Markov Topic Models

Chong Wang, Bo Thiesson, Christopher Meek, and David Blei

Abstract

We develop Markov topic models (MTMs), a novel family of generative probabilistic models that can learn topics simultaneously from multiple corpora, such as papers from different conferences. We apply Gaussian (Markov) random fields to model the correlations of different corpora. MTMs capture both the internal topic structure within each corpus and the relationships between topics across the corpora. We derive an efficient estimation procedure with variational expectation-maximization. We study the performance of our models on a corpus of abstracts from six different computer science conferences. Our analysis reveals qualitative discoveries that are not possible with traditional topic models, and improved quantitative performance over the state of the art.

Details

Publication typeInproceedings
Published inD. van Dyk and M. Welling (Eds.), Proceedings of The Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS) 2009, JMLR: W&CP 5
Pages583-590
PublisherJournal of Machine Learning Research
> Publications > Markov Topic Models