Unsupervised Learning from Users’ Error Correction in Speech Dictation

We propose an approach to adapting automatic speech recognition systems used in dictation systems through unsupervised learning from users’ error correction. Three steps are involved in the adaptation: 1) infer whether the user is correcting a speech recognition error or simply editing the text, 2) infer what the most possible cause of the error is, and 3) adapt the system accordingly. To adapt the system effectively, we introduce an enhanced two-pass pronunciation learning algorithm that utilizes the output from both an ngram phoneme recognizer and a Letter-to-Sound component. Our experiments show that we can obtain greater than 10% relative word error rate reduction using the approaches we proposed. Learning new words gives the largest performance gain while adapting pronunciations and using a cache language model also produce a small gain.

PDF file

In  Proc. Int. Conf. on Spoken Language Processing

Publisher  International Speech Communication Association
© 2007 ISCA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the ISCA and/or the author.


> Publications > Unsupervised Learning from Users’ Error Correction in Speech Dictation