Abstract: While a quantum computer can solve many electronic structure problems in polynomial time, the time needed for interesting problems might still exceed the age of the universe on the fastest imaginable quantum computer. In this introductory presentation I will present limitations of the largest and fastest quantum computer that we might imagine building. I will then discuss the consequences of these limitations for solving problems in quantum chemistry and materials science, to set the stage for the discussions during the meeting. Bio: 9:45 – 10:30 AM What Could Quantum Computers Accomplish for Chemical Reactions? Speaker: Markus Reiher, ETH Zurich Abstract: In the past 15 years, my group has worked on various problems in chemistry ranging from its fundamental relativistic basis to applications in template chemistry and transition metal catalysis. While the electron correlation problem is one of the major issues in Theoretical Chemistry and seemingly prone to be tackled by quantum computers, other issues involving the huge size of chemical compound / configuration space are probably much more important when actual chemical problems shall be solved. In my talk, I will elaborate on some prominent examples which we encountered in our work in order to highlight persistent difficulties. Then, I shall discuss whether or not these problems will be amenable to solution by virtue of quantum computers. Bio:
©2012 Microsoft Corporation. All rights reserved.
By the same speakersPeople also watched 