Polynomial time algorithms for network code construction

Sidharth Jaggi, Peter Sanders, Philip A. Chou, Michelle Effros, Sebastian Egner, Kamal Jain, and Ludo M. G. M. Tolhuizen

Abstract

The famous max-flow min-cut theorem states that a source node can send information through a network (V,E) to a sink node at a rate determined by the min-cut separating s and t. Recently, it has been shown that this rate can also be achieved for multicasting to several sinks provided that the intermediate nodes are allowed to re-encode the information they receive. We demonstrate examples of networks where the achievable rates obtained by coding at intermediate nodes are arbitrarily larger than if coding is not allowed. We give deterministic polynomial time algorithms and even faster randomized algorithms for designing linear codes for directed acyclic graphs with edges of unit capacity. We extend these algorithms to integer capacities and to codes that are tolerant to edge failures.

Details

Publication typeArticle
Published inIEEE Trans. Information Theory
PublisherInstitute of Electrical and Electronics Engineers, Inc.
> Publications > Polynomial time algorithms for network code construction