Real-Time GPU Rendering of Piecewise Algebraic Surfaces

We consider the problem of real-time GPU rendering of algebraic surfaces defined by B´ezier tetrahedra. These surfaces are rendered directly in terms of their polynomial representations, as opposed to a collection of approximating triangles, thereby eliminating tessellation artifacts and reducing memory usage. A key step in such algorithms is the computation of univariate polynomial coefficients at each pixel; real roots of this polynomial correspond to possibly visible points on the surface. Our approach leverages the strengths

of GPU computation and is highly efficient. Furthermore, we compute these coefficients in Bernstein form to maximize the stability of root finding, and to provide shader instances with an early exit test based on the sign of these coefficients. Solving for roots is done

using analytic techniques that map well to a SIMD architecture, but limits us to fourth order algebraic surfaces. The general framework could be extended to higher order with numerical root finding.

PDF file

In  Siggraph 2006

Publisher  Association for Computing Machinery, Inc.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or The definitive version of this paper can be found at ACM’s Digital Library --


> Publications > Real-Time GPU Rendering of Piecewise Algebraic Surfaces