Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Sparse Gaussian Processes Classification for Fast Tag Recommendation

Yang Song, Lu Zhang, and C. Lee Giles

Abstract

Tagged data is rapidly becoming more available on the World Wide Web. Web sites which populate tagging services offer a good way for Internet users to share their knowledge. An interesting problem is how to make tag suggestions when a new resource becomes available. In this paper, we address the issue of efficient tag suggestion. We first propose a multi-class sparse Gaussian process classification framework (SGPS) which is capable of classifying data with very few training instances. We suggest a novel prototype selection algorithm to select the best subset of points for model learning. The framework is then extended to a novel multi-class multi-label classification algorithm (MMSG) that transforms tag suggestion into the problem of multi-label ranking. Experiments on bench-mark data sets and real-world data from Del.icio.us and BibSonomy suggest that our model can greatly improve the performance of tag suggestions when compared to the state-of-the-art. Overall, our model requires linear time to train and constant time to predict per case. The memory consumption is also significantly less than traditional batch learning algorithms such as SVMs. In addition, results on tagging digital data also demonstrate that our model is capable of recommending relevant tags to images and videos by using their surrounding textual information.

Details

Publication typeInproceedings
Published inACM 17th Conference on Information and Knowledge Management (CIKM 2008)
PublisherAssociation for Computing Machinery, Inc.
> Publications > Sparse Gaussian Processes Classification for Fast Tag Recommendation