Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Unbundling Transaction Services in the Cloud

David B. Lomet, Alan Fekete, Gerhard Weikum, and Michael J. Zwilling


The traditional architecture for a DBMS engine has the recovery, concurrency control and access method code tightly bound together in a storage engine for records. We propose a different approach, where the storage engine is factored into two layers (each of which might have multiple heterogeneous instances). A Transactional Component (TC) works at a logical level only: it knows about transactions and their ―logical concurrency control and undo/redo recovery, but it does not know about page layout, B-trees etc. A Data Component (DC) knows about the physical storage structure. It supports a record oriented interface that provides atomic operations, but it does not know about transactions. Providing atomic record operations may itself involve DC-local concurrency control and recovery, which can be implemented using system transactions. The interaction of the mechanisms in TC and DC leads to multi-level redo (unlike the repeat history paradigm for redo in integrated engines). This refactoring of the system architecture could allow easier deployment of application-specific physical structures and may also be helpful to exploit multi-core hardware. Particularly promising is its potential to enable flexible transactions in cloud database deployments. We describe the necessary principles for unbundled recovery, and discuss implementation issues.


Publication typeInproceedings
Published inCIDR
> Publications > Unbundling Transaction Services in the Cloud