Emulating Optimal Replacement with a Shepherd Cache

The inherent temporal locality in memory accesses is filtered out by the L1 cache. As a consequence, an L2 cache with LRU replacement incurs significantly higher misses than the optimal replacement policy (OPT). We propose to narrow this gap through a novel replacement strategy that mimics the replacement decisions of OPT. The L2 cache is logically divided into two components, a Shepherd Cache (SC) with a simple FIFO replacement and a Main Cache (MC) with an emulation of optimal replacement. The SC plays the dual role of caching lines and guiding the replacement decisions in MC. Our pro- posed organization can cover 40% of the gap between OPT and LRU for a 2MB cache resulting in 7% overall speedup. Comparison with the dynamic insertion policy, a victim buffer, a V-Way cache and an LRU based fully associative cache demonstrates that our scheme performs better than all these strategies.

In  Proceedings of the 40th International Symposium on Microarchitecture (MICRO 2007)

Publisher  IEEE Computer Society
Copyright © 2007 IEEE. Reprinted from IEEE Computer Society. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Details

TypeInproceedings
> Publications > Emulating Optimal Replacement with a Shepherd Cache