Share on Facebook Tweet on Twitter Share on LinkedIn Share by email
Turbo recognition: a statistical approach to layout analysis

Taku A. Tokuyasu and Philip A. Chou

Abstract

Turbo recognition (TR) is a communication theory approach to the analysis of rectangular layouts, in the spirit of Document Image Decoding. The TR algorithm, inspired by turbo decoding, is based on a generative model of image production, in which two grammars are used simultaneously to describe structure in orthogonal (horizontal and vertical) directions. This enables TR to strictly embody non-local constraints that cannot be taken into account by local statistical methods. This basis in finite state grammars also allows TR to be quickly retargetable to new domains. We illustrate some of the capabilities of TR with two examples involving realistic images. While TR, like turbo decoding, is not guaranteed to recover the statistically optimal solution, we present an experiment that demonstrates its ability to produce optimal or near-optimal results on a simple yet nontrivial example, the recovery of a filled rectangle in the midst of noise. Unlike methods such as stochastic context free grammars and exhaustive search, which are often intractable beyond small images, turbo recognition scales linearly with image size, suggesting TR as an eÆcient yet near-optimal approach to statistical layout analysis.

Details

Publication typeInproceedings
Published inElectronic Imaging Conf. on Document Recognition and Retrieval
> Publications > Turbo recognition: a statistical approach to layout analysis