Learning Efficient Nash Equilibria in Distributed Systems

An individual’s learning rule is completely uncoupled if it does not depend on the actions or payoffs of anyone else. We propose a variant of log linear learning that is completely uncoupled and that selects an efficient pure Nash equilibrium in all generic n-person games that possess at least one pure Nash equilibrium. In games that do not have such an equilibrium, there is a simple formula that expresses the long-run probability of the various disequilibrium states in terms of two factors: i) the sum of payoffs over all agents, and ii) the maximum payoff gain that results from a unilateral deviation by some agent. This welfare/stability trade-off criterion provides a novel framework for analyzing the selection of disequilibrium as well as equilibrium states in n-person games.

Speaker Details

http://www.economics.ox.ac.uk/index.php/staff/young/

Date:
Speakers:
Peyton Young
Affiliation:
University of Oxford
    • Portrait of Jeff Running

      Jeff Running