Dynamic atomic storage without consensus

This paper deals with the emulation of atomic read/write (R/W) storage in dynamic asynchronous message passing systems. In static settings, it is well known that atomic R/W storage can be implemented in a fault-tolerant manner even if the system is completely asynchronous, whereas consensus is not solvable. In contrast, all existing emulations of atomic storage in dynamic systems rely on consensus or stronger primitives, leading to a popular belief that dynamic R/W storage is unattainable without consensus. In this paper, we specify the problem of dynamic atomic read/write storage in terms of the interface available to the users of such storage. We discover that, perhaps surprisingly, dynamic R/W storage is solvable in a completely asynchronous system: we present DynaStore, an algorithm that solves this problem. Our result implies that atomic R/W storage is in fact easier than consensus, even in dynamic systems.

DynaStore-PODC09.pdf
PDF file
DynaStore-TR.pdf
PDF file

In  Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC)

Publisher  Association for Computing Machinery, Inc.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM’s Digital Library --http://www.acm.org/dl/.

Details

TypeInproceedings
> Publications > Dynamic atomic storage without consensus