A compositional context sensitive multi-document summarizer: exploring the factors that influence summarization

The usual approach for automatic summarization is sentence extraction, where key sentences from the input documents are selected based on a suite of features. While word frequency often is used as a feature in summarization, its impact on system performance has not been isolated. In this paper, we study the contribution to summarization of three factors related to frequency: content word frequency, composition functions for estimating sentence importance from word frequency, and adjustment of frequency weights based on context. We carry out our analysis using datasets from the Document Understanding Conferences, studying not only the impact of these features on automatic summarizers, but also their role in human summarization. Our research shows that a frequency based summarizer can achieve performance comparable to that of state-of-the-art systems, but only with a good composition function; context sensitivity improves performance and significantly reduces repetition.

fp285-nenkova.pdf
PDF file

In  Proceedings of SIGIR 2006

Publisher  Association for Computing Machinery, Inc.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM’s Digital Library --http://www.acm.org/dl/.

Details

TypeInproceedings
> Publications > A compositional context sensitive multi-document summarizer: exploring the factors that influence summarization