When Quantity makes Quality: Learning with Information Constraints

Speaker  Ohad Shamir

Affiliation  Hebrew University, Department of Computer Science

Host  Jennifer Chayes

Duration  01:02:00

Date recorded  25 February 2010

In standard learning models, it is assumed that the learner has a complete and fully available training set at hand. However, in many real-world applications, obtaining full information on the training examples is expensive, illegal, or downright impossible. In this talk, I will discuss some new methods to learn in such information-constrained settings. These range from learning with only a few available features from each example; through coping with extremely noisy access to the data; to privacy-preserving learning. The underlying theme is that by gathering less information on more examples, one can be provably competitive with learning mechanisms which enjoy full access to the data. Along the way, I'll describe some novel techniques which might be of interest in their own right.

The talk is based on some recent joint works with Nicolo Cesa-Bianchi and Shai Shalev-Shwartz.

©2010 Microsoft Corporation. All rights reserved.
> When Quantity makes Quality: Learning with Information Constraints