mSDA: A fast and easy-to-use way to improve bag-of-words features
Machine learning algorithms rely heavily on the representation of the data they are presented with. In particular, text documents (and often images) are traditionally expressed as bag-of-words feature vectors (e.g. as tf-idf).
Recently Glorot et al. showed that stacked denoising autoencoders (SDA), a deep learning algorithm, can learn representations that are far superior over variants of bag-of-words. Unfortunately, training SDAs often requires a prohibitive amount of computation time and is non-trivial for non-experts.
In this work, we show that with a few modifications of the SDA model, we can relax the optimization over the hidden weights into convex optimization problems with closed form solutions. Further, we show that the expected value of the hidden weights after infinitely many training iterations can also be computed in closed form. The resulting transformation (which we call marginalized-SDA) can be computed in no more than 20 lines of straight-forward Matlab code and requires no prior expertise in machine learning.
The representations learned with mSDA behave similar to those obtained with SDA, but the training time is reduced by several orders of magnitudes. For example, mSDA matches the world-record on the Amazon transfer learning benchmark, however the training time shrinks from several days to a few minutes.
Speaker Details
Kilian Q. Weinberger is an Assistant Professor in the Department of Computer Science & Engineering at Washington University in St. Louis. He received his Ph.D. from the University of Pennsylvania in Machine Learning under the supervision of Lawrence Saul. Prior, he obtained his undergraduate degree in Mathematics and Computer Science at the University of Oxford. During his career he won several best paper awards at ICML, CVPR and AISTATS. In 2012 he was awarded the NSF CAREER award.
Kilian Weinberger’s research is in and around Machine Learning. In particular, he focus on high dimensional data analysis, feature- and metric-learning, machine learned web-search ranking, transfer- and multi-task learning, test-time cost sensitive learning and brain decoding.
- Series:
- Microsoft Research Talks
- Date:
- Speakers:
- Kilian Weinberger
- Affiliation:
- Washington University in St. Louis
-
-
Jeff Running
-
Series: Microsoft Research Talks
-
Decoding the Human Brain – A Neurosurgeon’s Experience
Speakers:- Pascal Zinn,
- Ivan Tashev
-
-
-
-
Galea: The Bridge Between Mixed Reality and Neurotechnology
Speakers:- Eva Esteban,
- Conor Russomanno
-
Current and Future Application of BCIs
Speakers:- Christoph Guger
-
Challenges in Evolving a Successful Database Product (SQL Server) to a Cloud Service (SQL Azure)
Speakers:- Hanuma Kodavalla,
- Phil Bernstein
-
Improving text prediction accuracy using neurophysiology
Speakers:- Sophia Mehdizadeh
-
-
DIABLo: a Deep Individual-Agnostic Binaural Localizer
Speakers:- Shoken Kaneko
-
-
Recent Efforts Towards Efficient And Scalable Neural Waveform Coding
Speakers:- Kai Zhen
-
-
Audio-based Toxic Language Detection
Speakers:- Midia Yousefi
-
-
From SqueezeNet to SqueezeBERT: Developing Efficient Deep Neural Networks
Speakers:- Sujeeth Bharadwaj
-
Hope Speech and Help Speech: Surfacing Positivity Amidst Hate
Speakers:- Monojit Choudhury
-
-
-
-
-
'F' to 'A' on the N.Y. Regents Science Exams: An Overview of the Aristo Project
Speakers:- Peter Clark
-
Checkpointing the Un-checkpointable: the Split-Process Approach for MPI and Formal Verification
Speakers:- Gene Cooperman
-
Learning Structured Models for Safe Robot Control
Speakers:- Ashish Kapoor
-